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1. STATEMENT OF THE PROBLEM AND OBTAINED RESULTS

Let Pn be the set of algebraic polynomials of degree at most n with real coefficients. In this paper,
we study the inequality

‖P (�)‖∞ ≤ C(n, �)‖P‖1, P ∈ Pn, (1.1)

with the exact constant C(n, �). Here and elsewhere,

‖P‖p =
(

1
2

ˆ 1

−1
|P (x)|p dx

)1/p

, 0 < p < ∞, ‖P‖∞ = max
x∈[−1,1]

|P (x)|.

Inequality (1.1) is a particular result in the general problem of estimating the Lq-mean of the �th
derivative of an algebraic polynomial via the Lp-mean of the polynomial itself:

‖P (�)‖q ≤ Cq,p(n, �)‖P‖p, P ∈ Pn, 0 < p, q ≤ ∞, 1 ≤ � ≤ n. (1.2)

Inequality (1.2) was studied in a large number of papers; an extensive survey of the results is given
in [1], [2]. Ivanov [3] and Konyagin [4] obtained the most general estimates of the best constants in
inequalities of type (1.2). Results from [3] imply the order of growth of the quantity Cq,p(n, �) in n as
n → ∞ for fixed �, p, q; in particular,

C(n, �) = C∞,1(n, �) � n2�+2, n → ∞.

The exact values of Cq,p(n, �) are known only for certain values of p, q, and �. The Markov
brothers [5], [6] obtained the sharp inequality (1.2) for p = q = ∞, 1 ≤ � ≤ n − 1; in this case, the
Chebyshev polynomial of the first kind

Tn(x) = cos(n arccos x), x ∈ [−1, 1],

is an extremal polynomial. Bojanov [7] (see also [8]) proved that the polynomial Tn is extremal also
for all q ∈ [1,∞), p = ∞, � = 1. The case p = q = 2 was studied by Schmidt, Hille, Szegö, Tamarkin,
Milovanović, Dörfler, and Kroó (see [9], [1], [10], [11]). Labelle [12] found the exact constant for q = ∞,
p = 2, 1 ≤ � ≤ n − 1. If � = n, then the problem can be reduced to the determination of the polynomial
of least deviation from zero in the metric of ‖ · ‖p, with a fixed leading coefficient. For p = ∞, such a
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polynomial is the Chebyshev polynomial of the first kind [13], for p = 2, the Legendre polynomial, and,
for p = 1, the Chebyshev polynomial of the second kind

Un(x) =
sin((n + 1) arccos x)√

1 − x2
, x ∈ [−1, 1].

In the last case, the solution was obtained by Korkin and Zolotarev [14].
The main result of the present paper is the following theorem.

Theorem 1. Let n and � be natural numbers such that (n − 1)/3 ≤ � ≤ n− 1. Denote uk = U
(�)
k (1),

k = �, . . . , n,

U =

⎛
⎜⎜⎜⎜⎜⎜⎝

un un−1 · · · u�

un−1 un−2 · · · 0

· · · · · · · · · · · ·

u� 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

and let λ∗ be the greatest eigenvalue of the matrix U. Then

1) λ∗ exceeds the absolute values of all the other eigenvalues of U, has algebraic mul-
tiplicity 1, and the eigenvector α = (α0, α1, . . . , αn−�)� corresponding to it has positive
coordinates;

2) the exact constant in inequality (1.1) is C(n, �) = λ∗;

3) the extremal polynomials in inequality (1.1) are P ∗(x) and P ∗(−x), where

P ∗(x) =
aG∗(arccos x)√

1 − x2
, a ∈ R \ {0},

G∗(θ) =
n−�∑
j=0

n−�∑
k=0

αjαk sin((n + 1 − j − k)θ),

and here ‖P ∗(�)‖∞ = |P ∗(�)(1)|.

2. AUXILIARY STATEMENTS

We shall need the following definitions (see [15, Chap. 13]).
Let

A = ‖aj,k‖n
1 and C = ‖cj,k‖n

1

be two real matrices of size n × n. We shall write

A ≥ C if aj,k ≥ cj,k for all j = 1, . . . , n, k = 1, . . . , n.

