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Abstract We characterize epigroups mentioned in the title.

Keywords Epigroup · Lower semimodular lattice · Subepigroup lattice of an
epigroup

A semigroup S is called an epigroup if some power of each element in S lies in
a subgroup of S. An epigroup can be considered as a unary semigroup, i.e. as a
semigroup with an additional unary operation of taking pseudo-inverse (see [6, 7]).
Investigations of connections between epigroups per se (i.e. those which are neither
periodic semigroups nor groups) and their subepigroup lattices have started in [10].
First results obtained in this direction have been surveyed in [8]. In the latter paper
the problem of studying epigroups with lower semimodular subepigroup lattice has
been posed as well.

If x, y are elements of a lattice L, we write x � y to denote that x > y and there
is no z ∈ L such that x > z > y. Recall that L is called lower semimodular if for all
x, y ∈ L from x ∨y � x it follows that y � x ∧y. An upper semimodular lattice is de-
fined in a dual way. The structure of epigroups with upper semimodular subepigroup
lattice is determined in [10]. The problem of investigation of semigroups with lower
semimodular lattice of (usual) subsemigroups posed in [9], Problem 5.14, is deeply
studied in [4]. Certain ideas and some of the auxiliary results of this paper are used to
obtain the main result of the present paper. The lower semimodularity condition was
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considered for the lattice of all full inverse subsemigroups of an inverse semigroup in
[1–3].

We treat as well-known basic notions of semigroup theory (such as Green’s re-
lations, null semigroup, Brandt semigroup, principal factor, singular semigroup and
so on). The reader can find corresponding information for example in [5]. We treat
as known certain simple properties of epigroups; corresponding information can be
found in [6, 7, 10]. We recall the definition of a pseudo-inverse element only. Let S be
an epigroup and x ∈ S. A unique maximal subgroup of S that contains some power
of x is denoted by Gx ; we denote the identity of Gx by ex . It is known that xex = exx

and this element is in Gx so that we can consider the inverse element (xex)
−1 in Gx .

This element is called the pseudo-inverse for x and is denoted by x.
For an element a ∈ S we denote by Ja the J -class of the epigroup S which con-

tains the element a, by J (a) the principal ideal generated by a, and by I (a) the ideal
J (a)\Ja . If I (a) �= ∅, then J (a)/I (a) = Ja ∪ {0} is the principal factor of S associ-
ated with a. We denote the elements of the Brandt semigroup B2 by 0 and eij , where
i, j = 1,2; then eij ekl = 0 when j �= k and eij ekl = eil when j = k.

Let 〈〈X〉〉 denote the subepigroup generated by a subset X of an epigroup S. Each
element in 〈〈X〉〉 can be represented by an epigroup term over X, where the opera-
tions are multiplication and taking pseudo-inverse. The depth of an epigroup term is
defined as follows: the depth of each element in X is 0; if u,v are terms of depth m

and respectively n, then uv has depth m + n + 1 and u has depth m + 1.
The lattice of all subepigroup of an epigroup S is denoted by SubepiS.
The main result of the paper is the following statement.

Theorem Let S be an epigroup. The lattice SubepiS is lower semimodular if and
only if the following conditions hold:

(1) each principal factor of S is a semigroup of some of the following types:
(1a) a null semigroup;
(1b) a group with lower semimodular subgroup lattice (with zero adjoined);
(1c) a singular semigroup (with zero adjoined);
(1d) the 5-element Brandt semigroup B2;

(2) for all e ∈ ES , a ∈ S, from ea ∈ He\{e} it follows that e ∈ 〈〈a〉〉;
(3) for all a, b, x ∈ S such that x is not in a non-trivial group,

(3a) if ab /∈ Jx and x = xab [x = abx], then either x ∈ 〈〈a, b〉〉 or x = xa

[x = bx];
(3b) if the associated principal factor of x is null and x = bax, then either x ∈

〈〈a, b〉〉 or x = xa = bx.

Observe that, as was shown in [4], for periodic semigroups, condition (3b) follows
from condition (3a). We do not know whether condition (3a) implies condition (3b)
for epigroups which are not periodic semigroups; the proof for the periodic case pre-
sented in [4] does not extend to arbitrary epigroups.

