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The investigation of the ground magnetic state of
the single�band Hubbard model for already more than
a half century has been an important and topical fun�
damental problem. In recent decades, the case of two�
dimensional lattices closely related to the problem of
high�temperature superconductivity has been
intensely studied. Conventionally, the ground state for
the bipartite lattices is a Néel antiferromagnetic
(AFM) insulator [1, 2].

The types of instability of the antiferromagnetic
state in the presence of doping or the finite next�near�
est neighbor hopping integral have still been incom�
pletely revealed. According to the classical work by
Nagaoka [1], when one charge carrier is added, the
ground state on the bipartite lattice is the saturated fer�
romagnetic (FM) one. This statement can also be con�
sidered as a reasonable hypothesis in the case of finite
doping [1, 3, 4].

Scenarios of the possible doping�induced magnetic
ordering include the phase separation of different
types: to the ferromagnetic and antiferromagnetic
phases [5] or the phase of the superconducting elec�
tron liquid and the Néel antiferromagnetic phase [6].
An alternative scenario is the formation of the spiral
magnetic state. It was considered within different
approaches: the analysis of the momentum depen�
dence of the generalized static magnetic susceptibility
for the bare spectrum [7], the Hartree–Fock approxi�
mation (small and moderate U/W values, where U is
the parameter of the Coulomb repulsion and W is the

bandwidth) [8, 9], and the t–J model (large U/W val�
ues) [10].

Incommensurate structures are observed in doped
high�temperature superconducting cuprates as the
dynamic magnetic order [11], in the layered cerium�
based systems [12], and in iron�based high�tempera�
ture superconductors [13]. In addition, the consider�
ably enhanced incommensurate magnetic fluctuations
are observed in strontium ruthenates at low tempera�
tures [14] (see discussion in [9, 15, 16]).

The study of the magnetic phase diagram of the
two�dimensional Hubbard model taking into account
the electron transfer only between the nearest neigh�
bors (t ' = 0, where t(t ') is the integral of the transfer
between the nearest (next�nearest) neighbors) within
the Hartree–Fock approximation predicts that the
spiral magnetic states are implemented in a wide range
of parameters, especially at moderate values U � W
[17]. It was shown in [9] that the inclusion of the next�
nearest neighbor electron transfer (t ' ≠ 0) into the
Hamiltonian considerably changes the magnetic
phase diagram of the ground state. The results
obtained are in qualitative agreement with the experi�
mental data for the magnetic structure of the layered
high�temperature superconducting cuprates in the
case of low doping (there are considerable quantitative
discrepancies) [18].

The effect of the electron correlations on the stabil�
ity of the spiral magnetic states using the slave�boson
method was considered in [19]. The phase diagram of
the Hubbard model was built in the nearest neighbor
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approximation (t ' = 0). Later, the generalized static
magnetic susceptibility was studied within the same
method. This makes it possible to determine the crite�
rion of the instability of the paramagnetic state with
respect to a second�order transition to the incommen�
surate magnetic state (which, in essence, generalizes
the known criterion obtained within the random phase
approximation [20] to the consideration of the
strongly correlated states) [21]. As a result, a consider�
able tendency to ferromagnetic ordering at hole dop�
ing and a large t '/t value was found. However, the
phase transitions between the magnetically ordered
states cannot be studied within this approach.

In addition to the spiral structures, the formation of
so�called stripes being the linearly polarized spin and
charge density wave was studied [22]. It was estab�
lished that they are more energy favorable than the spi�
ral states at t ' ≠ 0 and at a certain set of model param�
eters in the slave�boson approximation [23], as well as
at t ' = 0 and U ≤ W in the Hartree–Fock approxima�
tion [24]. However, this conclusion is somewhat deval�
uated by disregarding the intersite Coulomb interac�
tion, which can considerably increase the energy of
“stripes” as inhomogeneous structures.

It is known that the results of the angle�resolved
photoemission for the high�temperature supercon�
ducting cuprates favor the inclusion of the next�near�
est neighbor electron transfer “frustrating” the Néel
antiferromagnetic order in the bare Hamiltonian [25].
Although the spiral states in the Hubbard model were
actively studied, the relation between the type of mag�
netic order and the parameters of the problem (elec�
tron concentration n, t '/t, U) has not been determined
definitively. In addition, there is the question about the
possibility of the formation of the inhomogeneous
state in a wide sense: either by the magnetic phase sep�
aration or via the formation of stripes. In this paper,
these questions are studied using the slave�boson
method.

