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For each odd n ≥ 5 we present a synchronizing Eulerian automaton with n states for

which the minimum length of reset words is equal to n
2
−3n+4

2
. We also discuss various

connections between the reset threshold of a synchronizing automaton and a sequence
of reachability properties in its underlying graph.
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1. Background and Overview

A complete deterministic finite automaton A is called synchronizing if the action

of some word w resets A , that is, leaves the automaton in one particular state

no matter at which state it is applied. Any such word w is said to be a reset

word for the automaton. The minimum length of reset words for A is called the

reset threshold of A and denoted by rt(A ). Synchronizing automata constitute an

interesting combinatorial object and naturally appear in many applications such

as coding theory, robotics and testing of reactive systems. For a brief introduction

to the theory of synchronizing automata we refer the reader to the recent surveys

[11, 16]. The interest to the field is also heated by the famous Černý conjecture.

In 1964 Jan Černý [3] constructed for each n > 1 a synchronizing automaton

Cn with n states whose reset threshold is (n− 1)2. Soon after that he conjectured

that these automata represent the worst possible case, that is, every synchroniz-

ing automaton with n states can be reset by a word of length (n − 1)2. Despite

intensive research, the best upper bound on the reset threshold of synchronizing

automata with n states achieved so far is n(7n2+6n−16)
48 , see [15], so it is much larger
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than the conjectured value. Though the Černý conjecture is open in general, it has

been confirmed for various restricted classes of synchronizing automata, see, e.g.,

[4, 6, 7, 14, 17]. We recall here a result by Jarkko Kari from [7] as it has served as a

departure point for the present paper.

Kari [7] has shown that every synchronizing Eulerian automaton with n states

possesses a reset word of length at most n2−3n+3. Even though this result confirms

the Černý conjecture for Eulerian automata, it does not close the synchronizability

question for this class of automata since no matching lower bound for the reset

threshold of Eulerian automata has been found so far. In order to find such a

matching bound, we need a series of Eulerian automata with large reset threshold,

which is the main problem that we address in the present paper.

Our first attempt was following an approach from [1]. In that paper, several

examples of slowly synchronizing automata, which had been discovered in the course

of a massive computational experiment, have been related to known examples of

primitive graphs with large exponent from [5] and then have been expanded to

infinite series. The idea was to apply a similar analysis to Eulerian graphs with

large exponent that have been characterized in [13]. However, it turns out that

in this way we cannot achieve results close to what we can get by computational

experiments. Thus, a refinement of the approach from [1] appears to be necessary.

Here we suggest such a refinement, and this is the main novelty of the present

paper. As a concrete demonstration of our modified approach, we exhibit a series

of slowly synchronizing Eulerian automata whose reset threshold is twice as large

as the reset threshold of automata that can be obtained by a direct application of

techniques from [1]. We believe that the method suggested in this paper can find a

number of other applications and its further development may shed a new light on

the properties of synchronizing automata.

2. Preliminaries

A complete deterministic finite automaton (DFA) is a couple A = 〈Q,Σ〉, where

Q stands for the state set and Σ for the input alphabet whose letters act on Q by

totally defined transformations. The action of Σ on Q extends in natural way to an

action of the set Σ∗ of all words over Σ. The result of the action of a word w ∈ Σ∗

on the state q ∈ Q is denoted by q ·w. Triples of the form (q, a, q ·a) where q ∈ Q and

a ∈ Σ are called transitions of the DFA; q, a and q ·a are referred to as, respectively,

the source, the label and the target of the transition (q, a, q · a).

By a graph we mean a tuple of sets and maps: the set of vertices V , the set

of edges E, a map t : E → V that maps every edge to its tail vertex, and a map

h : E → V that maps every edge to its head vertex. Notice that in a graph, there may

be several edges with the same tail and head.a We assume the reader’s acquaintance

with basic notions of the theory of graphs such as path, cycle, isomorphism etc.

aOur graphs are in fact directed multigraphs with loops. But we use a short name, since no other
graph species will show up in this paper.
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Given a DFA A = 〈Q,Σ〉, its underlying graph D(A ) has Q as the vertex set

and has an edge eτ with t(eτ ) = q, h(eτ ) = q · a for each transition τ = (q, a, q · a)

of A . We stress that if two transitions have a common source and a common target

(but different labels), then they give rise to different edges (with a common tail and

a common head). It is easy to see that a graph D is isomorphic to the underlying

graph of some DFA if and only if each vertex of D serves as the tail for the same

number of edges (the number is called the outdegree of D). In the sequel, we always

consider only graphs satisfying this property. Every DFA A such that D ∼= D(A )

is called a coloring of D. Thus, every coloring of D is a labeling of its edges by

letters from some alphabet and such that edges with a common tail get different

colors. Figure 1 shows a graph and two of its colorings by Σ = {a, b}.
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Fig. 1. A graph and two of its colorings.

