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Abstract 
 

An algorithm for intersection a line and a convex hull of points cloud is 
presented. The algorithm doesn’t require the convex hull construction. The points 
cloud can be arbitrary and not sorted, no topology, face list or edge list is known. 
The algorithm uses only vertices coordinates. Standard transformation of 
coordinates is performed and the points cloud is bisected by two perpendicular 
planes. Yielded 1D points set lies at the line. Bounds of the set are intersection 
points of the points cloud and the line. The algorithm was compared against the 
obvious algorithm which uses intersection of the line and all possible faces (sets 
of three points). Presented algorithm is much faster than the obvious one. 
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1 Introduction 
 

Intersection of lines, rays and segments against various geometrical objects 
is widely used in radiative heat transfer, computational geometry and computer  
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graphics. In radiative heat transfer such objects are metal bars, furnace walls and 
mechanical assemblies. In computer graphics such objects are buildings, interior 
objects and animated characters [6]. 

In usual applications static geometrical models are used which are 
represented by planar (triangle, quadrilateral, polygon) or volumetric (tetrahedron, 
hexahedron, cube, sphere) objects. For such models the topology – face list, edge 
list or a graph – is already known or can be determined once before all operations 
with the model. Here, face list is a table containing vertices numbers for each 
face, edge list is a table containing vertices numbers for each edge. The topology 
can be determined by construction of the convex hull. There are many algorithms 
of convex hull construction in 2D, 3D and kD: Graham’s method, «divide and 
conquer» method, «gift wrapping» and others – see classic book [5]. But really 
determining the topology is often not needed because it consumes too much time 
and because it is often used only as a preprocessing step before intersection tests. 
Such case can be occurred in animation and visualization of non rigid objects. For 
such objects their topology can’t be determined beforehand, so handling of non 
rigid objects becomes more and more actual problem [11]. 

This paper presents an algorithm of intersection a line and a convex hull of 
points cloud without the convex hull construction. The paper is organized as 
following: 

1) Known algorithms of intersection of a line and convex polyhedron are 
described; 

2) Obvious approach for line – convex hull intersection is given. The 
algorithm intersects a line against all combinations of 3 points assuming 
each 3 points may be a face of the convex hull (face representation); 

3) A new approach for line – convex hull intersection is given. In contrast 
to face representation, the algorithm assumes that each 2 points may be 
an edge of the convex hull (edge representation); 

4) Performance comparison of the algorithms 2 and 3. 
 
 
2 Known algorithms of line – convex polyhedron intersection 
 
2.1 Early algorithms with O(N) complexity 
 

There are two general algorithms with O(N) complexity: direct 
computational algorithm and the Cyrus-Beck algorithm. Both of them are very 
popular up to date. 

The direct computational algorithm [2] performs direct line – triangle 
intersection for each triangular face of the given polyhedron while two 
intersections are not found. This algorithm is well known and very useful. 

The algorithm uses point coordinates O at the line, the direction vector D, a 
list of Nv polyhedron vertices coordinates Pi, the number of vertices Nv, and the 
face list as input data. The outputs are t1,t2, and the intersection points Point1 and 
Point2. 
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The Cyrus-Beck algorithm [1] uses the fact that a convex polyhedron can be 

understood as the intersection of halfspaces. Boundaries of these halfspaces are 
formed by planes in which faces of the polyhedron lie. Suppose we have a convex 
polyhedron and a line with some parametrization. Searching for the intersection of 
these geometrical objects, we can divide the bounding planes of the polyhedron 
into two groups according to the orientation of their normal vectors. Among the 
planes oriented towards the observer, we search for the point of intersection with 
the maximal parameter value tl. Among planes of the other group, the minimal 
parameter value t2 is found. If tl > t2, the intersection of the polyhedron with the 
given line does not exist. If tl ≤ t2, we compute the points of intersection [1]. This 
process is illustrated in fig. 1 for 2D case. 

The CB algorithm uses point coordinates O at the line, the direction vector 
D, faces normals Ni: i=1…N, a list of di such that di = -Ni·Pi, and the number of 
faces N as input data. The outputs are t1,t2, and the intersection points Point1 and 
Point2. Each face is presented by a halfspace in this algorithm, so, the Cyrus-Beck 
algorithm needs the face list.  
 

