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• The maximum entropy production principle is considered as a foundation of nonequilibrium pattern formation.
• Based on the principle, a simple phenomenological model of dendrite growth is developed.
• The model results quantitatively agree with the experimental data.
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a b s t r a c t

Themaximum entropy production principle is used as a foundation for the nonequilibrium
solidification theory. Based on this principle, a new simple model of dendrite solidification
is proposed. Themodel predicts the explicit dependency of a dendrite’s rate and tip size on
supercooling. The obtained results are devoid of the contradictions of the previous models
and show quantitative agreement with the recent experimental data for the SCN dendrite.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Nonequilibrium growth of crystals from different media is typical for many natural and technological processes. Such
growth results in the complex, intricate shape of crystals. In terms of appearance, they are divided into dendrites, nonsym-
metrical diffusion-limited aggregates (DLA), seaweed-like structures, etc. [1–7]. It is interesting to note here that similar
shapes are typical not only for crystal systems but for some biotic systems (e.g. for bacterial colonies) in the process of self-
organization (see e.g., Ref. [3]). Currently, most investigations (both theoretical and experimental) deal with the dendrite
growth forwhich a snowflake forming in air supersaturatedwithwater vapor is a typical example. One of the core issues that
have been discussed formore than fifty years is the connection between three quantities characterizing the dendrite (see, for
example, the reviews [8–13]). These quantities are the dendrite growth rate υ , the dendrite tip size, which is conventionally
described by the curvature radius ρ, and the degree of nonequilibrium of the system ∆ (a relative quantity of supercooling
or supersaturation in the case of crystallization from themelt or from the solution/vapor, respectively). According to the ex-
periments, in the case of preset ∆, the dendrite has certain values of υ and ρ during its growth. The microscope solvability
theory1 is presently the most common method for determining the dependencies υ(∆) and ρ(∆) [11–14]. This theory ana-
lytically studies the growth and stability of a needle crystal by means of the rigorous solution of a heat-conduction problem
with the anisotropies of surface energy and kinetic effects. This theory allows predicting the behavior of υ(∆) and ρ(∆) for a
number of the simplest cases of dendrite growth. However, such a method cannot be considered as a basis for material and
metallurgical applications because there are no explicit dependencies (and fitting formulas) υ(∆) and ρ(∆) convenient for

∗ Corresponding author at: Ural Federal University, 19 Mira Str., Ekaterinburg, 620002, Russia.
E-mail addresses: LeonidMartyushev@gmail.com, mlm@ecko.uran.ru (L.M. Martyushev).

1 Further referred to as MST for brevity.

0378-4371/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.physa.2013.07.037

http://dx.doi.org/10.1016/j.physa.2013.07.037
http://www.elsevier.com/locate/physa
http://www.elsevier.com/locate/physa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physa.2013.07.037&domain=pdf
mailto:LeonidMartyushev@gmail.com
mailto:mlm@ecko.uran.ru
http://dx.doi.org/10.1016/j.physa.2013.07.037


5758 L.M. Martyushev, A.S. Soboleva / Physica A 392 (2013) 5757–5763

practical use2 [13]. At the same time, there is another drawback, in our opinion, themost critical. The dendrite crystallization
theory has appeared and been developed as some special problem of mathematical physics3 intended only for describing
dendrite growth.4 As a result, in a number of cases the selected mathematical method of problem analysis can lead to prin-
cipally different physical conclusions (for example, in regard to the prerequisites for existence of the stable dendrite tip or
to the mechanism of sidebranch appearance (see Refs. [13,14,16,17])). The development of simple phenomenological mod-
els based on a minimum number of statements, preferably the most fundamental ones,5 can be a possible way out from the
currently observed stagnation in the dendrite growth theory. The model shall be constructed in general for nonequilibrium
solidification (because the dendrite is only one of many nonequilibrium shapes of growth; and according to the experiment,
these shapes can be simultaneously observed in the course of nonequilibrium growth [18,19]). The development of such a
phenomenological model is the objective hereof.

