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1 INTRODUCTION

The conventional formulation of the problem of
machine learning for a class of majority voting�based
decision rules [1] given samples A and B in Rn from two
classes is to find a positive integer k, vectors di ∈ Rn,

thresholds αi ∈ R, and weights w =  ∈  such
that, for a decision rule of the form

(1.1)

for any a ∈ A the condition f(a) = 1 is fulfilled (corre�
spondingly, for any b ∈ B, the condition f(b) = 0 is ful�
filled), where

(1.2)

is the Heaviside function and (⋅, ⋅) denotes the scalar
product in Rn. Then decision rule (1.1) is called correct
over sets A and B. It is easy to see that rule f gives 1 for
vector x ∈ Rn if

(1.3)

and yields 0 when the reverse strict inequality holds,
where li(⋅) = (di, ⋅) – αi, i = 1, …, k.

The notion of separating committee of hyperplanes
(linear functions) is closely related to correct decision
rules (1.1).

1 The article was translated by the authors.
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Definition 1.1 [1]. A set K = , of pairs
is called a committee of linear functions which discrim�
inates between (separates) two subsets A and B of Rn if
inequalities

(1.4)

are satisfied where wi ∈ Z+, i = 1, …, k, q = 

denotes a set of positive integers. In addition, q is
called the number of elements of set K. Functions li of
the committee are called elements of K, whereas wi are
called the weights (or multiplicities) of these elements.

The separating committee concept represents a
simple generalization for a hyperplane that discrimi�
nates between two subsets. Furthermore, a committee

K =  of linear functions corresponds to a
specific correct decision rule (1.1) such that the fol�
lowing inequalities hold true:

(1.5)

It is obvious that (1.5) is stronger than the correct�
ness condition.
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Theorem 1.1 [1]. A committee exists that separates
two finite subsets A and B of Rn iff A ∩ B = ∅ where its
number of elements does not exceed .

Corollary [2]. The VC dimension for class of deci�
sion rules (1.1) is infinite.

It is also shown [2] that if k ≤ k0, then the VC
dimension is O(k0n), where k0 denotes some fixed pos�
itive integer.

The following problem is investigated.

Problem. What are the conditions for possibly infi�
nite subsets A and B of Rn under which a committee
exists which discriminates between them?

Theorem 1.2 [3]. A committee exists separating two
closed subsets A and B of Rn iff A ∩ B = ∅ and at least
one of these subsets has a finite upper bound; as well one
of the two has a finite lower bound.

Below, a separating (s, t, q)�committee concept is
introduced (Def. 2.1), which covers separating com�
mittee notion (Def. 1.1) as a special case. Based on it
a new technique is applied to give proofs for sufficient
conditions under which two closed subsets A and B of
Rn with A ∩ B = ∅ are separable by a committee.

DEFINITION OF SEPARATING
(s, t, q)�COMMITTEE

Let A and B be subsets of Rn, s and t be positive inte�
gers with s > t.

Definition 2.1 A set K =  of pairs is

called an (s, t, q)�committee of linear functions that

A B∪

li wi,( ){ }i 1=
k

discriminates between two subsets A and B if the fol�
lowing inequalities hold true:

(2.1)

where li(⋅) = (di, ⋅) – αi, di ∈ Rn, αi ∈ R, wi ∈ Z+,

i = 1, …, k, q = .

An example of a (4,3,5)�committee is shown in the
figure. Obviously, the (s, t, q)�committee defines some
piecewise�linear surface which separates subsets A
and B. It also corresponds to a decision rule of the form

(2.2)

which is correct over sets A and B. It is easy to show that
the (q, q – 1, q)�committee outlines the surface of a
convex polyhedron M containing set A inside and set B
outside Rn/M. Furthermore, we obviously find that the
(s, t, q)�committee becomes a committee for s > q/2 > t.

Suppose that set A can be separated by a (t + 1, t,
q)�committee from set B. Conversely, if B is separable
from A by a surface of the same shape, then a (q – t,
q – 1 – t, q)�committee exists that separates A and B.

The notions of a committee and the (s, t, q)�com�
mittee are closely related. Consider a set K =

 of pairs. Let us find out what the condi�
tions are under which this set can be augmented to
some committee that separates A and B by adding one
of two functions lT(⋅) ≡ (0, ⋅) + 1 or lF(⋅) ≡ (0, ⋅) – 1 with
some weight where 0 denotes zero vector in Rn.