Let A = ‖aj,k‖n
1 be a complex matrix. Denote by A+ the matrix obtained by replacing all the entries of

the matrix A by their absolute values: A+ = ‖ |aj,k| ‖n
1 .

A matrix A = ‖aj,k‖n
1 is said to be decomposable if, for some partition of all indices 1, 2, . . . , n into

two systems (without common indices)

j1, j2, . . . , jμ, k1, k2, . . . , kν , μ + ν = n,

we have

ajα,kβ
= 0, α = 1, 2, . . . , μ, β = 1, 2, . . . , ν.

Otherwise, the matrix A is said to be indecomposable.
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A SHARP MARKOV BROTHERS-TYPE INEQUALITY 609

By En we denote the unit matrix of size n × n.

Lemma 1. Let

B =

⎛
⎜⎜⎜⎜⎜⎜⎝

b11 b12 · · · b1n

b21 b22 · · · 0

· · · · · · · · · · · ·

bn1 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where bjk 
= 0, j + k ≤ n + 1. Then the matrix B is indecomposable.

Proof. For n = 1, the statement is obvious. For n ≥ 2, let us use the criterion for the indecomposability
of a matrix [16, Chap. VIII, Sec. 1, Theorem 8.11]: the matrix B = ‖bj,k‖n

1 is indecomposable if and only
if

(En + B+)n−1 > 0.

If n = 2, then En + B+ > 0. Let n ≥ 3. It suffices to prove that, for some 1 ≤ m ≤ n − 1,

(En + B+)m > 0.

It is readily verified that B+2
> 0; therefore,

(En + B+)2 ≥ B+2
> 0,

which proves the assertion.

Let Tm be the set of trigonometric polynomials G(θ) of order m with real coefficients:

G(θ) = α0 +
m∑

k=1

(αk cos(kθ) + βk sin(kθ))

= Re
( m∑

k=0

γke
ikθ

)
, γk = αk + iβk, αk, βk ∈ R, β0 = 0.

Following Geronimus’ paper [17], let L[G] denote the integral

L[G] =
1
2π

ˆ 2π

0
|G(θ)| dθ. (2.1)

Suppose that we are given the collection c of s + 1 complex numbers

c = (cm−s, . . . , cm), ck = ak + ibk.

Let ω[G, c] denote the linear functional of s + 1 leading coefficients of the polynomial G(θ):

ω[G, c] =
m∑

k=m−s

αkak + βkbk = Re
m∑

k=m−s

γkck.

In what follows, the essential role is played by the following result due to Geronimus; in it the norm of
ω[ · , c] is calculated as that of a linear functional on the space Tm with norm (2.1).

Theorem A (Geronimus [17, Theorem II], [18, Theorem I]). For any G ∈ Tm, the following inequal-
ity holds:

|ω[G, c]|
L[G]

≤ |ω[G0, c]|
L[G0]

=
πδ0

2
, s ≤

[
2m − 1

3

]
.
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Here δ0 is the greatest root of the secular equation

C(δ, c) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

δ 0 · · · 0 cm−s cm−s+1 · · · cm

0 δ · · · 0 0 cm−s · · · cm−1

· · · · · · · · · · · · · · · · · · · · · · · ·

0 0 · · · δ 0 0 · · · cm−s

cm−s 0 · · · 0 δ 0 · · · 0

cm−s+1 cm−s · · · 0 0 δ · · · 0

· · · · · · · · · · · · · · · · · · · · · · · ·

cm cm−1 · · · cm−s 0 0 · · · δ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0. (2.2)

The equality sign holds only for polynomials of the form

G0(θ) = Re(q2(z)zm−2s+ν)|τ(z)|2, z = eiθ,

where ν + 1 is the multiplicity of the root δ0, τ(z) is an arbitrary polynomial of degree at most ν,
q(z) is a polynomial of degree s − ν determined from the expansion

δ0
q(z)

zs−νq(1/z)
= cm−s + cm−s+1z + · · · + cmzs + · · · , |z| ≤ 1.

The following lemma is the main component of the proof of of Theorem 1.

