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1. INTRODUCTION

The magnetic properties of R2CuO4 (R = Nd, Pr,
Sm, Eu, Gd) compounds are of significant interest.
First, it is due to the fact that the oxides become elec�
tron�type superconductors when they are doped with
Ce and Th impurities [1]. In this case, the antiferro�
magnetism of the CuO2 planes is assumed to play
important role in appearance of the superconductivity
[2]. The Gd2CuO4 compound occupies a specific
place in this class of oxides. Its doping with Ce and Th
impurities does not lead to the appearance of super�
conductivity. The reason why no superconducting
transition occurs is still not completely understood [3].
Up to 1994, it was assumed that all above�listed oxides
retain the tetragonal symmetry down to the lowest
temperatures at which the studies were performed [4].
In addition, as for the Nd2CuO4 compound, the prob�
lem is not completely solved as to whether the mag�
netic ordering of copper ion spins is preceded by the
structural phase transition from the symmetric phase
with space group I4/mmm to the phase with space
group P42/mnm, or the I4/mmm symmetry is retained,
and the observed lattice distortions are due to magne�
tostriction deformations [5]. The neutron diffraction
study of a Gd2CuO4 single crystal [6] showed the exist�
ence of superstructure nuclear reflections in the phase
with space symmetry I4/mmm. Those authors associ�
ated the existence of these reflections with rotations of
the oxygen ions O(1) around the copper ions. What

this means is the Gd2CuO4 compound undergoes a
structural phase transition to the orthorhombic phase
with space group Acam (Cmca in the standard setting
and Cmce in the new notation). The magnetic ordering
of the Gd2CuO4 compound was studied in detail in [7].
Those authors established that there are three mag�
netic ordering temperatures: 6.5, 20, and 270 K. The
first temperature relates to the rare�earth subsystem. It
was shown in [7] that the antiferromagnetic ordering
of the CuO2 layers is accompanied by the formation of
a weakly�ferromagnetic moment whose magnitude is
proportional to temperature. This circumstance is
thought to be important, since any weakly�ferromag�
netic moment cannot exist in crystal symmetry
I4/mmm in R2CuO4 [7]. The neutron diffraction stud�
ies, the magnetic measurements, and the study of anti�
ferromagnetic resonance in Gd2CuO4 single crystals
were performed in [3, 4]. The experiments on neutron
diffraction and antiferromagnetic resonance (AFMR)
allowed those authors to make a conclusion about the
magnetic structure and the ground state of this com�
pound in the framework of assumption that the crystal
has the tetragonal symmetry. According to [3, 4],
Gd2CuO4 belongs to the class of easy�plane collinear
antiferromagnets with insignificant anisotropy in the
basal plane. An important result of [3, 4] is the detec�
tion of the magnetic scattering in this compound cor�
responding to wave vector k = 0; the magnetic scatter�
ing demonstrates the existence of ferromagnetic gado�
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linium layers in the ab plane of the tetragonal crystal.
In this case, the layers are antiferromagnetically
ordered along the [0, 0, 1] direction.

A further neutron diffraction study of Gd2CuO4

using polarized neutrons was carried out in [8]. When
interpreting the experimental results, space group
Cmca was replaced by two space groups Acam and
Bbcm for two “twins” which can be formed from the
tetragonal phase to conserve axis c of the unit tetrago�
nal cell. The authors of [8] verified once again that the
strong antiferromagnetic bond between copper ions in
the 001 planes in combination with the anisotropy that
is formed due to the structural distortions leads to the
formation of weakly ferromagnetic CuO2 layers. At
temperatures from 275 to 18 K, the ferromagnetic
moments of the layers are ordered in parallel to each
other, forming the weakly ferromagnetic phase. The
interlayer interaction of the CuO2 planes is weak. As
the temperature becomes below 18 K, the increasing
polarization of Gd ions changes the interlayer interac�
tion to the antiferromagnetic interaction, which brings
about the formation of the antiferromagnetic structure
without weak ferromagnetism at 16 K. In [8], using the
form�factors and geometric constant, the magnetic
moments of gadolinium and copper were estimated at
this temperature in the field 0.5 T to be 0.47μB/Gd and
0.03μB/Cu, respectively. Below 7 K, the Gd sublattices
are ordered, which is confirmed by fast increasing the
reflection intensities. The authors of [8] conclude that
the gadolinium and copper sublattices are ordered
with the same wave vector. However, this conclusion
does not agree with an analysis of the magnetic order�
ing in Gd2CuO4 performed in [9]. It is also assumed in
[8] that the Gd ions in positions (0, 0, ±z) are non�
equivalent, and the magnetic moments at these ions
are irregular in magnitude. According to remarks of
the authors of [8], the above assumption has no direct
experimental justification.