2. Model

The maximum entropy production principle, which is currently considered as one of the most important principles
of nonequilibrium physics (see reviews [20–22]) finding increased usage in the problems of nonequilibrium crystalliza-
tion [22–27], is chosen as a foundation. This principle can be most generally formulated as follows: at each level of descrip-
tion, with preset external constraints, the relationship between the cause and the response of a nonequilibrium system is
established such as to maximize the entropy production. The maximum entropy production principle allows determining
the dependency of thermodynamic fluxes on forces throughmaximization of the local entropy production6 under the given
thermodynamic forces. As a result, the principle leads to the equations describing heat/mass transfer (both molecular and
convectional) which are traditionally used for the mathematical treatment of dendrite crystallization.

For the simplest one-component system solidifying from the supercooling melt, it is known (see e.g., Ref. [25]) that the
local entropy production is proportional to the squared local rate of crystal growth V . Obviously, the supercooling ∆ is
the thermodynamic force here. For this simplest case, the maximization of the local entropy production agrees with the
maximization V under the given (fixed) supercooling ∆:

V → max . (1)

Thus, the condition (1) constitutes the foundation of the present model of nonequilibrium growth of a crystal (the den-
drite, in the particular case). In anticipation of multiple criticisms regarding the statement (1), let us make a number of
important notes explaining our viewpoint.

(1) Themaximization of growing dendrite rate (1) was repeatedly used in the past, especially in themiddle of the twenti-
eth century [8,8,12,16,22,23,25]. Such an approach provides a quadratic dependency of rate on supercooling. However, this
method was subsequently abandoned because the obtained results appeared to be in poor agreement with experiment: the
growth rate was too high and the tip radius was too small. It is conventional to attribute the poor agreement with exper-
iment specifically to the rate maximization procedure (1). However, it seems that the true reason may lie in the fact that
the used models to which the maximization was applied misrepresented the real phenomena under consideration. Specif-
ically, in the case of dendrite growth from the melt under terrestrial conditions, the convective heat transfer was obviously
underestimated, which influence, according to the modern thorough experiments, is significant [13].

(2) As is known, MST is presently a common approach to describe the dendrite tip. This theory originated approximately
thirty years after the disappointment in, and rejection of, the ratemaximization principle. It is paradoxical that, in the course
of the evolution of the theory, the founders of MST came to the conclusion that the solution describing dendrite growth at
the maximum possible rate is the only linearly stable solution out of the discrete spectra of stationary ‘‘needle-shaped’’ so-
lutions [11]. Thus, it turned out to be that the statement of rate maximality follows fromMST! Here, it is appropriate to also
note that some researchers (for example, E. Ben-Jacob [2]) seeing a number of problems in MST itself (specifically, in ex-
plaining the results of the anisotropic Hele-Shaw experiment) made the following statement: if more than one morphology
is a possible solution, only the fastest growing morphology is nonlinearly stable and will be observed. So, as a result of the
long-term intensive development of the dendrite growth theory, the researchers came back to the maximum growth rate
principle.

(3) Whereas more than half a century ago the maximum rate principle appeared by intuition based on common sense,
today it directly follows from the first principles of nonequilibrium thermodynamics (the maximum entropy production
principle). That is an advantage of such an approach as compared to a number ofmodern theories of dendrite growth lacking
any sound foundation.

2 There are only numerical and/or asymptotic dependencies.
3 Here, the field of study based on and developed in the paper by Ivantsov [15] is meant. These studies represent the overwhelming majority and serve

as a basis for multiple modern reviews, monographs, and textbooks on dendrite growth [11–13].
4 Initially, a very particular model was chosen: an isothermal paraboloid growing at the constant rate in the medium due to heat conduction only.