The slave�boson method in the form convenient for
the study of the formation of the magnetic order was
proposed by Kotliar and Ruckenstein [26]. In the sad�
dle point approximation, this method is qualitatively
close to the known Gutzwiller approximation. The
energy of the ground state obtained within the slave�
boson method is in good agreement with the quantum
Monte Carlo and exact diagonalization calculations
[19]. This justifies the usage of the slave�boson method
in the cases where there are no strong fluctuations of
the order parameter in the system. In the opposite case
of the continuous (second�order) phase transition,
where strong fluctuations occur, the nontrivial many�
particle renormalizations of Green’s functions are
needed indeed [15, 27].

The weakly modulated antiferromagnetic order
competing with the Néel state is unstable near half�
filling. As a result, a first�order transition takes place.
In this case, it is possible to expect that the slave�boson

method will give qualitatively reasonable results. This
is favored by the comparison of the slave�boson
approach and the dynamic mean field theory in the
limit U = ∞ [28]. The error in the calculation of the
spectral properties within the slave�boson method
because of disregarding the local fluctuations slightly
affects the determination of the energy. This makes it
possible to consider this approach as a reasonable
approximation.

We consider the two�dimensional Hubbard model
for a spiral ordered state on the square lattice, where
the matrix elements of the electron transfer tij are –t
for the nearest neighbors and t ' for the second neigh�
bors. After the local rotation in the spin space match�
ing the local magnetization vectors at different sites
(which is necessary for the consideration of magnetic
spirals) by the angle QRi (where Q is the wave vector of
the spiral) and the introduction of the slave boson

operators ei( ), piσ( ), di( ), the action of the sys�
tem can be described by the effective Hamiltonian, in
which the Coulomb interaction has the form diagonal
over the boson variables:

(1)

where fiσ,  are the slave Fermi operators,  =

exp[iQ(Ri – Rj)σ
x]
σσ'tij, and

(2)

The thermodynamic potential of the spiral state
Ω(Q) is calculated in the saddle point approximation
for the action �, introduced in [26] and generalized to
the consideration of the spiral structures in [19]
(z factors lose the dependence on i and become

c�numbers: ei,   e, etc.). The conditions of the
extremum of Ω with respect to the boson variables e,
p
σ
, d and Lagrange factors lead to the system of the

basic equations of the slave�boson method (see [19]).
The resulting wave vector is determined by the mini�
mization of Ω over various spiral states:

(3)

The minimization of Ω(Q, μ, U) was performed
numerically with a step of 0.02π over Q within the fol�
lowing types of spiral states: (Q, π) (“parallel” state),
(Q, Q) (“diagonal”), and (0, Q). Since Ω in the ground
state actually depends on the chemical potential μ as a
parameter, we can determine the dependence of the
magnetic structure on μ automatically taking into
account the possibility of the phase separation [9].
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The phase diagram for t ' = 0 obtained within the
slave�boson method is shown in Fig. 1a, where the
phase transitions between the different magnetic states
are first�order transitions that leads to considerable
regions of phase separation. This considerably distin�
guishes this phase diagram from that presented in [19],
where the phase separation was disregarded. The sep�
aration regions between the antiferromagnetic phase
and the spiral magnetic states (parallel and diagonal)
are especially wide. Therefore, the regions of the pure
spiral states are narrowed. In particular, this refers to
the diagonal phase, the existence of which becomes
possible only at U > 11t. The phase transition between
the paramagnetic and spiral magnetic states is a sec�
ond�order transition.

Analogous phase diagrams of the ground state at
different t '/t values were calculated within the Har�
tree–Fock approximation in [9] (for t ' = 0, see
Fig. 1b). It is seen that the electron correlations lead to
the noticeable suppression of the magnetically ordered
states in comparison with the Hartree–Fock approxi�
mation: the corresponding concentration intervals in
the phase diagram decrease strongly, and the diversity
of the spiral states disappears. The ferromagnetic state
covering a considerable part of the diagram in the Har�
tree–Fock approximation is displaced to the region of
large values U � 60t; this behavior reproduces the
result obtained in [19] and is in good agreement with

the variational study of the stability of the saturated
ferromagnetic phase [3]. The region of the separation
of the antiferromagnetic and spiral phases narrows by
approximately a factor of 2.

