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INTRODUCTION

The evolution of dendrites is known to control the
structure formation in the materials formed during the
solidification of melts [1, 2]. Apart from experimental
observation of the dendritic growth dynamics, qualita�
tively new materials have recently been obtained by
mathematical simulation to test the basic concepts of
crystal morphology formation (see review [3] and
Refs. therein). Among the important problems, we
distinguish the problem of stable growth of the tip of a
freely growing dendrite crystal and the problem of the
effect of a convective flow on the mechanism of choos�
ing its growth mode. These problems have theoretical
and practical importance [4, 5].

The problem of choosing the stable growth mode of
an isolated crystal appeared from an analysis of the
Ivantsov solutions [6, 7] and the experimental data on
the growth of a needlelike crystal of a parabolic shape
[8–14]. These comparison and tests led to the conclu�
sion that the continuous family of isotropic Ivantsov
solutions is unstable: a needlelike crystal loses its ini�
tial parabolic shape in a steady�state growth mode
[15]. Therefore, the Ivantsov solution is only used as a
zeroth approximation to solve the problem of stable
growth, where the role of a small parameter is played
by surface tension anisotropy or growth kinetics
anisotropy [16]. After finding the criterion of stable
dendrite tip motion in a single�component unmovable
medium [15, 16], the problem was extended to the
cases of a convective medium flow [17–19], crystal
growth in a binary (chemically two�component) con�
vective�free system [20], and dendritic growth in a
binary liquid with convection [21, 22].

Directional solidification is known to be controlled
by changing the temperature gradients or tempera�
tures in solid and liquid phases. The temperature gra�
dients and temperatures set far from the phase�transi�

tion temperature can be rather high. This circum�
stance can result in the thermodiffusion effect (Soret
effect), when the difference in the temperatures in var�
ious melt regions leads to substance transport into
them; that is, a temperature gradient changes the con�
centration (see, e.g., [23]). As a rule, a thermodiffu�
sion flow depends on the substance concentration. For
example, it is proportional to the impurity concentra�
tion in dilute solutions and melts [23–25]. Therefore,
we can write the substance flow in the form

(1)

where C and T are the concentration and temperature
fields, respectively; D and DT are the diffusion and
thermodiffusion coefficients, respectively; and β0 and
β1 are constants. The first term in Eq. (1) is responsible
for conventional substance diffusion, and the second
term, for thermodiffusion. We will consider the fol�
lowing cases: β0 = C

∞
, β1 = 0 (C

∞
 is the initial concen�

tration, or the concentration at infinity) and β0 = 0,
β1 = 1. The first case was discussed in [26]: it corre�
sponds to small concentration changes as a function of
the spatial coordinate in a melt. If the change in the
concentration cannot be neglected, the second case is
better to describe the process [27].

The inverse Soret effect (so�called Dufour effect),
where a concentration gradient causes temperature
changes, is also known. However, when solutions and
melts are studied, this effect may be neglected (as a
rule, it is important in gas mixtures (see, e.g., [28])).

To facilitate calculations, the diffusion coefficient
is usually taken to be constant; however, generically
speaking, this is not the case, since the diffusion coef�
ficient depends on temperature. By analogy with

( )0 1 ,TJ D C D C T= − ∇ − β +β ∇
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[27, 29], we consider this temperature dependence in
the linear form

(2)

where D0 is the diffusion coefficient at melting tem�
perature T0 and ∂D/∂T = D' is the temperature coeffi�
cient (see, e.g., [29]).

It is known from experiments that the growth of
dendritic structures completely characterizes the
properties of solids. Solidification usually proceeds in
the mode of “dendritic forest” formation in the super�
cooled region in a melt, which is often called a mushy
zone [30, 31]. Therefore, to study the specific features
of dendritic growth is important from the standpoint
of structure–phase transitions in the mushy zone. The
rejection of impurities by a growing crystal (dendrites)
is known to result in a concentration supercooling
[32], which favors the growth of a solid phase deep into
the melt. The supercooling that appears during the
solidification of metallic alloys is often compensated
by intense formation of latent heat of solidification. In
this case, the mushy zone having appeared during
solidification is quasi�equilibrium [33–35].

The authors of [36–43] developed methods for
solving nonlinear heat� and mass�transfer equations in
a quasi�equilibrium mushy zone solidifying at a con�
stant rate. This process takes place in many experi�
ments and corresponds to the pulling of a crystal from
a melt. Solidification often occurs from a cooling
boundary, the temperature of which is maintained at a
constant level or is a function of time. In the former
case, solidification corresponds to a self�similar mode.
The theory of mushy zone solidification for this situa�
tion was developed in [44–52]. In the latter case, the
system dynamics depends substantially on the time
variation of the cooling boundary temperature. To
describe the processes that take place under these con�
ditions, the authors of [53–65] developed methods for
analytical solution of quasi�equilibrium mushy zone
equations.

( ) ( )0 0 ,DD T D T T
T
∂

= + −
∂

Thermodiffusion and the temperature dependence
of a diffusion coefficient during the heat and mass
transfer in the mushy zone were taken into account in
[66, 67]. In those works, however, the mushy zone was
considered without taking into account the specific
features of the growth of individual dendritic struc�
tures; therefore, it is important to perform such an
analysis. Although dendritic growth was studied in
many works, the temperature dependence of a diffu�
sion coefficient and the possibility of thermodiffusion
substance transport have not yet been considered. The
purpose of this work is study the effect of Eqs. (1) and
(2) on the impurity distribution created by the growth
of an isolated dendrite in an incident melt flow.