Theorem 2.1. The set of pairs K =  can
be transformed to a committee that discriminates
between sets A and B in Rn by adding one of two functions
lT(⋅) ≡ (0, ⋅) + 1 or lF(⋅) ≡ (0, ⋅) – 1 iff K is a (s, t, q)�
committee that separates A and B for some positive inte�
gers s and t with s > t.

Proof. In the case when set K transforms to a com�

mittee  by adding pair (lT, wk + 1), we have the follow�
ing inequalities according to Def. 1.1:

(2.3)
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Figure. (4,3,5)–committee of five functions which dis�
criminates between gray and black points. Its functions are
depicted by their level sets l(x) > 0. At every gray point at
least four functions are positive, whereas for each black
point at most three functions are nonnegative.
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where p = . It can be assumed that p is odd

(a committee whose number of elements is even can
be reduced to a committee by decrementing weight wi

of one of its functions li). Set s =  – wk + 1 and
t =  – wk + 1, where  and  denote round�
ing to the closest integer, which is less than or more
than real x, respectively. In view of wi ∈ Z+ for every
i = 1, …, k + 1 and keeping in mind that p is odd, we
obtain

(2.4)

If K transforms to a committee  by adding pair
(lF, wk + 1), the same path can be followed by setting
s =  and t = .

Conversely, let q = . When t < q/2 < s, set K is

a committee that separates A and B. Therefore, adding
any two functions lT or lF with wk + 1 = 0 gives the com�

mittee . Now assume that q/2 ∉ (t, s). Consider the
case q = 2h for some positive integer h. If t ≥ h, we add
the function lF to K with wk + 1 = 2(t – h) + 1. For the

set  thus obtained we have  = 2t + 1. In view of

s > t and the inequalities

(2.5)

we find that  is a committee. However, if h > t then
h ≥ s. In this case let us add function lT to K with
wk + 1 = 2(h – s) + 1. For the resulting set of pairs we

have  = 2(2h – s) + 1 and

(2.6)
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where summation is performed over all i from 1 to
k + 1.

Now consider the case q = 2h – 1. When h > s, we add
function lT to K with wk + 1 = 2(h – s). For the set of pairs

thus augmented we find that  = 2(2h – s) – 1 and

(2.7)

In the case h ≤ s, the inequality h ≤ t holds. Let us add
function lF to K with wk + 1 = 2(t – h + 1) and follow the

same path. We have  = 2t + 1 and

(2.8)

The theorem is proved.

SUFFICIENT CONDITIONS FOR EXISTENCE 
OF A COMMITTEE THAT DISCRIMINATES 
BETWEEN TWO INFINITE SUBSETS OF Rn

Let us introduce some auxiliary constructions and
notations. At first we describe union operation for two
finite sets of pairs. Let K and L be two finite sets of
pairs whose elements (first components of pairs, see
Def. 1.1) belong to an arbitrary set X. Let us define the
set of pairs K ' in the following way. Each element of K
but not of L is added to K ' with the weight this element
has for set K. Analogously, each element of L not
belonging to K is added to K ' with the same multiplic�
ity as the one for L. Finally, each element which
belongs to both K and L with weights p1 and p2, respec�
tively, is included in K ' with multiplicity p1 + p2.
Denote K ∪ L =: K '. For three sets K1, K2, and K3 set
K1 ∪ K2 ∪ K3 := (K1 ∪ K2) ∪ K3. The union of four and
more sets is defined in the same way.

In the sequel intM denotes the interior of set M,
whereas set clM gives closure of M and bdM is its bor�
der. For simplicity we identify linear function l with its
level set (half�space) P = {x ∈ Rn: l(x) > 0}, whereas
separating committee of linear functions is the same as
the set of pairs of the form (half�space, its weight).
If l(x) ≡ α ∈ R, the corresponding half�space P is the
empty set for α ≤ 0 and coincides with the whole space
for α > 0. Also we say that open half�space P votes for
point a ∈ A if a ∈ P and votes for b ∈ B if b ∉ clP.
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If P = ∅, then P votes for each point of B (for set B)
and against set A. In the opposite case, P = Rn half�
space P votes for set A and against set B. It is easy to see

that set of pairs  is a committee that sepa�
rates A and B iff for each point of A ∪ B a majority of
half�spaces votes for in the corresponding set of pairs

, where Pi = {x ∈ Rn: li(x) > 0}, i =
1, …, k.

The following theorem generalizes theorem 1.1 in
the case of infinite sets A and B.

Theorem 3.1. If A and B are closed subsets of Rn with
A ∩ B = ∅ such that one of them is bounded and has
finite number of limiting points, then a committee exists
that separates A and B.