Lemma 2. Suppose that we are given natural numbers m and s such that s ≤ (2m − 1)/3 and a
collection b∗ = (b∗m−s, . . . , b

∗
m), b∗k > 0. Then, for any collection b = (bm−s, . . . , bm), bk ∈ R, with the

property

|bk| ≤ b∗k, k = m − s, . . . ,m, (2.3)

and any odd polynomial G(θ) of degree m,

G(θ) =
m∑

k=1

βk sin(kθ) = Re
m∑

k=0

γke
ikθ, γk = 0 + iβk,

the following inequality holds:

|ω[G, ib]|
L[G]

≤ πλ∗

2
, (2.4)

where λ∗ is the greatest eigenvalue of the matrix

B∗ =

⎛
⎜⎜⎜⎜⎜⎜⎝

b∗m b∗m−1 · · · b∗m−s

b∗m−1 b∗m−2 · · · 0

· · · · · · · · · · · ·

b∗m−s 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (2.5)

The eigenvalue λ∗ exceeds the absolute values of all the other eigenvalues, has algebraic mul-
tiplicity 1, and to it corresponds the eigenvector α = (α0, α1, . . . , αs)� with positive coordinates
αk > 0, k = 0, . . . , s.

Inequality (2.4) becomes an equality if and only if, for some ε ∈ {−1, 1} and ν ∈ {0, 1}, the
representation

bk = ε(−1)νk b∗k, k = m − s, . . . ,m, (2.6)
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A SHARP MARKOV BROTHERS-TYPE INEQUALITY 611

is valid and the polynomial G has the form

G(θ) = aG∗(θ + νπ), a 
= 0;

here

G∗(θ) =
s∑

j=0

s∑
k=0

αjαk sin((m − j − k)θ) =
m∑

k=1

β∗
k sin(kθ). (2.7)

Besides, the first s + 1 coefficients of the polynomial G∗(θ) are positive:

β∗
k > 0, k = m − s, . . . ,m. (2.8)

Proof. The proof is carried out in several steps.

1. Let us establish inequality (2.4). By Theorem A, we have

|ω[G, ib]|
L[G]

≤ πδ0

2
,

where δ0 is the greatest root of Eq. (2.2) C(δ, ib) = 0.
Denote

B =

⎛
⎜⎜⎜⎜⎜⎜⎝

bm bm−1 · · · bm−s

bm−1 bm−2 · · · 0

· · · · · · · · · · · ·

bm−s 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, B =

⎛
⎜⎜⎜⎜⎜⎜⎝

bm−s bm−s+1 · · · bm

0 bm−s · · · bm−1

· · · · · · · · · · · ·

0 0 · · · bm−s

⎞
⎟⎟⎟⎟⎟⎟⎠

.

For any δ, in view of the properties of block matrices [15, Chap. II, Sec. 5, item 3], the following relation
holds:

C(δ, ib) =

∣∣∣∣∣∣
δE −iB

iB� δE

∣∣∣∣∣∣ = |δ2E − BB�|, E = Es+1.

By direct multiplication, we verify the equality BB� = B2; therefore,

C(δ, ib) = |δ2E − B2| = |δE − B||δE + B|. (2.9)

Similarly, we obtain the equalities

C(δ, ib∗) = |δ2E − B∗2| = |δE − B∗||δE + B∗|. (2.10)

It is easy to verify that the matrix (B∗)2 is positive; therefore, by Perron’s theorem [15, Chap. XIII,
Sec. 2, Theorem 1], it has an eigenvalue (λ∗)2, λ∗ > 0, that exceeds the absolute values of all the
other eigenvalues and has multiplicity of 1. The matrix B∗ is nonnegative and, by Lemma 1, is
indecomposable. Therefore, it follows from relation (2.10) and the Frobenius theorem [15, Chap. XIII,
Sec. 2, Theorem 2] that λ∗ is an eigenvalue of B∗ of multiplicity of 1, is greater that the absolute values
of all the other eigenvalues of B∗, and to it corresponds the eigenvector α = (α0, . . . , αs)� with positive
coordinates αk > 0, k = 0, . . . , s.