A graph D = 〈V,E〉 is said to be strongly connected if for every pair (v, v′) ∈

V ×V , there exists a path from v to v′. A graph is Eulerian if it is strongly connected

and each of its vertices serves as the tail and as the head for the same number of

edges. A DFA is said to be Eulerian if so is its underlying graph. More generally, we

will freely transfer graph notions (such as path, cycle, etc) from graphs to automata

they underlie.

A graph D = 〈V,E〉 is called primitive if there exists a positive integer t such

that for every pair (v, v′) ∈ V ×V , there exists a path from v to v′ of length precisely

t. The least t with this property is called the exponent of the graphD and is denoted

by exp(D). Various facts concerning these classical notions can be found in [2].

Let w be a word over the alphabet Σ = {a1, a2, . . . , ak}. We say that a word u ∈

Σ∗ occurs ℓ times as a factor of w if there are exactly ℓ different words x1, . . . , xℓ ∈

Σ∗ such that for each i, 1 ≤ i ≤ ℓ, there is a word yi ∈ Σ∗ for which w has a

decomposition w = xiuyi. The number ℓ is called the number of occurrences of u

in w and is denoted by |w|u. The vector (|w|a1
, |w|a2

, . . . , |w|ak
) ∈ N

k
0 is called the

Parikh vector of the word w; here N0 stands for the set of non-negative integers.

Now suppose that A = 〈Q,Σ〉 is a DFA and α is a path in A labelled by a word

w ∈ Σ∗. If a vector v ∈ N
k
0 is equal to the Parikh vector of w, then we say that v

is the Parikh vector of the path α. We refer to any path that has v as its Parikh

vector as a v-path.
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3. Main Results

We start with revisiting the technique used in [1] to obtain lower bounds for the

reset threshold of certain synchronizing automata.

Consider an arbitrary synchronizing automaton A = 〈Q,Σ〉. Let w be a reset

word for A that leaves the automaton in some state r ∈ Q, that is, p · w = r for

every p ∈ Q. Then, for every state p ∈ Q, the word w labels a path from p to

r. Therefore, for every state p ∈ Q there is a path of length |w| from p to r in

the underlying graph D(A ). This leads us to the following notion. We say that a

strongly connected graph D = (V,E) is 0-primitive if there exists an integer k > 0

and a vertex r ∈ V such that for every vertex p ∈ V there is a path of length exactly

k from p to r. The minimal integer k with this property (over all possible choices

of r) is called the 0-exponent of D and is denoted by exp0(D). We write exp0(A )

instead of exp0(D(A )). Then we have that every synchronizing automaton A is

0-primitive and

rt(A ) ≥ exp0(A ). (1)

It is not hard to see that the notions of 0-primitivity and primitivity are equiva-

lent. Indeed, every primitive digraph is obviously 0-primitive. Conversely, let D be

a 0-primitive digraph with n vertices. By the definition there are paths of length

exactly exp0(D) from every vertex to some fixed vertex r. Consider two arbitrary

vertices p and q of D. Since D is strongly connected, there is a path α of length at

most n− 1 from r to q. Now take any path β of length n− 1− |α| starting at p and

let s be the endpoint of β. There is a path γ of length exp0(D) from s to r. Now

the path βγα leads from p to q (through s and r) and |βγα| = n − 1 + exp0(D).

Thus, the digraph D is primitive, and moreover, we have the following inequality:

exp0(D) + n− 1 ≥ exp(D). (2)

Obviously, we also have exp(D) ≥ exp0(D). Thus, there is only linear difference

between exp(D) and exp0(D) in terms of n. The reader who may wonder why we

need such a slight variation of the standard notion will see that this variation fits

better into a more general framework that we will present below.

First, however, we demonstrate how to construct Eulerian automata with a

relatively large reset threshold on the basis of the notion of 0-primitivity. For this,

we need Eulerian digraphs with the largest possible exponent (or 0-exponent) among

all primitive Eulerian digraphs with n vertices. Such digraphs have been classified

by Shen [13].