Proof. Let A and B be two closed subsets of Rn with
A ∩ B = ∅ such that A is bounded set having finite
number of limiting points. It is easy to see that A is
countable or finite. As A and B are closed sets, A is
bounded and A ∩ B = ∅, there exists such ρ > 0 that
any ball of radius ρ centered at arbitrary point of A
does not contain points of B.

Let us give the following procedure. Let A ' be an
arbitrary finite subset of A and a ∈ A ' be some vertex of
the convex hull convA '. Consider an arbitrary n�
dimensional simplex S containing convex hull convA '
which has point a as one of its vertices. Get the (n – 1)�
dimensional face of S which is opposite to a and con�
sider hyperplane H parallel to that face which cuts off
an n�dimensional simplex from S that is contained in
the ball centered at a of radius ρ.

Simplex S is the intersection of some set of n + 1
closed half�spaces. Let P be the half�space containing
point a and whose border is hyperplane H. Let us shift
each of these n + 1 half�spaces bounding S in parallel
and denote by T the simplex thus obtained. We per�
form shifting in such a way that S ⊂ intT and A ∩
bdT = ∅. This last condition holds because A is count�
able or finite. Moreover, we shift the half�space P in
parallel in such a way that the border of the shifted
half�space starts to nip some n�dimensional simplex
T1 from simplex T with a ∈ intT1 and T1 ∩ B = ∅.

Simplices T1 and T have a common vertex, which
we denote by c1. Let c2, …, cn + 1 be the other vertices of
T. For each s = 2, …, n + 1 consider the cone Ks
bounded by n different hyperplanes each of which
passes through some (n – 1)�dimensional face of T
containing point cs with Ks ∩ T = {cs}. Get the (n – 1)�
dimensional face of T opposite to cs. Using a hyper�
plane parallel to that face, cut off some simplex Ts
from simplex T such that Ts ∩ A = ∅. Such a construc�
tion is possible in view of cs ∉ A. The procedure is fin�
ished.

This procedure is used for set A ' from which ele�
ments are deleted consecutively. In three stages we get
a committee that separates A and B.

STAGE 1. Let A0 be the set of limiting points of
bounded set A which is finite due to the theorem. Set

li wi,( ){ }i 1=
k

Pi wi,( ){ }i 1=
k

t0 =  and A ' = A0. Consider a system of simplices T,
T1, …, Tn + 1 provided by the procedure applied for set
A ' and for an arbitrary vertex a1 of convex hull convA '.

Let V1 := T and  := Ts, s = 1, …, n + 1. Setting A ' :=
A '\{a1} we apply the procedure for set A ' and for an
arbitrary vertex a2 of convex hull convA '. As a result we
have another system T, T1, …, Tn + 1 of simplices. Let

V2 := T and  := Ts, s = 1, …, n + 1 set A' := A'\{a2}.
We continue repeating the procedure until set A '
becomes empty. Obviously, sequence a1, …,  thus

obtained coincides with set A0. For each r = 1, …, t0

consider an open neighborhood U(ar) of point ar

which is contained in  ∩ Vi as a subset. Due to

the boundedness of A, the set A1 = A\  is

finite.
In the case A0 = ∅, we set A ' := A1 = A and p := 1

going to stage 2. Otherwise, for A0 ≠ ∅ we apply the
following simplex generation process. Set p : = 1 and
A ' = A1 ∪ verV1, where verV1 is the vertex set for sim�
plex V1. When convex hull convA ' does not coincide
with V1, some point a ∈ A1 will be a vertex of the hull.
Obtain simplices T, T1, …, Tn + 1 applying the proce�

dure for the set A ' and the point a. Set  := a, T1 :=

T,  := Ts, where s = 1, …, n + 1. Then set A ' :=
A '\{a} and p := 2. If the convex hull convA ' still does
not equal to the simplex V1 consider an arbitrary point
a ∈ A1 being a vertex of the hull. By applying the pro�
cedure for the set A ' and the point a we get another
simplex series T, T1, …, Tn + 1. Again set  := a, T2 :=

T,  := Ts, s = 1, …, n + 1. Let A ' := A '\{a} and p := 3.

While convA ' ≠ V1 we continue going in the same way.