Our first auxiliary result is parallel to statement 1 of Lemma 1.3 in [4].

Lemma 1 Let S be an epigroup. If U � V in the lattice SubepiS, then the set U\V
is contained in a J -class of S.
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Proof Take x, y ∈ U\V . Since x ∈ 〈〈V,y〉〉 and x /∈ V , we can represent x by a term
which involves some elements of V and necessarily involves y. If this term is a prod-
uct that involves y or its pseudo-inverse y, then x is divided by y or by y, so in this
case x ∈ J (y), since y is divided by y. If this term is the pseudo-inverse element for
such a product, then x is divided by the product and therefore is divided by y. We
have x ∈ J (y). By symmetry it follows that y ∈ J (x). Thus, Jx = Jy , as required. �

Now we are ready to prove that the conditions of Theorem are sufficient. Let S

be an epigroup which satisfies all these conditions. It is easy to see that a lattice L is
lower semimodular if and only if for all u,v,w ∈ L from u � v �≥ u ∧ w it follows
that u ∧ w � v ∧ w. Thus, we ought to show that, for all U,V,W ∈ SubepiS, from
U � V � U ∩ W it follows that U ∩ W � V ∩ W . First we prove several auxiliary
statements.

Let us verify that if the difference U\V is not contained in a subgroup of S, then
this difference consists of a unique element, and if U\V ⊆ H for a subgroup H of S,
then U ∩ H � V ∩ H . By Lemma 1, U\V ⊆ Ja for an element a ∈ U\V . Arguing
by contradiction, assume that Ja is not a group and the difference U\V consists of
more than 1 element. By condition 1 the associated principal factor P of a is either
a null semigroup or a combinatorial completely [0-]simple semigroup. Assume that
P is a null semigroup. Let x, y be distinct elements in (U\V ) ∩ P . Since U � V ,
we have x ∈ 〈〈y,V 〉〉 and y ∈ 〈〈x,V 〉〉, so x can be represented by a term t of y and
elements of V and y can be represented by a term t ′ of x and elements of V . The
pseudo-inverse y does not occur in t because y ∈ I (y). In a similar way, the pseudo-
inverse x does not occur in t ′. Since axb ∈ P ∪ V for all a, b ∈ V and P is null, we
conclude that t = a0yb0 for some a0, b0 ∈ V 1, so x = a0yb0. In a similar way we have
y = a1xb1 for some a1, b1 ∈ V 1. Thus x = a0a1xb1b0. By condition (3b), it follows
that x = a0a1x = xb1b0. Now we come to a contradiction repeating arguments in the
last paragraph of part (1) of the proof of Lemma 4.1 in [4].

Let P be a combinatorial completely [0-]simple semigroup. Then the class Ja

is either a singular semigroup or a Brandt semigroup B2. Consider each of the two
possibilities.

1. Let Ja be a singular semigroup. For definiteness, suppose that Ja is left singular,
i.e. xy = x for all x, y ∈ Ja (the right singular case is treated in a symmetric way). Fix
an element b ∈ Ja ∩ (U \ V ) which is not equal to a. Then U = 〈〈a,V 〉〉 = 〈〈b,V 〉〉,
whence a ∈ 〈〈b,V 〉〉 and b ∈ 〈〈a,V 〉〉. Let us prove that

a = v1b, b = v2a for some v1, v2 ∈ V \J (a). (1)

We establish the first equality, the second is verified in a similar way. Since a ∈
〈〈b,V 〉〉, take a representation of the element a by a term t of the least depth from
the elements of {b} ∪ V . Since a2 = a, we have a = a. Then t = t1t2, where t1, t2 are
terms whose depths are less than the depth of t . Denote the elements in S represented
by these terms by the same letters. So we conclude that ti ∈ Ja or ti ∈ V \J (a), i =
1,2. Clearly, t2a ∈ Ja . If t1 ∈ Ja , then a = a2 = t1t2a = t1, because Ja is left singular.
We have a contradiction with the choice of t . If t1, t2 /∈ Ja , then t1, t2 ∈ V and so
a ∈ V , which is impossible. Therefore, t1 ∈ V \J (a), t2 ∈ Ja\V . Now we are to show
that t2 = vb for some v ∈ V . Let us consider the leftmost occurrence of b in t2. Since
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vb, bv ∈ Ja for all subwords of the kind vb or bv occurring in the term t2 and Ja is
an idempotent semigroup, we conclude that the operation of taking pseudo-inverse
does not occur in t2. Since Ja is a singular semigroup, by the choice of the term t ,
we have t2 = vbw = vb · bw = vb for all w ∈ 〈〈b, v〉〉. Thus a = t1vb, whence putting
v1 = t1v, we obtain the first equality in (1).