However, even this model itself had no analytical solution. Then, it has been ‘‘improved’’ and generalized for decades, which resulted in the avalanche-like
growth of its mathematical complexity.
5 Subsequently, if required, the model can be supplemented with assumptions taking into account the specifics of this or that nonequilibrium growth.
6 In the general case, this dependency may be nonlinear.
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The condition (1) needs to be supplemented with some crystal growth model. In this case, let us choose the simplest yet
quite common local model representing the heat balance on the crystal surface [28]:

A
Tint − T∞

R
= B (Ts − Tint) , (2)

V = B (Ts − Tint) , (3)

where R is the typical crystal size, T∞ is the temperature at a distance from the growing crystal (at the boundary layer
distance, which usually amounts to several R), Tint is the melt temperature near the arbitrarily-shaped boundary, Ts is
the melting temperature of the arbitrarily-surfaced crystal, A is the coefficient determining heat transfer in the melt and
depending on the heat conduction coefficient, boundary layer thickness, crystal density, latent crystallization heat, etc.,7 and
B is the coefficient determining heat transfer at the crystal boundary and, in the general case, depending on the presence of
adsorbed impurities, chemical nature of the crystal at hand, surface temperature, etc.8

Let us use a conventional representation for the temperature Ts as [25,28]:

Ts = T0


1 −

C
R


, (4)

T0 is the equilibrium melting temperature of the crystal’s planar boundary (reference quantity), and C is the coefficient
determining the deviation of themelting temperature of the planar surface from the one of the curved surface and depending
on the surface energy of the crystal-melt boundary, molar volume of the melt, surface curvature, anisotropy, etc.

So, the growthmodel depends on the three coefficients A, B, and C,where the first one characterizes heat transfer in the
melt volume and the two others characterize properties of the crystal-melt surface. Let us rearrange (2)–(4), by excluding
Tint, in the form:

V =
BT0∆ − BCT0/R

1 + BR/A
, (5)

where the relative supercooling quantity is introduced ∆ = (T0 − T∞)/T0.
The relation (5) interconnects the three quantities in the case of nonequilibrium crystal growth: growth rate, typical

size, and supercooling. This relation is quite general and, together with (1), is valid for multiple cases of nonequilibrium
crystallization.

Let us show a number of corollaries of (1), and (5) for the simplest case. Let the coefficients A, B, and C be independent
from the crystal size and the relative supercooling be invariable (fixed). Thus, the typical size is the only free parameter in
(5). According to (1) and (5), the maximum9 rate is reached for the typical size of the crystal structure:

R =
BC +

√
B2C2 + ABC∆

B∆
. (6)

By inserting the latter in (5), we have:

V =
ABT0 ∆2

[
√
BC +

√
BC + A∆]2

. (7)

The obtained explicit expressions (6) and (7) can be used for analytical calculations related to the nonequilibrium crystal
growth. However, such dependencies are not always convenient for approximating the experimental data at hand. Let
us transform them into approximating polynomials by expanding them into a series in terms of supercooling. Here, it
is important to note that the coefficient A can depend on supercooling. Let this dependency have the simplest form10

A = A0 + A1 ∆. Then:

R =
2C
∆

+
A0

2B
−

A2
0 − 4A1BC
8B2C

∆ + · · · (8)

V =
A0T0
4C

∆2
−

T0(A2
0 − 2A1BC)

8BC2
∆3

+ · · · . (9)

7 The heat transfer is not restricted only to heat conduction in this expression, it may also be related to convection (in this case, the coefficient A can
depend on R and the tip shape).
8 This coefficient is directly related to the so-called kinetic coefficient of crystallization.
9 It can be easily shown that for A > 0, B > 0, and C > 0 the obtained extreme point corresponds to the maximum.

10 Indeed, on the one hand, the heat conduction coefficient depends on the melt temperature (therefore, also on ∆); on the other hand, the assumption
of linearity in (Ts − Tint) on the right side of (2) is often too rough [28]. Let us note the importance of the coefficient A1 for the described model and the
need for its further study.
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Fig. 1. Dependency of the curvature radius of dendrite tip ρ on the dimensionless supercooling ∆. Experimental data is shown by the circles: empty, for
microgravity; filled, for terrestrial conditions. The approximations (10) for microgravity conditions (a = (4.4± 0.4) · 10−8 , b = (1.0± 0.1) · 10−7) and for
terrestrial conditions (a = (3.2 ± 0.3) · 10−8 , b = (1.9 ± 0.2) · 10−6) are shown by the solid and dashed lines, respectively.