For every odd n ≥ 5, consider the automaton Dn with the state set Q =

{1, 2, . . . , n} and the input letters a and b acting on Q as follows:

1 · a = 2, 1 · b = 3; (n − 1) · a = 2, (n − 1) · b = 1; n · a = 1, n · b = 3; and for

every 1 < k < n− 1

k · a =

{

k + 2 if k is even,

k + 1 if k is odd;
k · b =

{

k + 3 if k is even,

k + 2 if k is odd.
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Fig. 2. The automaton Dn.

The automaton Dn is shown in Fig. 2. We denote the underlying graph of Dn

by Dn.

Proposition 1 ( [13, Theorem 1]). If G is a primitive Eulerian graph with outde-

gree 2 and n vertices, n ≥ 8, then exp(G) ≤ (n−1)2

4 + 1. The equality holds only for

the graph Dn.

Proposition 1 and the inequalities (1) and (2) guarantee that every synchronizing

coloring of the graph Dn has reset threshold of magnitude n2

4 +o(n2). In particular,

we can prove the following result using the technique developed in [1].

Proposition 2. The reset threshold of the automaton Dn is equal to n2
−4n+11

4 .

Proof. We start with estimating exp0(Dn). Observe that for every ℓ ≥ exp0(Dn)

there is a cycle of length ℓ in Dn. Indeed, let r be a state such that for every p ∈ Q

there is a path of length exp0(Dn) from p to r. Now take an arbitrary path α of

length ℓ − exp0(Dn) starting at r and let s be the endpoint of α. By the choice of

r, there is a path β of length exp0(Dn) from s to r. Thus, the path αβ is a cycle of

length exactly ℓ.

Now consider the partition π of the set Q into n+1
2 classes Vi, 0 ≤ i ≤ n−1

2 ,

where V0 = 1 and Vi = {2i, 2i+ 1} for every 0 < i ≤ n−1
2 . We define a graph Gn

with the quotient set Q/π as the vertex set and with the edges induced by the edges

of Dn as follows: there is an edge e′ in Gn with t(e′) = Vi and h(e) = Vj if and

only if there is an edge e in Dn with t(e) ∈ Vi and h(e) ∈ Vj . Then every cycle in

Dn induces a cycle of the same length in Gn. In particular, for every ℓ ≥ exp0(Dn)

there is a cycle of length ℓ in Gn. It is easy to see that the graph Gn has precisely

two simple cycles: one of length n−1
2 and one of length n+1

2 . We conclude that every

ℓ ≥ exp0(Dn) is expressible as a non-negative integer combination of n−1
2 and n+1

2 .

Here we invoke well-known and elementary result from arithmetic. It was ob-

tained by James Joseph Sylvester in 1884:
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Lemma 3 ( [10, Theorem 2.1.1]). If k1, k2 are relatively prime positive integers,

then k1k2 − k1 − k2 is the largest integer that is not expressible as a non-negative

integer combination of k1 and k2.

Applying Lemma 3 we conclude that exp0(Dn) ≥ n2
−4n+3
4 and there is no cycle

of length n2
−4n−1
4 in Gn. The inequality 1 implies that rt(Dn) ≥

n2
−4n+3
4 , and it

remains to exclude two cases: rt(Dn) = n2
−4n+3
4 and rt(Dn) = n2

−4n+7
4 . This is

easy.

Suppose that w is a shortest reset word for Dn which leaves Dn in some state

r ∈ Vi. Note that i 6= 0 (otherwise the word obtained by removing the last letter

from w would be a shorter reset word, and this is impossible).

If |w| = n2
−4n+3
4 , we write w = xw′ for some letter x and apply the word w

to some state from Vi−1. We conclude that w′ induces a cycle from Vi to Vi in Gn.

This cycle would be of length n2
−4n−1
4 , which is impossible.

Finally suppose that the length of w is n2
−4n+7
4 . If i 6= 1, then the same argument

as in the previous paragraph leads to a contradiction. (We just apply w to a state

from Vi−2.) If i = 1, let w = xyw′ for some letters x and y. Depending on x, either

n · xy ∈ V1 or (n− 1) · xy ∈ V1. In both cases w′ induces a cycle from V1 to V1 in

Gn of length n2
−4n−1
4 , which is impossible.

We thus see that the reset threshold of the automaton Dn is at least n2
−4n+11

4 .

Since the word aa(ba
n−1

2 )
n−5

2 bb resets Dn, we conclude that this bound is tight.