The equalities (1) give a = v1b = v1v2a. Since v1, v2 ∈ V \J (a), the condition
v1v2 ∈ Ja implies that a = v1v2a = v1v2, i.e. a ∈ V , which is impossible. So,
v1v2 /∈ Ja . Since a /∈ 〈〈v1, v2〉〉, condition (3a) gives a = v2a, whence a = b in view
of the second equality in (1). This contradicts the assumption a �= b. Case 1 is com-
pletely treated.

2. Let Ja ∪ {0} be a Brandt semigroup B2. We denote the elements of Ja by
e11, e12, e21, e22 in accordance with the agreement in the beginning of the paper. Con-
sider all the possibilities which can arise here.

2.1. e11, e12 ∈ U\V . Then e11 ∈ 〈〈e12,V 〉〉 and e12 ∈ 〈〈e11,V 〉〉. Consider a repre-
sentation of the element e11 by a term t of the least depth which involves elements of
V and necessarily involves e12. Since either x = x or x ∈ I (a) for all x ∈ Ja and the
term t is of the least depth, the operation of taking pseudo-inverse does not occur in t .
The equality e11 = e2

11 gives e11 = e11t . Since e11ve12 = e12 and e12ve12 = e12 for all
v ∈ V \I (a), by the minimality of depth of the term t we obtain t = e12v1 for some
v1 ∈ V \I (a). Therefore, e11 = e12v1. In a similar way we prove that e12 = e11v2
for some v2 ∈ V \I (a). So, e11 = e11v2v1. Observe that v2v1 /∈ Ja since otherwise
v2v1 = e11, which is impossible. Since e11 �= e11v2, by condition (3a) we obtain that
e11 ∈ 〈〈v1, v2〉〉, which is a contradiction showing that case 2.1 is impossible.

2.2. e11, e21 ∈ U\V or e21, e22 ∈ U\V or e12, e22 ∈ U\V . These cases are treated
in a way similar to case 2.1.

2.3. e11, e22 ∈ U\V . Since Ja ⊆ 〈〈e12, e21〉〉, we conclude that either e12 ∈ U\V or
e21 ∈ U\V , and we come to the conditions which were considered in case 2.1 and
case 2.2.

2.4. e12, e21 ∈ U\V . In view of cases 2.1 and 2.2 we may assume that e11, e22 ∈ V .
We have e12 ∈ 〈〈e21,V 〉〉. Consider a representation of the element e12 by a term
t of the least depth which involves elements of V and necessarily involves e21. In
a similar way to the case 2.1 we note that the operation of taking pseudo-inverse
does not occur in t . Since e21ve21 = e21 for all v ∈ V \I (a), the term t has a unique
occurrence of e21, i.e. e12 = v1e21v2. By multiplying the last equality through by e22
on the right and taking into account that e21ve22 = e22 for all v ∈ V \I (a), we obtain
e12 = e12e22 = v1e21v2e22 = v1e22 ∈ V . Therefore, e12 ∈ V , which is impossible.

So, we have proved that if U\V is not contained in a subgroup of S, then this
difference has a unique element. Now we are to prove that if U\V ⊆ H for some
subgroup H , then U ∩ H � V ∩ H . Let U\V ⊆ H and H is a non-trivial group. If
|U\V | = 1, then the required statement is obvious.