 
 

FIg. 1 Finding intervals along parameter t, where line intersects the polyhedron 
given by facets f1-f5. Line L1 doesn’t intersect the polyhedron because 

max(t1)>min(t2). Line L2 intersects the polyhedron because max(t1)<min(t2) 
 
2.2 Plane tested algorithms 
 

The main idea to accelerate two early algorithms is to reject polyhedron 
faces before the main computing. The one of possible ways is to test line – 
bounding volume intersection first. However, this strategy is applied usually to all 
geometry but not to individual polyhedron faces.  
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Another idea was proposed by V. Skala in [7] for triangular faces. A line L1 

can be defined as an intersection of two nonparallel planes p1 and p2. If the line L1 
intersects the given triangle then planes p1 and p2 intersect the given triangle, too, 
but if planes p1 and p2 intersect the triangle then the line can intersect (line L1 and 
planes p1 and p2) or miss the triangle (line L2 and planes p3 and p4 ), see fig.2. 
Then we can test each triangle of the given polyhedron against p1 and p2 planes 
before detailed line – triangle or line – halfspace intersection computation. If both 
planes intersect the given triangle (facet) then use detailed intersection test. The 
intersection of the given plane pi and the triangle exists if and only if two vertices 
xj  and xk of the triangle exist so that  ( ) ( ))()( kiji xFsignxFsign ≠ , where 

0=iF  is an equation for the i-th plane pi, i=1,2. 
 
This test can be applying with direct computational algorithm or with 

Cyrus-Beck algorithm and computing time may be decreased 2-4 times for 100 
polyhedron faces or 34 – 6.1 times for 1000 polyhedron faces [2]. 

 
 
 
 
 

 
 

 

Fig. 2 Usage of two planes for line definition 

 
 

The rejection test allows one to determine an edge intersected by planes p1 
or p2 and next triangle shared by this edge. Thus we can test not all triangles 
against plains p1 and p2, but only ring of triangles which intersected by plane p1. 
By following from one triangle to next triangle with common edge (see fig. 3) we 
can test only )( NO  triangles. This algorithm described in details in [10]. 
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Fig. 3 Testing sequence of triangles with common edge 
 
 
 
2.3 Dual space algorithms 
 

A line in E2 can be described by an equation 0=++ cbyax  and rewritten 
as qkxy += , if 1≤k , 0≠b or pmyx += ,  if 1<m , 0≠a . 

It means, that the line L in E2 can be represented using an asymmetrical 
model of dual space [3] representation as a point  { } )(,)( 2EDqkLD ∈=  or 

{ } )(,)( 2EDpmLD ∈= . Inversely, a point in E2 can be represented as a line in 
)( 2ED . A point in E3 can be represented as a plane in )( 2ED , and inversely, a 

plane in E3 can be represented as a point in )( 2ED . 
These relations allow us to transform a line – polyhedron intersection test 

into point in polygon test problem. Dual space representation was used for line 
clipping in [2,3,8]. V. Skala proposed a line clipping algorithm with O(1) 
complexity [9]. The line clipping problem is reduced into point in polygon 
problem. And point in polygon problem is solved by constant time search on 
uniform grid. 

This is a great advancement for solving the problem if a large time for 
precomputing is available and the face list is known. Anyway, dual space 
algorithms also use the face list of polyhedron. 
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3. Intersection a line and a convex hull of points cloud without 
convex hull construction 
 
3.1 The obvious algorithm 
 

Potentially any three points may be a face of the convex hull. Obvious 
algorithm intersects a line and each potential face and calculates the value of ti – 
distance from point on the line to the intersection point. Max and min of all ti 
represent two intersections point of the line and the convex hull of points cloud. 
Loop over each set of three points (3 nested loops over point number) leads to 

)( 3NO  complexity. 
This algorithm can be simplified if coordinates of intersection points are not 

needed. In this case the algorithm will be terminated if first line-triangle 
intersection is found. 
 
