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Abstract

In this paper we consider an approach to solve the Hamilton path
problem for grid graphs. This approach is based on an explicit reduction
from the problem to the satisfiability problem.
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Gridworlds are extensively used for design of experiments as models of
real world. In particular, grid graphs are popular testbeds for different hard
problems. In particular, grid graphs used for investigation of robotic planning
problems (see e.g. [1]). For instance, grid graph can be considered as a map
of some indoor environment. Vacuum cleaning robot needs cover the environ-
ment. The robot must visit each vertex only once to prevent a damage of the
floor. It is clear that we can consider the Hamilton path problem (HP) for
grid graphs as a model for this robotic problem. In this paper we consider an
approach to solve HP. Note that HP is NP-complete [2]. Encoding different
hard problems as instances of SAT has caused considerable interest (see e.g.
[3] – [15]). We consider an explicit reduction from HP to the satisfiability
problem.
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Let G = (V, E) be a grid graph. Clearly, we can consider G as a part of
two-dimensional integer grid. We assume that V = {G(i1, j1), . . . , G(in, jn)},
(G(i, j), G(s, t)) ∈ E ⇔ |i − s| + |j − t| = 1 ∧ {G(i, j), G(s, t)} ⊆ V . Also, we
can assume that 1 ≤ ik ≤ p, 1 ≤ jk ≤ q, for any 1 ≤ k ≤ n. Let

ϕ[1] = ∧1≤k≤n ∨1≤i≤p ∨1≤j≤qg[k, i, j],

ϕ[2] = ∧1≤k≤n,

1≤i[1]≤p,

1≤i[2]≤p,

1≤j[1]≤q,

1≤j[2]≤q,

|i[1]−i[2]|+|j [1]−j[2]|�=0

(¬g[k, i[1], j[1]] ∨ ¬g[k, i[2], j[2]]),

ϕ[3] = ∧1≤k≤n,

1≤i≤p,

1≤j≤q,

G(i,j)/∈E

¬g[k, i, j],

ϕ[4] = ∧1≤k≤n−1,

1≤i[1]≤p,

1≤i[2]≤p,

1≤j[1]≤q,

1≤j[2]≤q,

|i[1]−i[2]|+|j [1]−j[2]|�=1

(¬g[k, i[1], j[1]] ∨ ¬g[k + 1, i[2], j[2]]),

ξ = ∧4
i=1ϕ[i].

Theorem. There is a Hamilton path in G if and only if ξ is satisfiable.
Proof. Let ξ = 1. By definition, in this case, ϕ[i] = 1, for all 1 ≤ i ≤ 4.

Since ϕ[1] = 1, it is clear that for any 1 ≤ k ≤ n, there are i and j such that 1 ≤
i ≤ p, 1 ≤ j ≤ q, and g[k, i, j] = 1. In view of ϕ[2] = 1, it is easy to check that
for any 1 ≤ k ≤ n, there is only one pair (i, j) ∈ {1, 2, . . . , p}×{1, 2, . . . , q} such
that g[k, i, j] = 1. Therefore, we can assume that for any 1 ≤ k ≤ n, g[k, i, j] =
1 if and only if (i, j) = (a[k], b[k]) where {(a[1], b[1]), (a[2], b[2]), . . . , (a[n], b[n])}
is some fixed set. Since ϕ[3] = 1, it is clear that for any 1 ≤ k ≤ n, if
g[k, i, j] = 1, then G(i, j) ∈ V . In view of ϕ[4] = 1, it is easy to see that for
all 1 ≤ k ≤ n − 1, 1 ≤ i[1] ≤ p, 1 ≤ i[2] ≤ p, 1 ≤ j[1] ≤ q, 1 ≤ j[2] ≤ q,
if g[k, i[1], j[1]] = g[k + 1, i[2], j[2]] = 1, then |i[1] − i[2]| + |j[1] − j[2]| = 1.
Therefore, if g[k, i[1], j[1]] = g[k + 1, i[2], j[2]] = 1, then (G(a[k], b[k]), G(a[k +
1], b[k + 1])) ∈ E. So, G(a[1], b[1]), G(a[2], b[2]), . . . , G(a[n], b[n]) is a Hamilton
path in G. Now, let G(a[1], b[1]), G(a[2], b[2]), . . . , G(a[n], b[n]) be a Hamilton
path in G. Let g[k, i, j] = 1 if and only if i = a[k], j = b[k]. It is easy to check
that ξ = 1.

It is clear that ξ is a CNF. So, ξ gives us an explicit reduction from HP
to SAT. Now, using standard transformations (see e.g. [16]) we can obtain an
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time N1 N2 N3 R1 R2 R3

average 3.1 min 15.2 min 1.62 h 19 sec 9.4 min 57 min
maximum 41 min 2.7 h 11.6 h 22 min 2.1 h 9.36 h
best 12 sec 43 sec 32.3 min 7 sec 28 sec 19.8 min

Table 1: Experimental results for different reductions to 3SAT where N1 is
ζ for natural instances, N2 is γ[1] from [18] for natural instances, N3 is the
reduction from [19] for natural instances, R1 is ζ for robotic instances, R2 is
γ[1] from [18] for robotic instances, R3 is the reduction from [19] for robotic
instances.

explicit transformation ξ into ζ such that ξ ⇔ ζ and ζ is a 3-CNF. Clearly, ζ
gives us an explicit reduction from HP to 3SAT.

We consider our genetic algorithm which was proposed in [17]. We have
used heterogeneous cluster for our computational experiments. Each test was
runned on a cluster of at least 100 nodes. We have created a generator of
natural instances for HP. Also, we have created a generator of instances for
HP which allow us to construct a plan for a vacuum cleaning robot. Selected
experimental results are given in Table 1.
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