Let us prove that δ0 ≤ λ∗, and study the cases of equality. Let δ1 be the greatest (in absolute value)
eigenvalue of the matrix B. In view of relation (2.9), we have |δ1| = δ0. Condition (2.3) implies the
inequality B+ ≤ B∗. Thus, all the assumptions of Lemma [15, Chap. XIII, Sec. 2, Lemma 2] hold;
hence

|δ1| = δ0 ≤ λ∗;

here the equality is attained only in the case where

B = eiϕDB∗D−1; (2.11)
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here eiϕ = δ1/λ
∗ and D = ‖dj,k‖s

0 is a complex diagonal matrix all of whose diagonal elements are equal
(in absolute value) to 1: djj = dj , |dj | = 1.

Let us prove that, in this case, condition (2.11) is equivalent to (2.6). First, it is easy to see that if (2.6)
holds, then so does (2.11) with eiϕ = ε(−1)νm and dj = (−1)νj .

Now assume that condition (2.11) holds. The matrix B is symmetric; therefore, all of its characteristic
numbers are real. Hence the ratio δ1/λ

∗ can only be equal to either 1 or −1. To be definite, let δ1/λ
∗ = 1.

Equating (2.11) elementwise, we obtain the relation

bm−k =
dj

dk−j
b∗m−k, j = 0, . . . , s, j, . . . , s. (2.12)

For j = 0, we divide relation (2.12) for k by the same relation for k − 1, obtaining

bm−k

b∗m−k

=
dk−1

dk

bm−(k−1)

b∗m−(k−1)

, k = 1, . . . , s.

Dividing relations (2.12) for j = 1 and j = 0 by each other, we obtain

d1

d0
=

dk−1

dk
, k = 1, . . . , s.

Comparing the last two expressions, we find that

bm−k

b∗m−k

=
d1

d0

bm−(k−1)

b∗m−(k−1)

, k = 1, . . . , s.

All the bj and b∗j are real; therefore, d1/d0 ∈ {−1, 1}. Hence we easily obtain (2.6) with ε = d0e
iϕ and

ν =

{
0 for d1/d0 = 1,
1 for d1/d0 = −1.

2. Let us prove relation (2.7). As already noted, the multiplicity of λ∗, and hence that of the greatest
root of the equation C(λ, ib∗) = 0, is equal to 1. Therefore, by Theorem A, the extremal polynomial in
inequality (2.4) for b = b∗ is unique up to a numerical multiplier and is

G∗(θ) = Re(q2(z)zm−2s), z = eiθ, (2.13)

where q(z) is the polynomial of degree s determined from the expansion

iλ∗ q(z)
zsq(1/z)

= b∗m−s + b∗m−s+1z + · · · + b∗mzs + · · · , |z| ≤ 1. (2.14)

Let us show that the polynomial

q(z) = (1 − i)(αs + αs−1z + · · · + α0z
s) (2.15)

satisfies the expansion (2.14). Let us multiply both sides of (2.14) by the denominator of its left-hand
side

zsq(1/z) = (1 + i)(α0 + α1z + · · · + αsz
s),

obtaining

λ∗(αs + αs−1z + · · ·+ α0z
s) = (α0 + α1z + · · ·+ αsz

s)(b∗m−s + b∗m−s+1z + · · ·+ b∗mzs + · · · ). (2.16)

Since α is an eigenvector of B∗, we see that the following relations hold:

λ∗α0 = b∗sα0 + b∗s−1α1 + · · · + b∗0αs,

λ∗α1 = b∗s−1α0 + b∗s−2α1 + · · · + b∗0α1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

λ∗αs = b∗0α0.
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A SHARP MARKOV BROTHERS-TYPE INEQUALITY 613

The left- and right-hand sides of the kth equality coincide, respectively, with the coefficients of zs−k on
the left- and right-hand sides of (2.16). Thus, we have establisheded that the expansion (2.14) is valid.