The magnetoelectric effect in the Gd2CuO4 com�
pound was studied in [9].The possibility of existence of
the magnetoelectric effect is thought to be related to
the fact that the antiferromagnetic ordering of copper
spins leads to doubling the crystal lattice, conserving
the system symmetry with respect to space inversion.
By contrast, the ferromagnetic planes of the rare�earth
spins, being coupled antiferromagnetically, violate the
symmetry with respect to space inversion but do not
influence the translation symmetry. In [9], when ana�
lyzing the magnetoelectric effect, it was supposed that
the compound belongs to the orthorhombic class
mm'm. This magnetic class allows the existence of the
magnetoelectric effect and is characterized by two
independent components of the magnetoelectric ten�
sor. However, the choice of the magnetic class is not
justified in [9]. Further studies of the magnetoelectric
effect in this compound were carried out in [10]. It was
found that the two�sublattice model of the gadolinium
subsystem and the thermodynamic potential for

describing the magnetoelectric effect proposed in [9]
are inadequate to describe the magnetoelectric bond
of Mx component of the magnetization and Ey compo�
nent of electric field observed experimentally. In this
work, we study the magnetoelectric effect in
Gd2CuO4, describe the magnetic dynamics of spins
localized at the gadolinium ions and the influence of
external electric fields on the dynamics based on the
known experimental data with allowance for the space
symmetry given by group Cmce in the framework of the
four�sublattice model for rare�earth spins.

The magnetoelectric effect at temperatures lower
than 7 K is analyzed taking into account only the Gd
subsystem, since, as noted above, the magnetic
moments localized at the gadolinium ions have higher
magnitude as compared to the magnetic moments at
copper ions. 

2. THERMODYNAMIC POTENTIAL
AND SYMMETRY

Because, at low temperatures, the wave vector k in
Gd2CuO4 is a zero, the magnetic and crystallochemi�
cal Brave lattices coincide (an example of considering
systems with k ≠ 0 is given in [11]). The magnetic
Brave lattice consists of atomic magnetic moments
obtained from the same moment in the unit magnetic
cell by translation to integer periods. It is convenient
to consider the magnetic properties with allowance for
the crystal symmetry using the concept of magnetic
sublattice. Generally, the number of sublattices is
equal to the number of the magnetic moments in the
magnetic unit cell. 

Gadolinium occupies the multiple Wyckoff posi�
tion 8d; in other words, the unit cell contains eight
ions. Without a fundamental damage to the study the
magnetic properties, we shall not use the centering
translation as an symmetry element. Then, we can
consider a primitive cell instead of the unit cell [12].
There are several main causes for us to do this: the
behavior of the atomic magnetic moments under
action of the centering translation is unknown (they
can change their direction); and it is more convenient
to deal with a smaller number of atoms.

The primitive cell of Gd2CuO4 contains four gado�
linium atoms. Each jth atom exhibits a magnetic
moment mj; because of this, taking into account the
translation symmetry, they form four magnetic sublat�
tices. We introduce the local sublattice magnetization
M

ν
(r) in a point with the radius�vector r; the magneti�

zation is the sum of all the magnetic moments of the
νth sublattice in a physically small volume ΔVr in the
vicinity of the point r:

. (1)Mν r( ) 1
ΔVr

������� mν j

j

∑=
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The volume ΔVr must satisfy the condition a3 � ΔVr �
λ3, where λ is a characteristic size of the distribution
heterogeneities (spin�wave length, domain wall thick�
ness); a is the interatomic distance. The left side of the
inequality implies that the number of particles in the
volume ΔVr is quite great. Averaging of Eq. (1), taking
into account the condition, makes it possible to use a
continuous medium approximation in both the statics
and the dynamics. The local macroscopic magnetiza�
tion of the crystal will be determined by the sum of the
magnetizations of four the sublattices

(2)

Introduce three antiferromagnetism vectors for four
the sublattices

(3)

(4)

(5)

In the introduced four�sublattice model, La, Lb, and Lc

are the vector parameters of the antiferromagnetic
order, and M is the vector parameter of the ferromag�
netic order which appears when external field are
applied.