Due to the fact that A1\V1 is finite, we finally arrive

at the case convA ' = V1 for some p = p1. Set  := a1,

 := V1,  := , where s = 1, …, n + 1. Let p :=
p1 + 1. We now follow the same way of simplex gener�
ation for r = 2. Specifically, let A ' := (A '\verVr – 1) ∪
verVr. If the convex hull convA ' does not coincide with
Vr, let us get a vertex a of the hull that is contained in
A1. By applying the procedure for set A ' and point a, we
obtain a system T, T1, …, Tn + 1 of simplices. Then we

set  := a, Tp := T,  := Ts, s = 1, …, n + 1 and let

A ' := A '\{a} and p := p + 1. While convA' ≠ Vr we con�
tinue repeating this process. Again we come to the case
where convA' = Vr for some p = pr. Then let  := ar,

 := Vr,  := , s = 1, …, n + 1 and set p := pr + 1.
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The whole process works for r = 3, 4, …, t0. At the end

we delete from A ' all vertices of simplex . It is easy

to see that A ' = A1 ∩  Vr.

STAGE 2. In the case A ' ≠ ∅ we apply the proce�
dure for set A ' and for an arbitrary vertex of its convex
hull. Having provided the system of simplices T,

T1, …, Tn + 1, we set  := a, Tp := T,  := Ts, s =
1, …, n + 1. Also let A ' := A '\{a} and p := p + 1. Finally,
while set A ' is nonempty we continue doing the same.

STAGE 3. At the end of stage 2, we have two fami�

lies {Tk} and { } of simplices where s = 1, …, n + 1

and k = 1, …, t, t =  + . For each k, 1 ≤ k ≤ t,

define a series of open half�spaces  by the

conditions intTk =  int  =  and

int =  ∩ , where 2 ≤ s ≤ n + 1 and

 is the open half�space distinct from , which has

a common boundary with . Equip set Lk of pairs
with these half�spaces taken with some multiplicities.

Each of the half�spaces  will have weight

, whereas each of the half�spaces

, the weight . Let K0 = ,

where P0 = {x ∈ Rn: (0, x) > 1} and w0 = n2t. Set K =
K0 ∪ L1 ∪ … ∪ Lt, where symbol ∪ denotes union
operation. Stage 3 is finished.

Let us show that K is a committee. Consider the
case where n ≠ 1. Since the number of elements for the

set Lk is equal to (n + 1)2 , k = 1, …, t, the num�
ber of elements for K is equal to

(3.1)

Let us count the number of elements of Lk, k = 1, …, t
which vote for some a ∈ A. Due to the procedure, two
situations are possible for each point a ∈ A: a is in the
interior of simplex Tk; otherwise it lies in its open exte�

rior. If a ∈ intTk, the half�spaces  vote for

point a by their multiplicities , totaling

 votes. Moreover, if a ∈ int , half�

space  votes for a by its weight  and each of

the half�spaces , by their multiplicities

, which amounts to ((n + 1)n + 1)
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votes. Two cases are possible for a ∉ Tk. The first case

takes place when a ∈  ∩  for some i1 and i2, 1 ≤
i1, i2 ≤ n + 1. The second case is where a ∈

cl , for some i0, 1 ≤ i0 ≤ n + 1. If the first case

holds, there are at least  votes for point a in

set Lk. In the second case, in view of  ∩ A = ∅ for

every s = 2, …, n + 1 and taking inclusion  ⊃

cl  into account, we find that half�space 

votes for point a a by its weight , while half�

space  does the same by its multiplicity ,

which totals (n + 1)  votes in Lk.
Let us count the number of elements of K which

vote for some point a ∈ A. Obviously, the finite
sequence , …,  of distinct points that forms at
stages 1 and 2 coincides with set A0 ∪ A1. In view of

equality A = A1 ∪ , we have either a =

 for some p, 1 ≤ p ≤ t or a ∈ U(a0), where a0 ∈ A0. Let
us count the number of votes for the first case. Due to

the generation procedure for simplices {Tk} and { },

point a lies inside the intersection  ∩ Tk. Con�

sequently, for p ≠ 1 and p ≠ t, the number of elements
of K which vote for a is greater than or equal to

(3.2)

For p = 1, this number is greater than or equal to

(3.3)

Analogously, for p = t the number is at least as great as

(3.4)
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Now consider the case a ∈ U(a0), where a0 is some

point of set A0. Since a0 =  for some p, 1 ≤ p ≤ t, point

a lies inside intersection  ∩ Tk by the con�

struction of neighborhood U(a0) and series of sim�

plices {Tk} and { }. As a consequence, there are at

least n2t +  votes in K for point a.