Fig. 2. Dependency of the growth rate of dendrite tip υ on the dimensionless supercooling ∆. Experimental data is shown by the circles: empty, for
microgravity, filled, for terrestrial conditions. The approximations (11) for microgravity conditions (c = 11.5 ± 1.2, d = 2500 ± 250) and for terrestrial
conditions (c = 26.0 ± 2.6, d = −300.0 ± 30.0) are shown by the solid and dashed lines, respectively.

3. Dendrite growth. The model verification

For verifying our phenomenological model, let us use the experimental data (υ , ρ,∆) obtained for the dendrite growth of
succinonitrile (SCN) under terrestrial and microgravity conditions11 [29]. Based on the example under study, let us rename
the variables in (8) and (9): V → υ and R → ρ; and by limiting ourselves to the first two summands from (8), (9), we
obtain:

ρ =
a
∆

+ b, (10)

υ = c ∆2
+ d∆3, (11)

where, for compactness, the following notation is introduced: a = 2C, b = A0/(2B), c = A0T0/(4C), d = T0(2A1BC −

A2
0)/(8BC

2). Let us note the presence of the free term (b) in (10) independent from supercooling, which is not used in the
traditional approximations [12,13]. According to Eqs. (2) and (3), in the simplest case, b is proportional to the ratio of thermal
diffusivity to a kinetic coefficient of crystallization. This coefficient is important from the theoretical viewpoint as it allows

11 Currently, this data is traditionally used for verifying theories.
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Fig. 3. Dependency of the relative error of approximations of the experimental values of rate υexp (a) and the curvature radius of dendrite tip ρexp (b) on
the dimensionless supercooling ∆. The approximations are made using the model (10), and (11), and the model υ ∝ ∆n and ρ ∝ ∆−n/2 (n = 2.65).
The model coefficients were found using MATLAB software (curve fitting toolbox) taking into account all the available experimental values. The error for
terrestrial conditions is shown in the graph and the error for microgravity conditions is shown in the inset.

introducing a lower cut-off value for the limit size of the dendrite tip in the case of relatively high supercoolings.12 In the case
of such supercoolings, ρ → 0 and b/ρ ≫ 1; as a consequence [28], the growth is limited by surface attachment kinetics.

According to Figs. 1 and 2, the approximations (10) and (11) describe the available experimental data for the SCN den-
drites over the whole interval of supercooling variation rather well. Let us compare the obtained result with the previously
existing one. In the literature, υ ∝ ∆n and ρ ∝ ∆−n/2 (n = 2.5–2.65) are the most common dependencies. These relations
follow from the approximation of numerical solutions of a number of mathematical models of the parabolic-shaped den-
drite13 [8,13]. The relative errors resulting from these approximations and from (10), and (11) proposed herein are given in
Fig. 3. It can be seen that the error resulting from (10), and (11)weakly depends on∆ anddoes not exceed 20%. In contrast, the
dependencies υ ∝ ∆n and ρ ∝ ∆−n/2 provide a widely different accuracy for different supercoolings, including above 70%.