Under action of the space elements of the symme�
try, an atom with coordinates ri transfers to the place of
another atom with coordinates rj or remains in its
place:

where g
ν
 is the symmetry element of the space group;

h
ν
 is the symmetry element of the point group; th is the

nontrivial translation vector; and ak is the returning
translation vector. We write the coordinates of four
gadolinium atoms in the Cmce set:

(6)

Alternatively acting on four the atoms by the symme�
try elements of space group Cmce, we obtain the
schemes of their mutual interchangings and thus
determine in which manner the sublattices are inter�
changed. Information on the interchangings is given in
Table 1, where the symmetry elements are denoted as
well as in [13]. Now, we shall build the Table of trans�
formations of M, La, Lb, and Lc. The components of
the vector order parameters are transformed only by
certain irreversible transformations (ITs) of group
Cmce [14] (group Cmce contains only one�dimen�
sional irreversible transformations). To distribute the
components over corresponding ITs, we should know,
in which manner they are changed during transforma�
tions which transfer the crystal lattice to itself. Such
transformations of the symmetry act on the vector
order parameter by two ways. On the one hand, the
symmetry element g

ν
 acting on the vector produces its

common rotations, reflections, and inversion. On the
other hand, it can interchange atoms, thus�changing

M M1 M2 M3 M4.+ + +=

La M1 M2 M3– M4,–+=

Lb M1 M2– M3 M4,–+=

Lc M1 M2– M3– M4.+=

gνri hνri th+ rj ak,+= =

1 x 0 0, ,( ), 2– x– 0 0, ,( ),–

3 x 1/2 1/2, ,( ), 4– x– 1/2 1/2, ,( ).–

the direction of the magnetization of the sublattices.
In this case, the direction of the vector order parame�
ter can be changed to opposite or remain the same. In
order to take into account such a twofold action, we
introduce the concept of even and odd symmetry ele�
ments. Let the symmetry element g

ν
 which does not

change the order parameter sign is called even element
and the symmetry element changing the sign is called
odd element. Denote the even and odd elements as
g
ν
(+) and g

ν
(–), respectively. Any interchangings of

the sublattices do not change the sign of the macro�
scopic magnetization M of the crystal, because it con�
sists of the sum of the sublattice magnetizations; thus,
all its elements are even.

As a result, the symmetry transformation can be
reduced to the formula which shows the manner in
which the components of a vector A are changed:

(7)

where A = M, La, Lb, Lc; δ(g
ν
) is the factor that is –1

when vector A is axial and is subjected to action of the
elements containing the space inversion (i.e., ele�
ments starting from g25); the factor is +1 in all other
cases. The expression is prefixed with the plus sign
when the element is even and the minus sign when the
element is odd. The vector components are trans�
formed by the rotation matrices R(g

ν
) each of which

corresponds to element g
ν
. In our case, all the rotation

matrices R(g
ν
) are diagonal.

We use Eq. (7) to the magnetic field H, the electric
field E, and the crystal electric polarization P, which
we initially consider in the continuous medium
approximation, i.e., A = H, E, P. In this case, it should
be taken into account that P and E are the polar vec�
tors, unlike all other vectors under consideration. The
vectors for which the concept of even and odd ele�
ments does not play a role, e.g., M and H or P and E,
are transformed similarly. The transformations of the
components of M, La, Lb, Lc, H, E, and P obtained
using Eq. (7) are listed in Table 2.

At the same time, Table 2 is the character table for
space group Cmce, which make it possible to distribute

gν ±( )A δ gν( )
Rxx gν( ) 0 0

0 Ryy gν( ) 0

0 0 Rzz gν( )⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞ Ax

Ay

Az⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

,±=

Table 1. Permutation of the atoms

Number 
of atom i

Symmetry elements

g1 g2 g3 g4 g25 g26 g27 g28

1 1 2 4 3 4 3 1 2

2 2 1 3 4 3 4 2 1

3 3 4 2 1 2 1 3 4

4 4 3 1 2 1 2 4 3
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the components of the vectors, knowing their transfor�
mations, over corresponding ITs. In Table 2, IT is
denoted as τ