According to our calculations, even the unlimited
growth of U does not make the magnetically ordered
states stable far from half�filling: at U = ∞, there are no
spiral magnetic solutions of equations of the slave�
boson method at n < 0.37 and n > 1.63. At the same
time, the saturated ferromagnetic solution becomes
more favorable than the spiral ones at  < 0.3.
Thus, the spiral magnetic state at large U values far
from half�filling replaces the saturated ferromagnetic
one. In contrast to [4], the unsaturated ferromagnetic
solutions exist within our approach, but they are
always energy unfavorable in comparison with the sat�
urated ferromagnetic or spiral magnetic states.

It is known that the van Hove singularity of the
electron spectrum (points k = (0, π), (π, 0)) plays an
important role in the formation of magnetism. At
U = 0, these points lie on the Fermi surface at a certain
concentration nvH. At t ' = 0, we have nvH = 1 (half�fill�
ing), which singles out this case as a special one from
the point of view of the magnetic properties. The devi�
ation of t ' from zero leads to the violation of the elec�
tron–hole symmetry and to the asymmetry of the
phase diagram of the ground state.

Figure 2 presents the results obtained for t ' = 0.2t at
n < 1 along with the Hartree–Fock approximation
results. In comparison with the case t ' = 0, the diago�
nal phase shifts to the region of much smaller U/t val�
ues and the parallel phase becomes more extended
over the concentration parameter. The physical origin

1 n–

Fig. 1. Magnetic phase diagram of the ground state of the
Hubbard model for t ' = 0 at n < 1 according to the (a) slave�
boson method and (b) Hartree–Fock approximation. The
phase diagram for the case n > 1 due to the electron–hole
symmetry (n  2 – n) coincides with the given one. The
spiral phases are denoted according to the form of their
wave vector. Filling shows the regions of the phase separa�
tion. Bold lines denote the second�order phase transitions.
Solid lines correspond to the boundaries between the
regions of the homogeneous phase and the phase separa�
tion. Dashed lines show the regions of the separation of
different phases.

Fig. 2. Magnetic phase diagram at t '/t = 0.2 for n < 1
according to the (a) slave�boson method and (b) Hartree–
Fock approximation. Dashed lines denote the first�order
phase transitions in the case where the region of the phase
separation is narrow. The notation is analogous to that in
Fig. 1.
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is the detachment of the van Hove singularity (n =
nvH ≈ 0.83 at t ' = 0.2t) and half�filling (n = 1, one of the
magnetic subbands is completely filled) at t ≠ 0 giving
their own tendencies to the magnetic ordering. It is
seen that the correlation effects lead only to the quan�
titative renormalization of the phase boundaries.

In the case of n > 1 (Fig. 3), the correlation effects
are more significant: all homogeneous spiral states dis�
appear except for a narrow region of the parallel phase.
Such suppression of magnetism is explained by the
fact that the only feature in this concentration interval
is n = 1. Far from half�filling, any spiral magnetism is
impossible and the saturated ferromagnetism is unfa�
vorable in comparison with the paramagnetic phase at
any large U value, when correlations are taken into
account. Thus, the electron–hole asymmetry is
enhanced considerably in comparison with the Har�
tree–Fock approximation, when correlations are
taken into account.

These results are in agreement with the experimen�
tal data on the magnetic structure of the hole�doped
compound La2 – pSrpCuO4, which has a close value of
the t '/t parameter [29]. The neutron diffraction exper�
iments showed that both the commensurate and
incommensurate antiferromagnetic states at low hole
doping (p < 0.02) are found in the La2 – pSrpCuO4 com�
pound [30]. At p ~ 0.02, the system moves to the
homogeneous incommensurate magnetic state with
the wave vector Q = (π – �, π – �) (diagonal phase)
[18], where � increases approximately proportional to
the doping level p [31]. At 0.05 < p < 0.06, the diagonal
order coexists with the parallel incommensurate order
with the wave vector Q = (π – �, π). At p > 0.06, the
transition to the parallel phase takes place [18]. The

existence of the phase separation near half�filling is in
agreement with the fact that the chemical potential is
almost independent of doping at 0 < p < 0.1 [32].