The found coefficients of approximation a, b, c, and d (see the captions of Figs. 1 and 2) make it possible to determine
the basic coefficients of the model (2)–(4): A0 = 2ca/T0, A1 = 2(da + 2cb)/T0, B = ca/(bT0), C = a/2. It appears that for
the experiment under microgravity conditions A0 = (3.1 ± 0.6) · 10−9, A1 = (6.8 ± 1.4) · 10−7, B = (1.50 ± 0.45) · 10−2,
C = (2.2 ± 0.2) · 10−8, whereas under terrestrial conditions A0 = (5.0 ± 1.0) · 10−9, A1 = (5.4 ± 1.1) · 10−7, B =

(0.13 ± 0.04) · 10−2, C = (1.6 ± 0.1) · 10−8. As is seen, the three coefficients (A0, B, and C) reliably differ for the experi-
ments under Earth and microgravity conditions. The high value of A0 for the terrestrial conditions is easily explained by the

12 Let us note that one of the recent theories of dendrite growth [30] based on dimensional analysis also indicates, in the case of small ∆, the presence of
a summand of the b type in the expression for ρ.
13 Including MST.
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convective contribution; however, the reliable difference for the coefficients B and C requires further analysis. Let us note
that the reliable difference in the values of A1 was not proved.

Using (10), and (11), we have:

VR2
= a2c + a(2bc + ad)∆ + · · · . (12)

Thus, according to the approach developed herein, the quantity VR2 depends on supercooling and can be considered as a
constant quantity only when ∆ tends to zero. Since a2c = A0CT0, this constant quantity is directly proportional to the heat
transfer intensity in the melt volume and depends on the properties on the crystal-melt surface. According to the obtained
data on the SCN solidification, a2c is equal to (2.6±0.9) ·10−14 under terrestrial conditions and to (2.2±0.7) ·10−14 under
microgravity conditions, i.e. these values do not differ reliably. So, in the limit of infinitesimal ∆, the result of the present
model can be reduced to the result of MST (according to which this constant is equal to 2.5 · 10−14 for SNC [29]). With the
increase of supercooling, the coefficient responsible for linear growth of VR2 proves to be equal to (2.8± 0.9) · 10−12 under
terrestrial conditions and to (4.9± 1.6) · 10−12 under space conditions of crystallization; i.e. these coefficients do not differ
reliably. Let us note that these coefficients were calculated from the formula a(2bc+ad) based on the values of a, b, c , and d
obtained from the approximation shown in Figs. 1 and 2. If the experimental dependencies of VR2 on ∆ are directly linearly
approximated, then the results will be as follows: (3.2 ± 0.9) · 10−12∆ + (2.6 ± 0.1) · 10−14 for terrestrial conditions of
crystallization and (3.5±0.7) ·10−12∆+(2.5±0.1) ·10−14 for crystallization undermicrogravity conditions. It is important
to note that the sum of squares due to error (SSE), in the case of linear approximation, is equal to 1.0·10−28, formicrogravity,
and to 3.5 · 10−28, for Earth; whereas in the case of the approximation by a constant quantity it is equal to 6.9 · 10−28 and
16.3 · 10−28, respectively, which means that the linear approximation is more preferable.

4. Conclusion

Thus, a simple phenomenological model of nonequilibrium crystal growth based on the maximum entropy production
principle is proposed herein. It is demonstrated that, as applied to the dendrite growth, themodel provides a better quantita-
tive description of the dependency of the growing dendrite’s rate and tip size on supercooling. The fundamental differences
between the approach proposed herein and the approaches available in the literature (e.g. MST or the one given in Ref. [17])
are as follows. (1) The possibility of both qualitative predication and quantitative description (using the explicit approxima-
tion formulas of (10) and (11) types) of a nonequilibrium crystal (not only dendrite) growth under various conditions, for
different geometries and over the whole possible interval of supercoolings. Traditional approaches have no such generality
and provide solutions (often implicit and inconvenient for practical use) for a very narrow class of problems (on supercool-
ing, on solidification conditions, on geometry, etc.). (2) The maximum entropy production principle is the foundation of the
proposed approach. The particular crystallization model performs an important but still an auxiliary function complement-
ing the principle. In the traditional approaches, the statements similar to the mentioned maximum principle either follow
from the mathematical solution of a specific problem or originate as auxiliary statements, which allow selecting a unique
solution among several solution candidates.

Based on the above, it seems to us that the approach proposed herein can be very useful and fruitful for studying various
pattern formations observed under nonequilibrium conditions.
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