ν
, and, in the parentheses, the designa�

tions used in [15] are indicated. The value –1 corre�
sponds to the change in the component sign; the value
1 corresponds to the case when the component did not
change its sign. The components of the vector order
parameters, electric polarization, and external fields
distributed over IT are the basis function of this IT.
Before we build the thermodynamic potential, it is
necessary to find invariant combinations of the basis
functions (invariants) relative to symmetry operations
of the space group and time inversion. The product of
basis functions will be an invariant if the product of
corresponding irreducible representations contains
the unit representation: τ1 ∈  ×  × … × . Using

Table 2, we can elucidate, which of the invariants sat�
isfying to this condition can exist. The thermody�
namic potential will only contain even degrees in order
parameter, since it must be invariant relative to the
time inversion. We shall restrict our consideration to
the invariants whose degrees in order parameter is not
higher than two. We can find the combinations which
do not satisfy the group symmetry but become invari�
ant when a factor consisting of any component of the
vector P is added to the product. Such invariants are
called magnetoelectric or antiferroelectric. They are
responsible for the magnetoelectric and antiferroelec�
tric effects, respectively, in the thermodynamic poten�
tial. All possible invariant products relative to the sym�
metry of the space group and time inversion operation
are written in Table 3.

The thermodynamic potential density of our sys�
tem can be schematically written as Φ = ΦM + ΦP +
ΦMP + ΦLP – MH – PE, where ΦM is the energy den�
sity of the magnetic subsystem; ΦP is the energy den�
sity of the electric subsystem; ΦMP is the energy density
of the magnetoelectric subsystem; ΦLP is the energy
density of the antiferroelectric subsystem; invariant
MH describes the interaction energy of the magnetic
subsystem with the external magnetic field (Zeeman

τν1
τν2

τνn

energy); and invariant PE describes the interaction
energy of the electric subsystem with the external elec�
tric field. If we shall write the expression for Φ in
detail, substituting the found invariants to the expres�
sion, we obtain:

(8)

where J0, J1, J2, J3 are the exchange interaction con�
stants; K1, K2, …, K12, D1, D2, D3, D4 are the magnetic
anisotropy constants; κ1, κ2, κ3 are the electric suscep�
tibilities; γ1, γ2, …, γ13 are the coefficients of the mag�
netoelectric interaction; and ζ1, ζ2, …, ζ8 are the coef�
ficients of the antiferroelectric interaction. In the
potential written, the terms with the coefficients γ4 and
γ5 correspond to the dependence of Mx on Ey which
was found experimentally and was not described by the
two�sublattice model in [10]; this fact allows the con�
clusion that the approach chosen for describing the
magnetoelectric effect is valid. The application of the
obtained thermodynamic potential is hampered; how�
ever, we shall use, in what follows, the method of spin�
wave representations [16] that make it possible to sim�
plify the potential and the consideration of the prob�
lem as whole.

In the exchange approximation, Gd2CuO4 exhibits
the collinear antiferromagnetic structure. It implies