For every point b ∈ B, let us now count the number
of elements of Lk, k = 1, …, t, which vote for b. If

b ∈ Tk, we have b ∉  according to the construction

of simplex . For this point, each of the half�spaces

 votes by its weight , which overall

amounts to  votes. In the case of b ∉ Tk,

some half�space , 1 ≤ i0 ≤ n + 1, votes for b by its mul�

tiplicity  and so does half�space  by

its weight , whose boundary is parallel to that

for . It sums up to give at least (n + 1)  votes

for b in Lk. Due to the fact that P0 votes for the B by its
multiplicity n2t, the number of elements of K which
vote for point b is at least as much as (n + 1)(n2(t – 1) +

… + 1) + n2t = n2t + (n2t – 1), so K is a committee.

For n = 1 it is easy to count that the number of ele�
ments of K is equal to 4t + 1, while the number of ele�
ments voting for an arbitrary point of A ∪ B is greater
than or equal to 2t + 1. The theorem is proved.

Remark. Using more general notion of an (s, t, q)�
committee yields a simpler proof for the case where set
A is finite.

The boundedness condition imposed on one of two
sets being separated is essential.

Example. There is no committee which separates

sets A =  and B = .

In contrast, if such a committee exists, there is a
linear function in K having a positive weight that takes
positive value for 2k and gives a negative value for 2k –
1, where k is an arbitrary positive integer. Due to the
fact that these functions are different for distinct k and
using the finiteness of the committee, we find that a
committee that separates these two sets does not exist.

Let us give the classical result on the external
approximation of solid convex compact by a convex

ap'

T1
p

1 k<p≤

∩

Ts
k

1
n 1–
��������� n2t 1–( )

T1
k

T1
k

Pi
k{ }i n 2+=

2n 2+
n2 t k–( )

n 1+( )n2 t k–( )

Pi0

k

n n2 t k–( )⋅ Pn 1 i0+ +
k

n2 t k–( )

Pi0

k n2 t k–( )

1
n 1–
���������

2k{ }k 1=
∞ 2k 1–{ }k 1=

∞

polyhedron to arbitrary accuracy (see, e.g., [5]). We
call

(3.5)

the Hausdorff metric between two convex compact
subsets C1 and C2 of Rn having a nonempty interior
(which are called convex bodies), where ρ(x, C) :=
inf{ : y ∈ C} and  denotes the Euclidean norm.
For a given convex body C, we consider convex hulls of
finite sets with at most m faces (facets having the max�
imal dimension), which contain set C and touch its
boundary where m is given positive integer. We denote

by (C) the set of all convex hulls of this form and set

δ(C, (C)) = inf{δ(C, D): D ∈ (C)}.

Theorem 3.2 [5]. The following equality holds true:

(C, (C)) = 0.

The following theorem is closely related to the clas�
sical result on the separability of two convex sets by a
hyperplane.

Theorem 3.3. If A and B are closed subsets of Rn with
an empty intersection where A is a convex body, then A
and B are separable by a committee.

Proof. Since A is compact, B is closed and A ∩ B =
∅ we have

. (3.6)

Set A(ε) = (ε) is a compact body, where Ox(ε)

is an n�dimensional ball centered at point x ∈ Rn of
radius ε. Set A0 = A(ε0/4). Then ρ(A0, B) > ε0/2.
Choose a positive integer m large enough to have δ(A0,

(A0)) < ε0/4. Therefore, there exists M ∈ (A0)
such that A0 ⊆ M and M ∩ B = ∅ so that A ⊆ intM.
Because M coincides with the intersection of a finite
number (say, t ≤ m) of closed half�spaces, there exists a
(t, t – 1, t)�committee that separates A and B. Then,
according to theorem 2.1, there exists a committee
that separates them. The theorem is proved.

CONCLUSIONS

A new concept of the (s, t, q)�committee decision
rule is introduced which includes the committee deci�
sion rule as a special case. A series of sufficient condi�
tions for two subsets A and B of Rn is considered under
which there exists a correct decision rule where A and
B are not finite in general. These results generalize
Vl.D.Mazurov’s famous criterion on the separability
of two finite subsets of Rn having an empty intersec�
tion.

δ C1 C2,( ) max sup ρ x C2,( ): x C1∈{ },[=

sup ρ x C1,( ): x2 C2∈{ } ]

x y– ⋅

Pm
c

Pm
c Pm

c

δ
m ∞→
lim Pm

c

ρ A B,( ):=inf x y– : x A∈ y, B∈{ } ε0 0>=

Ox
x A∈

∪

Pm
c Pm

c
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