Our computational experiments suggest that the largest reset threshold among

all synchronizing colorings of Dn is equal to (n−1)2

4 + 1. Therefore, it seems that
n2

4 + o(n2) is the best lower bound on the reset threshold of synchronizing Eulerian

automata with n states that can be obtained by a direct encoding of Eulerian

graphs with large exponent. However, our main result (see Theorem 6 below) shows

that for every odd n there is a synchronizing Eulerian automaton with n states

and reset threshold n2
−3n+4
2 . This lead us to idea that the notion of 0-exponent is

too weak to be useful for isolating synchronizing Eulerian automata with maximal

reset threshold (although, we can not prove it rigorously). The reason for this is

that we have discarded too much information when passing from synchronizability

to 0-primitivity — we forget everything about paths labelled by reset words except

their length. Thus, we use another notion in which more information is preserved,

namely, the Parikh vectors of the paths leading to the same state are taken into

account.

Consider a DFA A = 〈Q,Σ〉 with |Σ| = k and fix some ordering of the letters in

Σ. We define a subset E1(A ) of Nk
0 as follows: a vector v ∈ N

k
0 belongs to E1(A ) if

and only if there is state r ∈ Q such that for every p ∈ Q, there exists a v-path from

p to r. If the set E1(A ) is non-empty, then the automaton A is called 1-primitive.

The minimum value of the sum i1+ i2+ · · ·+ ik over all k-tuples (i1, i2, . . . , ik) from

E1(A ) is called the 1-exponent of A and denoted by exp1(A ). We would like to
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note that a very close concept for colored multigraphs has been studied in [8, 12].

Clearly, every synchronizing automaton A is 1-primitive and

rt(A ) ≥ exp1(A ). (3)

In order to illustrate how the notion of 1-exponent may be utilized, we prove

a statement concerning the Černý automata Cn (this statement will be used in

the proof of our main result). Recall the definition of Cn. The state set of Cn is

Q = {1, 2, . . . , n} and the letters a and b act on Q as follows:

i · a =

{

2 if i = 1,

i if 1 < i;
i · b =

{

i+ 1 if i < n,

1 if i = n.

The automaton Cn for n = 7 is shown in Fig. 3. Here and below we adopt the

convention that edges bearing multiple labels represent bunches of edges sharing

tails and heads. In particular, the edge 1
a,b
−−→ 2 in Fig. 3 represents the two parallel

edges 1
a
−→ 2 and 1

b
−→ 2.

1

7 2

6 3

5 4

b

b

a, b

b

b

b

b

aa

aa

aa

Fig. 3. The automaton Cn for n = 7.

Proposition 4. Every reset word of the automaton Cn contains at least n2−3n+2

occurrences of the letter b and at least n− 1 occurrences of the letter a.

Proof. Since the automaton Cn is synchronizing, the set E1(Cn) is non-empty. We

make use of the following simple property of E1(Cn): if v = (α, β) ∈ E1(Cn), then

for every t ∈ N we have (α, β + t) ∈ E1(Cn). Indeed, let r be a state such that for

every p ∈ Q there is a v-path from p to r. We aim to show that there is also an

(α, β + t)-path from an arbitrary state p to r. Let q = p · bt, then by definition of r

there is a v-path from q to r. Augmenting this path in the beginning by the path

starting at p and labeled bt, we obtain an (α, β + t)-path from p to r.

Now observe that there is a v-path from r to r. This path is a cycle and it can

be decomposed into simple cycles of the automaton Cn. The simple paths in Cn are
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loops labeled a with the Parikh vector (1, 0), the cycle

1
a
−→ 2

b
−→ 3

b
−→ . . .

b
−→ n− 1

b
−→ n

b
−→ 1

with the Parikh vector (1, n− 1) and the cycle

1
b
−→ 2

b
−→ 3

b
−→ . . .

b
−→ n− 1

b
−→ n

b
−→ 1

with the Parikh vector (0, n). Thus, there are some x, y, z ∈ N0 such that the

following equality holds true:

(α, β) = x(1, 0) + y(1, n− 1) + z(0, n).

It readily implies that β = y(n−1)+zn. Since for every t ∈ N the vector (α, β+t) also

belongs to E1(Cn), we conclude that β+t is also expressible as a non-negative integer

combination of n and n− 1. Lemma 3 implies that β ≥ n(n− 1)−n− (n− 1)+1 =

n2 − 3n + 2. If w is a reset word of the automaton Cn, then the Parikh vector of

w belongs to E1(Cn), whence w contains at least n2 − 3n + 2 occurrences of the

letter b.