Φ J0M
2

J1La
2

J2Lb
2

J3Lc
2

K1Mx
2

K2My
2

+ + + + +=

+ K3Mz
2

K4Lax
2

K5Lay
2

K6Laz
2

K7Lbx
2

K8Lby
2

+ + + + +

+ K9Lbz
2

K10Lcx
2

K11Lcy
2

K12Lcz
2

D1MyLaz+ + + +

+ D2MzLay D3LbyLcz D4LbzLcy κ1
1–
Px

2 κ2
1–
Py

2
+ + + +

+ κ3
1–
Pz

2 γ1LbxMxPx γ2LbxMyPy γ3LbxMzPz+ + +

+ γ4LbyMxPy γ5LczMxPy γ6LbyMyPx γ7LczMyPx+ + +

+ γ8LbzMxPz γ9LcyMxPz γ10LbzMzPx γ11LcyMzPx+ + +

+ γ12LcxMzPy γ13LcxMyPz ζ1LayLbzPx ζ2LayLcxPx+ + +

+ ζ3LayLcyPx ζ4LazLczPx ζ5LayLcxPy+ +

+ ζ6LazLbxPy ζ7LayLbxPz ζ8LazLcxPz MH– PE,–+ +

Table 2. Transformation of the basis functions for Cmce

Irreducible 
representa�

tion

Symmetry elements
Basis functions

g1 g2 g3 g4 g25 g26 g27 g28

τ1(Ag) 1 1 1 1 1 1 1 1 Lax

τ2(Au) 1 1 1 1 –1 –1 –1 –1 Lbx

τ3(B3g) 1 1 –1 –1 1 1 –1 –1 Mx, Hx

τ4(B3u) 1 1 –1 –1 –1 –1 1 1 Lcx, Px, Ex

τ5(B2g) 1 –1 1 –1 1 –1 1 –1 My, Laz, Hy

τ6(B2u) 1 –1 1 –1 –1 1 –1 1 Lbz, Lcy, Py, Ey

τ7(B1g) 1 –1 –1 1 1 –1 –1 1 Mz, Lay, Hz

τ8(B1u) 1 –1 –1 1 –1 1 1 –1 Lby, Lcz, Pz, Ez
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that the ionic magnetic moments can only be oriented
parallel or antiparallel to any one direction. This
direction also can have a certain orientation with
respect to the crystallographic axes. In this case, vari�
ous orientation states (phase) of the same exchange
magnetic structure are considered. Which of possible
orientation state for given structure forms under one or
other conditions are determined by the magnetoaniso�
tropic interactions of relativistic origin which is insig�
nificant in Gd2CuO4 as compared to the exchange
interaction. Owing to this fact, the orientation state
can usually be changed by magnetic field, pressure,
temperature, and (in our case) electric field too. Such
transitions from one equilibrium orientation state to
other are called orientational (or reorientational)
magnetic phase transitions.

Every phase (or energy of the phase) must have own
IT [15]. The spin�wave representation is the direct
product of two irreducible representations of the
phase. Since the ground state energy is a constant, the
basis functions entering into IT of the phase are con�
stant. For every spin�wave representation, there is a set
of independent dynamic variables (spin�wave modes).
The dynamic variables are the time�dependent basis
functions which are transformed by the representa�
tions determining given spin�wave representation. All

the basis functions, exception for the dynamic vari�
ables and functions of the ground orientational state
are zeros. The study of the magnetic dynamics is sim�
plified by using the approach based on finding spin�
wave representations for the phase under consider�
ation. For example, the dynamic variables can be
found even before writing the equations of motion,
and it allows us to write the independent system of the
Landau–Lifshitz equation for every set. We shall
restrict ourselves to consideration of only the terms in
the potential in which the product of the dynamic vari�
ables give the degree not higher than two.

Let us choose the phase τ6( , ), where 

and  are the ground magnetic orientational states
(the bar above the letter indicates that L is constant).

The symmetry allows the existence of the  and 
states with equal possibility. In a real system, one of the
components is significantly larger than another. Which
of them is larger can only be known from the micro�
scopic theory or experiment. It is beyond the phenom�
enological theory, but two the quantities can be con�
sidered together, taking into account that weak relativ�
istic interactions giving a small noncollinearity can
exist; in this case, in the exchange approximation, the
antiferromagnet will continue be collinear.

Lbz Lcy Lbz

Lcy

Lbz Lcy

Table 3. Invariant products of the basis functions

Product of
the representations

Invariant combinations

magnetic electric

τ1 × τ1

τ2 × τ2

τ3 × τ3

τ4 × τ4

τ5 × τ5 , , MyLaz

τ6 × τ6 , , LbzLcy

τ7 × τ7 , , MzLay

τ8 × τ8 , , LbyLcz

magnetoelectric antiferroelectric

τ2 × τ3 × τ4 LbxMxPx

τ2 × τ5 × τ6 LbxMyPy LazLbxPy

τ2 × τ7 × τ8 LbxMzPz LayLbxPz

τ3 × τ6 × τ8 LbyMxPy, LbzMxPz, LcyMxPz, LczMxPy

τ4 × τ5 × τ8 LbyMyPx, LcxMyPz, LczMyPx LazLbyPx, LazLcxPz, LazLczPx

τ4 × τ6 × τ7 LbzMzPx, LcxMzPy, LcyMzPx LayLbzPx, LayLcxPy, LayLcyPx

Lax
2

Lbx
2

Mx
2

Lcx
2

Px
2

My
2

Laz
2

Lbz
2

Lcy
2

Py
2

Mz
2

Lay
2

Lby
2

Lcz
2

Pz
2
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IT of the phase can be obtained using the direct
product of IT of the τ3(Mx) phase and IT of the τ8(Lby,