Suppose that |U\V | > 1. Let e denote the identity of the subgroup H . Pick an
element a ∈ U\V distinct from e. Let us prove that e ∈ V . Arguing by contradiction,
assume that e /∈ V . Then U = 〈〈e,V 〉〉, in particular, a ∈ 〈〈e,V 〉〉. Let us fix a repre-
sentation of the element a by a term t of the least depth. Since e = e and x ∈ H for
all x ∈ H , the term t does not contain the operation of taking pseudo-inverse which
is applied to the elements e or V . Then t contains at least one of the products ev, ve
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for v ∈ V . Clearly, ev, ve ∈ H and therefore ev = eve = ve, so these products can
not be equal to e. By condition 2 we have e ∈ 〈〈v〉〉. So, e ∈ V , which contradicts our
assumption.

Now we are to show that 〈〈a,V ∩H 〉〉 = U ∩H for all a ∈ U\V , this will prove the
required statement. Obviously, 〈〈a,V ∩ H 〉〉 ⊆ U ∩ H . Let us establish the converse
inclusion. Fix x ∈ U ∩ H . Since U = 〈〈a,V 〉〉, the element x can be represented by a
term t which contains a and elements of V . Let us take such a term of the least depth.
Since a, x ∈ H and x /∈ V , we see that a occurs in the term t . By the choice of t , this
term does not contain the operation of taking pseudo-inverse which is applied to the
elements of V . In addition, all the products of kind anv, van for v ∈ V and integers
n, which occur in t , are in H . Since e ∈ V , we have anv = aneve and van = evean,
so eve ∈ V ∩ H . Therefore, x can be represented by a term t ′ which can be obtained
from t by replacing v ∈ V by eve; observe that eve ∈ V ∩H . Thus, x ∈ 〈〈a,V ∩H 〉〉,
as required.

Finally we prove that the lattice SubepiS is lower semimodular. Take subepi-
groups U,V,W ∈ SubepiS such that U � V � U ∩ W . Using arguments similar
to those of the last paragraph of Sect. 4 of [4], we prove that U ∩ W � V ∩ W .
If |U\V | = 1, then obviously U ∩ W � V ∩ W . Let U\V ⊆ H , where H is a
group with lower semimodular subgroup lattice. Let us pick distinct elements x, y

in (U ∩ W)\(V ∩ W). Then x, y ∈ H . Above we have proved that U ∩ H � V ∩ H .
Since H is lower semimodular, it follows that U ∩ W ∩ H � V ∩ W ∩ H . Thus
y ∈ 〈〈x,V ∩W ∩H 〉〉 whence y ∈ 〈〈x,V ∩W 〉〉 and in a similar way x ∈ 〈〈y,V ∩W 〉〉.
Therefore U ∩ W � V ∩ W . Sufficiency is proved.

Now we prove necessity of the conditions of Theorem. Let S be an epigroup whose
lattice SubepiS is lower semimodular. Pick a ∈ S and let F = J (a)/I (a) be a princi-
pal factor of the epigroup S. Then, analogously to Lemma 3.1 of [4], we conclude that
either SubepiF = L or SubepiF = L0, where L = {T ∈ SubepiS|I (a) ⊆ T ⊆ J (a)}
is an interval in the lattice SubepiS. Thus L and therefore L0 are lower semimodu-
lar. We conclude that every principal factor of the epigroup S has lower semimodular
subepigroup lattice. As is known (see [6], Corollary of Proposition 1), a principal fac-
tor of an epigroup is a null semigroup or a completely 0-simple semigroup, or (if it
is the kernel of the epigroup) a completely simple semigroup. By repeating the proof
of Proposition 3.6 in [4], we obtain that a completely 0-simple semigroup with lower
semimodular subepigroup lattice either is combinatorial or is a group with zero ad-
joined. In particular, every non-trivial subgroup of S is isolated. A completely simple
semigroup with lower semimodular subepigroup lattice is either a group or a sin-
gular semigroup. Since a combinatorial epigroup is periodic, by Theorem 5.3 of [4]
it follows that a combinatorial completely 0-simple epigroup with lower semimod-
ular subepigroup lattice is isomorphic to the Brandt semigroup B2 or is a singular
semigroup with zero adjoined. Thus, condition 1 holds for S.