Substituting (2.15) into (2.13), we obtain

G∗(θ) = Re
(
−2i

s∑
j=0

s∑
k=0

αjαke
(m−j−k)iθ

)
= 2

s∑
j=0

s∑
k=0

αjαk sin((m − j − k)θ) =
m∑

k=0

β∗
k sin(kθ),

where

β∗
m−k = 2

k∑
j=0

αjαk−j, k = 0, . . . , s. (2.17)

In view of item 1 of the proof, the equality in (2.4) is attained for the collection b = b̃ as well:

b̃ = (b̃m−s, . . . , b̃m), b̃k = ε(−1)kb∗k, k = m − s, . . . ,m, ε ∈ {−1, 1},
and the extremal polynomial is also unique up to a numerical multiplier. Consider the polynomial

G̃(θ) = G∗(θ + π) =
m∑

k=0

(−1)kβ∗
k sin(kθ). (2.18)

For it, the following relations hold:

|ω[G̃, ĩb ]| = |ω[G∗, ib∗]|, L[G̃] = L[G∗].

Therefore,

|ω[G̃, ĩb ]|
L[G̃]

=
πλ∗

2
.

In view of item 1, there are no other extremal collections b and hence also no extremal polynomials.
The lemma is proved.

3. PROOF OF THEOREM 1

Let us write the quantity C(n, �) as

C(n, �) = sup
P∈Pn

‖P (�)‖∞
‖P‖1

. (3.1)

Let us expand the polynomial P ∈ Pn in the Chebyshev polynomials of the second kind:

P (x) =
n∑

k=0

τkUk(x) =
n+1∑
k=1

βkUk−1(x),

and, to it, let us assign the trigonometric polynomial

G(θ) =
m∑

k=1

βk sin(kθ), m = n + 1. (3.2)

Replacing θ = arccos x, we express the denominator of (3.1) as

‖P‖1 =
1
2

ˆ 1

−1

∣∣∣∣
m∑

k=1

βk
sin(k arccos x)√

1 − x2

∣∣∣∣ dx =
1
4

ˆ 2π

0

∣∣∣∣
m∑

k=1

βk sin(kθ)
∣∣∣∣ dθ =

π

2
L[G].
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It is well known that ‖U (�)
k ‖∞ = U

(�)
k (1) for all k and �. Consider all possible collections of numbers

{εk}m
k=�+1, where εk assumes the values 1 or −1. Then the numerator (3.1) can be estimated as follows:

‖P (�)‖∞ ≤
m∑

k=1

‖βkU
(�)
k−1‖∞ =

m∑
k=�+1

|βk|U (�)
k−1(1) = max

{εk}m
k=�+1

m∑
k=�+1

εkU
(�)
k−1(1)βk. (3.3)

Set s = m − (� + 1) = n − �,

b∗k = U
(�)
k−1(1), bk = εkU

(�)
k−1(1), b∗ = (b∗m−s, . . . , b

∗
m), b = (bm−s, . . . , bm).

In this notation, inequality (3.3) takes the form

‖P (�)‖∞ ≤ max
{εk}m

k=�+1

m∑
k=�+1

εkU
(�)
k−1(1)βk = max

b
|ω[G, ib]|.

It follows from the inequality (n − 1)/3 ≤ � ≤ n − 1 that

1 ≤ s ≤ 2n + 1
3

=
2m − 1

3
.

Therefore, the assumptions of Lemma 2 hold and, applying it, we obtain the estimate

‖P (�)‖∞
‖P‖1

≤ max
b

2
π

|ω[G, ib]|
L[G]

≤ λ∗, (3.4)

where λ∗ is the greatest characteristic number of the matrix (2.5). Besides, the right-hand inequality
in (3.4) becomes an equality only on the polynomials (2.7). By formula (3.2), to the polynomial G∗(θ)
corresponds the polynomial

P ∗(x) =
n+1∑
k=1

β∗
kUk−1(x)

and to the polynomial G∗(θ + π) corresponds the polynomial P ∗(−x). In view of condition (2.8) on the
coefficients β∗

k , the following relations hold:

‖P ∗(�)(x)‖∞ = ‖P ∗(�)(−x)‖∞ = P ∗(�)(1) =
n+1∑

k=�+1

β∗
kUk−1(1) = |ω[G∗, ib∗]|,

‖P ∗(x)‖1 = ‖P ∗(−x)‖1 =
π

2
L[G∗].

Therefore, C(n, �) = λ∗, and P ∗(x), P ∗(−x) are extremal polynomials.
The proof of the theorem is complete.
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