Lcz): τ6( , ) = τ3(Mx) × τ8(Lby, Lcz). In other
words, τ38(Mx, Lby, Lcz) is the mode, where Mx, Lby,
and Lcz are the dynamic variables dependent on time t.
A main reason of choosing phase τ6 and corresponding
mode τ38 is that they retain in potential necessary mag�
netoelectric terms which were found experimentally,
namely: Mx(Ey) and Mx(Ez). In other phases, the
experimental dependences present incompletely or
give higher orders than it is required. Note that fields
Ey, Ez, Hx will not change the ground state from the
symmetry standpoint, because they are transformed
by ITs of the phase and the mode.

For phase τ6( , ), the number of the terms
entering into the full thermodynamic potential
decreases significantly. With the inclusion of spin�
wave mode τ38(Mx, Lby, Lcz), the thermodynamic
potential density (the energy of the ground magnetic
state) can be rewritten as follows:

(9)

where Φ0( , , ) is the constant consisting
of the invariants which do not depend on the dynamic
variables.

We use the equilibrium conditions for the thermo�
dynamic potential:  = 0,  = 0,

 = 0. Minimizing the potential with respect to
Px, Py, Pz, we obtain the system of equations, from
which we can separate the dependences of Px, Py, Pz on
the dynamic variables of mode τ38(Mx, Lby, Lcz):

(10)

The application of these conditions is allowable,
because we assume, for simplicity, that polarization P
has time to be changed quite fast in the wake of
changes in the dynamic variables.

There is one more possibility to simplify the calcu�
lations, considering an equally modulus model, in

Lbz Lcy

Lbz Lcy

Φ Φ0 Lbz
2

Lcy
2

LbzLcy, ,( ) J0 K1+( )Mx
2

+=

+ J2 K8+( )Lby
2

J3 K12+( )Lcz
2

D3LbyLcz κ1
1–
Px

2
+ + +

+ κ2
1–
Py

2 κ3
1–
Pz

2 γ4LbyMxPy γ5LczMxPy+ + +

+ γ8LbzMxPz γ9LcyMxPz MxHx–+

– PxEx PyEy– PzEz,–

Lbz
2

Lcy
2

LbzLcy

∂Φ/∂Px ∂Φ/∂Py

∂Φ/∂Pz

Px
1
2
��κ1Ex=

Py
1
2
��κ2Ey

1
2
��κ2γ4LbyMx– 1

2
��κ2γ5LczMx–=

Pz –1
2
��κ3Ez

1
2
��κ3γ8LbzMx– 1

2
��κ3γ9LcyMx.–=

⎩
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎧

which the magnetic moment lengths are equal to each
other and are unchanged:

(11)

where M0 is the magnetization magnitude of a sublat�
tice. From this conditions, the expressions follow
relating the order parameters to each other; namely,
we obtain three systems of equations for the four�sub�
lattice model:

(12)

Taking into account that we consider phase τ6( ,

) and mode τ38(Mx, Lby, Lcz), we obtain, from con�

ditions (12), the relationship Lcz = , owing
to which only two dynamic variables are retained in
the problem under consideration. Substituting all
obtained relationships into the thermodynamic
potential, we write it in the final form:

(13)

3. AFMR AND DYNAMIC SUSCEPTIBILITIES

The dynamics of vector order parameters M, La,
Lb, Lc is described using the Landau–Lifshitz equa�
tions formulated for the four�sublattice model:

(14)

where γ is the scalar magnetomechanical ratio. From

the 12 Landau–Lifshitz equations for phase τ6( ,

M1
2

M2
2

M3
2

M4
2

M0
2

const.= = = = =

MLa LbLc+ 0=

MLb LaLc+ 0=

MLc LaLb+ 0.=⎩
⎪
⎨
⎪
⎧

Lbz

Lcy

LcyLbz
1–
Lby–

Φ
κ3

4
���� 4κ3

1–
J0 γ8

2
Lbz
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) under study and spin�wave mode τ38(Mx, Lby,
Lcz), we immediately obtain the independent system of
equations for two dynamic variables:

(15)

We apply to the crystal fields Ey = const, Ez(t) =

, and Hx(t) = , where ω is
the frequency of the external fields which, as noted
above, do not change the ground orientational state.
Then, substituting the thermodynamic potential den�
sity in Eq. (15), we obtain