Let us verify condition 2. This statement is parallel to Lemma 3.7 of [4]. Let e ∈
ES , a ∈ S, and He is a non-trivial group. Assume that ea ∈ He and ea �= e. We are to
prove that e ∈ 〈〈a〉〉. Let b = ea. Since a /∈ I (e) and He = Je, we conclude that J (e) ⊆
J (a) and b ∈ He. Moreover, ae, ae, ea ∈ He. From b ∈ He it follows that e ∈ 〈〈b〉〉.
We are to prove that, for all h ∈ He , c ∈ 〈〈a〉〉, we have hc, ch ∈ He. Let c = an, where
n is a positive integer. Then hc = hean = h(ea)an−1 = heaean−1 = h(ea)2an−2 =
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· · · = h(ea)n = hbn. Since h,b ∈ He , we have hc ∈ He. In a similar way, using the
element ae instead b, we obtain that ch ∈ He. Using the same arguments to ea and
ae, we conclude that hc, ch ∈ He for all c = an, n is a positive integer. Let f be the
identity of the group 〈〈a〉〉. Since f = aa, clearly hf,f h ∈ He.

We are now to prove that 〈〈a, b〉〉 = 〈〈a〉〉 ∪ 〈〈b〉〉. Using the statement proved in
the previous paragraph, we have ban = (ea)an = (ea)n+1 = bn+1 for any positive
integer n. In a similar way we have anb = bn+1. We are to show that b = ea. We
have b(ea) = eaea = eaa = ef . Since ef ∈ He and (ef )2 = ef ef = eff = ef , we
conclude that ef = e, so b(ea) = e. Since ea ∈ He, we have b = ea. Thus 〈〈a, b〉〉 =
〈〈a〉〉 ∪ 〈〈b〉〉.

Let us prove that 〈〈a, b〉〉 � 〈〈a〉〉. For all x ∈ 〈〈a, b〉〉\〈〈a〉〉 we have x ∈ 〈〈b〉〉. Since
e ∈ 〈〈b〉〉, it follows that e ∈ 〈〈x〉〉. Since b = ea, we conclude that b ∈ 〈〈a, x〉〉, as
required. From the condition 〈〈a, b〉〉 � 〈〈a〉〉, by lower semimodularity of the lattice
SubepiS, it follows that 〈〈b〉〉 � 〈〈a〉〉 ∩ 〈〈b〉〉, so 〈〈a〉〉 ∩ 〈〈b〉〉 �= ∅ and e ∈ 〈〈a〉〉. There-
fore, condition 2 is proved.

The following statement can be proved in a similar way to Lemma 3.8 of [4].

Lemma 2 Let S be an epigroup. If S = 〈〈x, y〉〉, x �= y, and neither of the elements
x, y is contained in a non-trivial subgroup, then at least one of the subsets S\{x} or
S\{y} is a subepigroup of S.

We now are to prove that for the epigroup S condition (3a) holds. Arguing by
contradiction, assume that a, b, x ∈ S, the element x is not in a non-trivial group and
a, b /∈ Jx , x = xab, x �= xa, x /∈ 〈〈a, b〉〉. Set T = 〈〈a, b, x〉〉. Since x /∈ 〈〈a, b〉〉, by
Zorn’s Lemma, in T there exists a subepigroup M which is maximal with the proper-
ties a, b ∈ M and x /∈ M . Clearly T � M . Since x = xa · b and b ∈ M , we conclude
that xa /∈ M . Let us prove that xa /∈ 〈〈x〉〉. Since 〈〈M,x〉〉 = T and T � M , lower
semimodularity of the lattice SubepiS implies 〈〈x〉〉 � M ∩ 〈〈x〉〉. Since the element x

is non-group, we have 〈〈x〉〉\{x} ⊆ M . Since x �= xa, the inclusion xa ∈ 〈〈x〉〉 implies
xa ∈ M , which is impossible. Observe that Jx = Jxa . Since x does not belong to a
non-trivial group, Jx is not an isolated subgroup, and therefore xa does not belong
to a non-trivial group. Changing the roles of x and xa, we obtain x /∈ 〈〈xa〉〉. Put
U = 〈〈x, xa〉〉. Since T � M , lower semimodularity of the lattice SubepiS implies
U � M ∩U , which contradicts Lemma 2. This contradiction proves condition (3a) of
Theorem.

To prove condition (3b), assume that x = bxa, x /∈ 〈〈a, b〉〉 and x �= xa or x �= bx.
The end of the proof is almost identical to that in the previous case. The theorem is
completely proved.
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