It remains to prove that w contains at least n − 1 occurrences of the letter a.

Note that for every set S of states, we have |S · b| = |S| and |S ·a| ≥ |S|− 1. Hence,

to decrease the cardinality from n to 1, one has to apply a at least n− 1 times, and

any word w such that |Q · w| = 1 must contain at least n− 1 occurrences of a.

As a corollary we immediately obtain Černý’s result [3, Lemma 1] that rt(Cn) =

(n− 1)2. Indeed, Proposition 4 implies that the reset threshold is at least (n− 1)2,

and it is easy to check that the word (abn−1)n−2a of length (n− 1)2 resets Cn. Also

we see that a reset word w of minimal length for Cn is unique. Indeed, w cannot

start or end with b because b acts as a cyclic permutation. Thus, w = aua and the

word u has n2 − 3n+ 2 occurrences of b and n− 3 occurrences of a. Note that bn

cannot occur as a factor of u since bn acts is an identity mapping. Clearly, there is

only one way to insert n− 3 letters a in the word bn
2
−3n+2 such that the resulting

word contains no factor bn. Though the series Cn is very well studied, to the best

of our knowledge the uniqueness of the shortest reset word for Cn has not been

explicitly stated in the literature.

Observe that exp0(Cn) = n − 1 and we could not extract any strong lower

bound for rt(Cn) from the inequality (2). In [1] a tight lower bound for rt(Cn) has

been obtained in an indirect way, via relating Cn to graphs with largest possible

0-exponent from [18]. In contrast, Proposition 4 implies that exp1(Cn) is close to

(n − 1)2, so the inequality (3) gives a stronger lower bound. In fact, exp1(Cn) =

rt(Cn). Thus, the inequality (3) gives tight lower bound. But we need additional

efforts to prove it.

Proposition 5. For every n ≥ 2, the 1-exponent of Cn is equal to (n− 1)2.

Proof. Consider words u1, u2, . . . , un with the same Parikh vector (α, β), such that

i · ui = 1. We will see later that such words do exist. The path marked by ui can
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be naturally divided in two parts: a path from the state i till the first occurrence

of the state 1, and a cycle containing state 1. Parikh vector of the first part of the

path is equal to (si, n− i+1) for some non-negative integer si, since it must contain

exactly n− i+1 occurrences of letter b. If we represent the second part of the path

in the same way as we did in Proposition 4 we obtain the following equality:

(α, β) = (si, n− i + 1) + xi(1, 0) + yi(1, n− 1) + zi(0, n),

where xi, yi, zi are non-negative integers. We are going to show that for some i we

have yi ≥ n− 1. Let us focus on the number of letters b modulo n. For every i we

have β ≡ n− i+ 1 + yi(n− 1) + zin (mod n). Trivially, we obtain an equality:

yi ≡ 1− i− β (mod n).

Since it is true for every i ∈ {1, 2, . . . , n} we conclude that there is j such that

yj ≡ n − 1 (mod n). Inequality yj ≥ 0 easily implies yj ≥ n − 1. Thus, we have

|uj | ≥ nyj ≥ n(n− 1).

Let v1, v2, . . . , vn be the words that witness 1-exponent of Cn, and r be the state

in which we end up after applying them to their corresponding states. Let w be the

shortest path from r to 1. Note, that |w| ≤ n−1. Then the words v1w, v2w, . . . , vnw

have common Parikh vector and lead corresponding states to the state 1. By the first

part of the proof we have exp1(Cn)+n−1 ≥ n(n−1). Therefore, exp1(Cn) ≥ (n−1)2.

The inequality 3 and the fact rt(Cn) = (n− 1)2 ensure that this bound is tight.

Now we are ready to present the main result of this paper. We define the au-

tomaton Mn (from Matricaria) on the state set Q = {1, 2, . . . , n}, where n ≥ 5 is

odd, in which the letters a and b act as follows:

k · a =

{

k if k is odd,

k + 1 if k is even;
k · b =















k + 1 if k 6= n is odd,

k if k is even,

1 if k = n.

Observe that Mn is Eulerian. The automaton Mn for n = 7 is shown in Fig. 4 on

the left.

Theorem 6. If n ≥ 5 is odd, then the automaton Mn is synchronizing and its reset

threshold is equal to n2
−3n+4
2 .