(16)

The solution of this simple system of equations at zero

fields are Mx(t) =  and Lby(t) =

, where  and  are the amplitudes
of the dynamic variable vibrations. We equalize the
terms with coefficients γ8 and γ9 to zero, because there
is no magnetoelectric effect in the absence of external
electric field and spontaneous polarization. From the
system, we find the AFMR eigenfrequency 

(17)

When applying electric field Ey = const, the AFMR
eigenfrequency increases by the term dependent on
this field

(18)

Now, to find the dynamic susceptibilities, we express
Mx from the system of equations (16) in terms of exter�
nal fields Ez and Hx and obtain

(19)

where 

(20)
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and  =  +  is the frequency of vibrations of
the dynamic variables (at fields Ez and Hx, we should
include to Ω0 terms with γ8 and γ9). The dependence of
the magnetization on the external magnetic field and
external electric field is expressed by relationship Mi =
αijEj + χijHj, and, with inclusion of the chosen fields,
this relationship can be rewritten as Mx = αxzEz +
χxxHx. Comparing this dependence with the expres�
sion for the magnetization, we can find the dynamic
magnetoelectric susceptibility αxz

(21)

and the dynamic magnetic susceptibility χxx

(22)

Proceeding in the same manner as in the case of Mx,
we express Lby in terms of the external field. Then, we

obtain that Lby =  + , where βyz is the
dynamic antiferroelectric susceptibility, and δyx is the
dynamic antiferromagnetic susceptibility. For two the
latter quantities, we have the expressions as follows:

(23)

(24)

4. CONCLUSIONS

In this work, we have demonstrated the application
of group�theoretical methods using, as an example,
the four�sublattice model for the gadolinium sub�
system in Gd2CuO4. The group�theoretical analysis of
the potential shows that it contains the terms of the
magnetoelectric interactions corresponding to the
dependences of Mx on Ey and Mx on Ez found in the
experiment. The inclusion of the evenness of elements
g
ν
(±) makes it possible to distribute the basis functions

over irreducible representations for space group Cmce.
The latter in combination with the experimental data
on the magnetoelectric effect allow the assumption on
the orientational state of magnetic sublattices at low

temperatures, namely: we proposed phase τ6( ,

) and spin�wave mode τ38(Mx, Lby, Lcz). Using
Table 2, it is possible to suppose which external fields
can change the orientational state in the crystal; for
example, field Ex can change the state to Lcx, field Hy

can change the state to Laz, and field Hz can change the
state to Lay.

The theory of spin�wave representations allowed us
to find the dynamic quantities and obtain the system of
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the Landau–Lifshitz equations for them, and also to
substantially decrease the number of terms in the ther�
modynamic potential. From the system of equations,
we found the eigenfrequency of the antiferromagnetic
resonance Ω0. The inclusion of the magnetoelectric
interactions allowed us to tell about the existence of
the eigenfrequency shift by external electric field Ey.

We calculated the dynamic susceptibilities αxz, χxx,
βyz, and δyx which have a resonance character, and the
resonance can be controlled by external field Ey. Alter�
native calculations of the dynamic susceptibilities are
very complex, they need a complex mathematics and
numerical methods. The antiferroelectric and antifer�
romagnetic susceptibilities make it possible to take
into account the heat loss related to the excitation of
antimagnons by external fields. To obtain other tensor
components of the dynamic susceptibilities, the orien�
tational state should be changed (e.g., we should apply

external field which do not enter to phase τ6( , )
and mode τ38(Mx, Lby, Lcz). For other orientational
state, we should consider new phases and spin�wave
modes, for which the thermodynamic potential and
the Landau–Lifshitz equations will be other. It should
be noted that the magnetic�dynamics equation did not
include the relaxation; alternatively, the description of
the magnetodynamics becomes more complex prob�
lem, and the conditions of the equally�modulus model
cease to be fulfilled [16]. The inclusion of the relax�
ation would make it impossible to use of group�theo�
retical methods in this simple application. This
approach is one of a few which make it possible to
build the thermodynamic potential and then to ana�
lyze it. In addition, we note that the approach pre�
sented in this work can be used to consider and predict
many effects, e.g., to predict the photogalvanic effect
in a centroantisymmetric antiferromagnet [17].
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