The problem is formulated for an extended Stefan
model with a frontal interfacial dendrite surface (par�
abolic crystal–liquid interface) when thermodiffusion
and the temperature dependence of a diffusion coeffi�
cient are taken into account. The problem for a forced
flow is solved in the Oseen approximation.

MODEL FOR DENDRITIC GROWTH

Figure 1 shows the dendritic growth in an incident
viscous melt flow. The temperature field in the liquid
phase is described by the convective heat conduction
equation

(3)

where a is the thermal diffusivity,  is the liquid flow
velocity, t is the time, and Δ is the Laplace operator.

The impurity distribution in the liquid part of the
system obeys the convective diffusion equation

(4)

and flow  is determined by Eq. (1).
The heat and mass balance conditions

(5)

(6)
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Fig. 1. Schematic diagram of dendrite growth in an incident liquid flow.



RUSSIAN METALLURGY (METALLY)  Vol. 2013  No. 2

ON THE THEORY OF DENDRITIC GROWTH 125

hold true at the mobile interface. Here, Q is the latent
heat of solidification, Ts is the (isothermal) dendrite
temperature,  is the normal velocity of the dendrite
surface, cp is the heat capacity of the melt, and k0 is the
equilibrium impurity distribution coefficient. Follow�
ing [19], we consider the liquid flow at small Reynolds
numbers. In this case, the velocity distribution in the
melt obeys the Oseen equation and the continuity
equation [68]

(7)

where U is the incident liquid flow velocity far from the
growing crystals and ρ1 and ν are the liquid density and
viscosity, respectively. Note that the Oseen approxi�
mation used in motion equation (7) can only take into
account the most important inertial terms and yields
rather accurate calculation results (see, e.g., the clas�
sical problem of the motion of a sphere in a viscous liq�
uid [69, 70]).

ANALYTICAL SOLUTION

Let a two�dimensional parabolic dendrite grow at a
constant rate V along spatial axis z (Fig. 1). The liquid
flow far from the crystal is parallel to axis z and is
opposite to the dendrite growth direction (so�called
incident flow). We introduce parabolic coordinates ξ
and η connected to Cartesian coordinates x and z by
the relations

(8)

where ρ is the dendrite tip radius and the interface is
located at the level η = 1.

With Eq. (7), we can determine liquid velocity
components uη and uξ in parabolic coordinates (8).
Following [19], we write the result in the form

(9)

where we introduced the defining functions

which take into account the flow intensity using Rey�
nolds number Re = ρ1U/ν.

Equation (3) can easily be integrated in parabolic
coordinates (8). Having found its solution (which

nυ
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depends only on variable η), we rewrite the formula�
tion of the problem in the form (see [18])

(10)

where the temperature in the melt at infinity is consid�
ered to be specified; that is, T → T∞ at η → ∞.

The integration of Eq. (10) gives the temperature
distribution in the liquid phase of the system,

(11)

Here, we introduced the following designations:

  

where Pg and Pf are the growth and flow Peclet num�
bers, respectively, which are defined in terms of den�
drite growth rate V and liquid flow velocity U.

Equation (4) depends only on coordinate η and is
written as

(12)

We introduce designations y(η) = β0 + β1C(η) and
dy/dη = y(η)/q(η) and reduce the order of Eq. (12),

(13)

where

Here, the temperature and its derivative are known
and determined with Eq. (11), and the ratios of coeffi�
cients DT/D(T) and D'/D(T) are
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Boundary condition (6) on the dendrite surface
η = 1 is now written in the situation where β0 = 0 and
β1 = 1 [27],

(14)

Equations (13) and (14) represent the Cauchy
problem the solution to which determines function
q(η). Using the found dependence q(η), we can deter�
mine the impurity concentration distribution in the
melt,

(15)

where C
∞

 is the impurity concentration in the melt far
from the dendrite. Thus, Eqs. (11) and (13)–(15) rep�
resent the solution to the heat�and�mass transfer
problem of dendritic growth when the thermodiffu�
sion and temperature�dependent diffusion effects are
taken into account.

CONCLUSIONS

Figure 2 shows the impurity concentration on the
dendrite surface versus the growth Peclet number. The
calculation parameters of the system were borrowed
from [21, 22, 66, 67]: a/D0 = 5 × 103, k0 = 0.5, C

∞
 = 1,

Q/cp = 300, a/ν = 10, Pf = 10–6, T
∞

 = 1000°C, β0 = 0,
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and β1 = 1. An analysis of the calculated curves dem�
onstrates that the presence of nonlinear impurity
transport effects in the melt radically changes the
impurity distribution. In this case, the role of coeffi�
cient D ' is more substantial than the role of coefficient
DT in the system parameter ranges under study.

The change in the surface impurity concentration
(and the concentration profile in the melt) results in a
change in the concentration supercooling in the space
in front of the dendrite tip. The calculations show that
the impurity concentration near the dendrite tip can
both increase and decrease. As a result, the concentra�
tion supercooling increases or decreases, respectively,
and the dendrite tip growth rate changes respectively.
To study this problem in detail, it is necessary to ana�
lyze the stability of dendritic growth with allowance
for the Soret and temperature�dependent diffusion
effects in terms of works [18–22].

In conclusion, note that the effects of nonlinear
impurity transport considered in this work will change
the solutions to the equations of a weakly nonequilib�
rium mushy zone [71–73] and will affect the interface
stability [74–84].
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