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Abstract—For a 3-generated free modular lattice we obtain a set of 11 defining relations and prove
that this set is minimal.
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Recall that the rank of free algebra from some manifold is the cardinal number of the set of its free
generators. We concentrate our attention on a free lattice of the rank 3 in the manifold of modular
lattices; we denote it by A. Let F be a free lattice of the rank 3 in the manifold of all lattices; let f , g,
and h be its free generators, and let ϕ be a homomorphism from F to A. By standard considerations
of a universal algebra, elements a = ϕ(f), b = ϕ(g), and c = ϕ(h) are free generators of the lattice A.
Relations defining this lattice in the manifold of all lattices were considered in [1] and [2]. In the paper [1]
one has particularly shown that A can be defined by 21 relations. In [2] one has proved that this set of
defining relations is not minimal; namely, it was shown there that 15 relations among those mentioned
above define the lattice A, moreover, they form the minimal set of defining relations for A. Note that in [1]
one has described a set of seven defining relations for a free distributive lattice of the rank 3, and in [3]
this set was proved to be minimal.

The following assertion is the main result of this paper: There exists a set of 11 defining relations for
the lattice A. Note that this set is not a subset of the set of defining relations indicated in [1]. Let us
enumerate these relations:

(a ∨ (b ∧ c)) ∧ (b ∨ c) = (a ∧ (b ∨ c)) ∨ (b ∧ c), (1)

(b ∨ (c ∧ a)) ∧ (c ∨ a) = (b ∧ (c ∨ a)) ∨ (c ∧ a), (2)

(c ∨ (a ∧ b)) ∧ (a ∨ b) = (c ∧ (a ∨ b)) ∨ (a ∧ b), (3)

(a ∨ b) ∧ (a ∨ c) ∧ (b ∨ c) = ((a ∧ (b ∨ c)) ∨ ((a ∨ b) ∧ c))
∧ ((b ∧ (a ∨ c)) ∨ ((b ∨ a) ∧ c)) ∧ ((a ∧ (c ∨ b)) ∨ ((a ∨ c) ∧ b)), (4)

(a ∧ b) ∨ (a ∧ c) ∨ (b ∧ c) = ((a ∨ (b ∧ c)) ∧ ((a ∧ b) ∨ c))
∨ ((b ∨ (a ∧ c)) ∧ ((b ∧ a) ∨ c)) ∨ ((a ∨ (c ∧ b)) ∧ ((a ∧ c) ∨ b)), (5)

(a ∨ b) ∧ (a ∨ c) = a ∨ ((a ∨ b) ∧ (a ∨ c) ∧ (b ∨ c)), (6)

(b ∨ a) ∧ (b ∨ c) = b ∨ ((a ∨ b) ∧ (a ∨ c) ∧ (b ∨ c)), (7)

(c ∨ a) ∧ (c ∨ b) = c ∨ ((a ∨ b) ∧ (a ∨ c) ∧ (b ∨ c)), (8)

(a ∧ b) ∨ (a ∧ c) = a ∧ ((a ∧ b) ∨ (a ∧ c) ∨ (b ∧ c)), (9)

(b ∧ a) ∨ (b ∧ c) = b ∧ ((a ∧ b) ∨ (a ∧ c) ∨ (b ∧ c)), (10)
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(c ∧ a) ∨ (c ∧ b) = c ∧ ((a ∧ b) ∨ (a ∧ c) ∨ (b ∧ c)). (11)

For short we denote this set of relations by ρ.

Theorem. The lattice with generating elements a, b, and c and with the set ρ of defining relations
is isomorphic to a free modular lattice of the rank 3. If a subset of relations is strictly contained
in ρ, then the lattice with generating elements a, b, and c and with this set of defining relations is
not modular.

The proof of the first statement of the theorem is based on the following assertions. Let L be the
lattice with generating elements a, b, and c defined by relations of the set ρ. Since the lattice A satisfies
the indicated relations, it is a homomorphic image of the lattice L. It is known that A contains 28
elements, therefore, the lattice L contains at least 28 elements. But direct calculations show that L
cannot contain more than 28 elements. This means that two mentioned lattices are isomorphic.

Let us prove the second assertion. For each set of defining relations obtained from ρ by eliminating
one arbitrary relation we construct an example of a 3-generated non-modular lattice satisfying all
relations from the mentioned set. For instance, the lattice presented in Fig. 1 is non-modular; it satisfies
relations (2)–(11) but does not satisfy relation (1).

Fig. 1.

In Fig. 1 we use the denotations u = (a ∨ (b ∧ c)) ∧ (b ∨ c) and v = (a ∧ (b ∨ c)) ∨ (b ∧ c).

The lattice presented in Fig. 2 satisfies relations (1)–(3) and (5)–(11) but does not satisfy relation (4).

In Fig. 2 we use the denotations t = (a∨ b)∧ (a∨ c)∧ (b ∨ c), a1 = a∧ (b ∨ c), and b1 = b∧ (a ∨ c).

The lattice presented in Fig. 3 satisfies relations (1)–(5) and (7)–(11) but does not satisfy relation (6).

The rest examples are obtained from those described above by permutations of elements a, b, and c
and by passing to the dual lattices.

In this connection it is interesting to clear out whether there exists a set of defining relations for a free
modular lattice of the rank 3, where the number of relations is less than 11.
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Fig. 3.
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