Proof. Let w be a reset word of minimum length for Mn. Note that the action of

aa is the same as the action of a. Therefore aa could not be a factor of w. (Otherwise

reducing this factor to just a results in a shorter reset word.) So every occurrence of

a, maybe except the last one, is followed by b. If we let c = ab, then either w or wb (if

w ends with a) could be rewritten into a word u over the alphabet {b, c}. The actions

of b and c induce a new automaton on the state set of Mn (this induced automaton

is shown in Fig. 4 on the right). It is not hard to see that in both cases u is a reset

word for the induced automaton. After applying the first letter of u it remains to
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Fig. 4. The automaton Mn for n = 7 and the automaton induced by the actions of b and c = ab.

synchronize the subautomaton on the set of states S = {1} ∪ {2k | 1 ≤ k ≤ n−1
2 },

and this subautomaton is isomorphic to Cn+1

2

.

Suppose u = u′c for some word u′ over {b, c}. Since the action of c on any

subset of S cannot decrease its cardinality, we conclude that u′ is also a reset word

for the induced automaton. But c is the last letter of u only if w = w′a and w′ was

rewritten into u′. Thus, w′ also is a reset word for Mn, which is a contradiction.

So, w was rewritten into u, not wb.

If u = xu′ for some letter x, then by Proposition 4 we conclude that u′ has at

least (n+1
2 )2 − 3(n+1

2 ) + 2 = n2
−4n+3
4 occurrences of c and at least n−1

2 occurrences

of b. Since each occurrence of c in u′ corresponds to an occurrence of the factor ab

in w, we conclude that the length of w is at least 1 + 2n2
−4n+3
4 + n−1

2 = n2
−3n+4
2 .

One can verify that the word b(b(ab)
n−1

2 )
n−3

2 b is a reset word for Mn whence

the above bound is tight.

It is not hard to see that exp0(Mn) = n − 1 and also exp1(Mn) is linear in

n. Thus, both the 0-exponent and the 1-exponent are far too weak to give a good

lower bound for the reset threshold of Mn. That is why we have obtained a tight

lower bound for rt(Mn) in an indirect way, via relating Mn to an automaton with

a large 1-exponent (namely, to Cn+1

2

). Now we are going to develop a notion that

can give a good bound in a more direct way.

Observe that the most important part of the proof of Theorem 6 deals with

estimating the number of occurrences of the factor ab in a reset word. In fact,

a rough estimation can be done directly. Let w be a reset word that leaves Mn

in the state 2 and k = |w|ab. Consider a path from 2 to 2 in which the state 2

does not occur in the middle. Words labeling such paths come from the language

L = b∗(a+b+)
n−1

2 ba∗b. Thus, w can be divided into several blocks from L. Since

every block has either n−1
2 or n+1

2 occurrences of the factor ab, we conclude that k
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is expressible as a non-negative integer combination of the numbers n−1
2 and n+1

2 .

Note that (ab)tw, where t ∈ N, is a reset word that leaves Mn in the state 2. Since

ab occurs k+ t times as a factor in (ab)tw, we see that k+ t also is expressible as a

non-negative integer combination of n−1
2 and n+1

2 . Applying Lemma 3 we conclude

that k ≥ n2
−4n+3
4 . Thus, the length of w is at least n2

−4n+3
2 .

The above reasoning suggests the following generalization. Let A = 〈Q,Σ〉

be a DFA with Q = {1, 2, . . . , n} and let k be a non-negative integer. We say

that the automaton A is k-primitive if there exist words u1, u2, . . . , un such that

1 · u1 = 2 · u2 = · · · = n · un and for every word v of length at most k we have

|u1|v = |u2|v = . . . = |un|v. Note that the last condition implies that all words

u1, u2, . . . , un have the same length. The minimal length of words that witness k-

primitivity of A is called the k-exponent of A and is denoted by expk(A ). Observe

that the rough estimation in the previous paragraph shows that exp2(Mn) is close

to rt(Mn).

Consider now an arbitrary synchronizing automaton A . It is clear that A is

k-primitive for every k and rt(A ) ≥ expk(A ). Thus, we have the following non-

decreasing sequence:

exp0(A ) ≤ exp1(A ) ≤ · · · ≤ expk(A ) ≤ expk+1(A ) ≤ . . . . (4)

At every next step we require that the words u1, u2, . . . , un get more similar to each

other than they were in previous step. Thus, eventually these words converge to

a reset word and the sequence stabilizes at rt(A ). So we hope that studying the

sequence (4) may lead to a new approach to the Černý conjecture.
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