The sequence of phase transitions AFM 
{AFM + (Q, Q)}  (Q, Q)  {(Q, Q) + (Q, π)} 
(Q, π) [18] observed in the experiment with increasing
doping coincides with an analogous sequence in the
diagram at U � 6.25t (see Fig. 2). It is seen in the same
figure that this sequence in the Hartree–Fock approx�
imation takes place at U � 4t. Thus, the results of the
slave�boson method are in agreement with the experi�
mental data at the larger Coulomb repulsion parame�
ters U/t for La2 – pSrpCuO4. However, it is noteworthy
that the experimental width of the region of the phase
separation near half�filling between the antiferromag�
netic and (Q, π) phases is about 0.02 and the transition
from (Q, Q) to (Q, π) state takes place at doping of
0.05–0.06. In our calculations, the concentration
interval of the separation region AFM + (Q, π) is about
0.1, which exceeds the actual value. The calculations
showed that this value has a tendency to decrease with
increasing t '/t parameter, but this decrease is insuffi�
cient to meet the experiment.

The incommensurate magnetic structure with the
wave vector Q = (π – �, π) at p > 0.065 was observed in
the neutron scattering experiments in YBa2Cu3O7 – y

(the charge carriers are holes) [33]. At the same time,
for the high�temperature superconducting compound
Nd2 – xCexCuO4, in which the charge carriers are elec�
trons, the homogeneous commensurate antiferromag�
netic ordering is stable up to x = 0.14 [34] in agree�
ment with our results for n > 1 (see Fig. 3).

Figure 4 shows the phase diagram for t ' = 0.45t. In
comparison with the case t ' = 0, here the regions of
stability of the magnetic order at moderate U and n < 1

Fig. 3. Magnetic phase diagram at t '/t = 0.2 for n > 1
according to the (a) slave�boson method and (b) Hartree–
Fock approximation. The notation is analogous to that in
Fig. 1.

Fig. 4. Magnetic phase diagram at t '/t = 0.45. The dash�
dotted line is the phase boundary of the spiral and para�
magnetic phases in the random phase approximation. The
remaining notation is analogous to that in Fig. 2.
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are considerably broadened due to the ferromagnetic
and diagonal phases. The ferromagnetic state, which
was absent at t ' = 0 and moderately large U values,
becomes stable in this case already at small n values
and U > 3t. At n > nvH, the ferromagnetic and diagonal
phases compete and the study of this competition
apparently requires the accurate inclusion of nonlocal
magnetic fluctuations [16, 27].

At n > 1, the physical picture is completely differ�
ent: the parallel phase is displaced by the commensu�
rate antiferromagnetic phase, which remains almost
the only phase in the region n � 1.3. This estimate for
the “critical” carrier density is about the same for dif�
ferent t '/t values at n > 1. Interestingly, with the unlim�
ited increase in U, the concentration interval of the
stability of the magnetic states is almost independent
of U: nc(U = ∞) ≈ 1.25.

We also found the critical value  as the solu�
tion of the equation 1/maxqχq(U, ω = 0) = 0, where
the inhomogeneous susceptibility χq was determined
within the random phase approximation and in the
slave�boson approach [21]. In both cases, Uc values
coincide with the corresponding boundaries of the
second�order transition from the spiral to paramag�
netic phase. At n values close to nvH, the correlation

renormalizations are small, while the ratio /
increases at the deviation of n from nvH and this
increase is faster for smaller t ' values. This is due to the
fact that a considerable fraction of the electron states
at large t '/t values are concentrated near the van Hove
singularity and the band bottom.

Thus, the correlation effects lead to the strong sup�
pression of the regions of the existence of the magnetic
phases. At the same time, the first�order transitions
and the noticeable regions of the phase separation
between the magnetically ordered states remain. The
correlation effects near half�filling only slightly
change the Hartree–Fock results, so at small values
t '/t � 0.2 they do not change the sequences of the
magnetic states with increasing U.

The increase in the t '/t parameter leads to the redis�
tribution of the electron density of states closer to the
band bottom and to the van Hove singularity impor�
tant for the formation of magnetism. In the slave�
boson method, this leads to a much more considerable
variation of the phase diagram than in the Hartree–
Fock approximation: the asymmetry of the magnetic
phases on the phase diagram with respect to the sign of
the charge carriers increases. When the system is far
from half�filling and the Fermi level is far from the van
Hove singularity, the magnetic state cannot be formed
at any U.
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