 
3.2 New algorithm 
 

The main ideas of the algorithm are refusing of face representation of 
convex hull and construction of sections of the points cloud. First section of the 
points cloud by a plane containing the given line is constructed. A new planar 
points cloud is obtained. Intersection points of the line and initial points cloud are 
the same as intersection points of the line and obtained planar points cloud. New 
section of the planar points cloud by the given line is constructed. As a result, a 
1D points set belonging to the line is obtained. Bounds of the 1D point set are the 
intersection points of the line and the convex hull of initial points cloud. 

 
The algorithm: 
 

1. Let us consider the line DtOL ⋅+= . Use transformation of coordinates 
to place O in the origin and DO ⋅+ 0.1  on the z-axis. In practice, x or y 
axis may be used.  

2. Separate points into two groups: 0<yP    - with y coordinate less than 
zero, and 0≥yP  - with y coordinate not less than zero. If one of two groups 
is empty then L doesn’t intersect the points cloud (its convex hull). 

3. Connect each 0<∈ yi Pp  with 0≥∈ yj Pp  and compute 00 ≥< ⋅ yy NN  
points 0=yP , which lie at the polyhedron section by plane y = 0 (fig. 4a). 
The set 0=yP  is non convex, therefore 2D algorithms of line-polygon 
intersection can’t be used.  
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4. Separate points 0=yP  into two groups: 0,0 <= xyP    - with x coordinate less 
than zero, и 0,0 ≥= xyP  - with x coordinate not less than zero (fig. 4b). If one 
of two groups is empty then L doesn’t intersect the points cloud (its 
convex hull). 

5. Connect each 0,0 <=∈ xyi Pp  with 0,0 ≥=∈ xyj Pp  and compute 

0,00,0 ≥=<= ⋅ xyxy NN  points 0, =yxP . They lie at the line L and have only z 
coordinate. 

6. Find min z and max z coordinate of points 0, =yxP . Here z parameter is the 
same as parameter t in algorithms that use parametric line equation 

DtOL ⋅+= . So, we can compute intersection points 
DzOPo ⋅+= minint1 , DzOPo ⋅+= maxint 2 . 

 
Illustration of the algorithm executing for non-convex points set is given in fig. 5. 

O

O+D

O+D

O

 
a      b 

Fig. 4 Illustration of the algorithm: a – steps 2,3; b – steps 4,5; «1-2» - point that 
obtained by connection initial points 1 and 2. 

In the worst case P  is separated by plane y = 0 into equal parts: 
2/00 NNN yy == ≥<  , where  N  - number of points. 0=yP  also is separated by 

plane x = 0 into equal parts: ( ) 82 2
000,00,0 NNNNN yyxyxy === ≥<≥=<= . Total  
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number of connections is  644
0,00,0 NNN xyxy =⋅ ≥=<= . So, the worst case 

complexity of the algorithm is O(N4). In the best case: 10 =<yN , 10 −=≥ NN y  
and 10,0 =<= xyN , 1)1(0,0 −−=≥= NN xy . So, the best case complexity of the 
algorithm is O(N). 

 

 
Fig. 5 Illustration of the algorithm executing for non-convex points set. Initial 

points set – two cubes connected with a parallelepiped.  If each 0<∈ yi Pp  
connect with 0≥∈ yj Pp , then points 1 and 4, 2 and 5, 3 and 6 will be connected 

and the convex hull of points set will be used further. 

 
This algorithm is suitable not only for calculations with non rigid points 

clouds or if face list and edge list are unknown, but also for CAD applications. 
For example, one can manually pick a point subset on the screen without 
connecting the points and send the data to the intersection calculations module, 
while connection the points by hand is time consuming and must not be made by 
man. 

The algorithm can also be simplified if intersection points are not needed. In 
this case steps 1-3 are not changed. Step 4 has to be changed: separate points 

0=yP  into two groups: 0,0 <= xyP    - with x coordinate less than zero, и 0,0 ≥= xyP  - 
with x coordinate not less than zero. If one of two groups is empty then L doesn’t 
intersect the points cloud (its convex hull), otherwise there is an intersection. 
 
 
 
5. Performance comparison 
 

The new algorithm was tested against the obvious one. Algorithms were 
tested for number of points N from 4 to 100. For each N, 100 randomly generated  
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points clouds were used, the clouds were inscribed into the cube that has minimal 
bounds x,y,z = -1 and  maximal bounds x,y,z = +1. For each N and for each 
points cloud, 2·105 lines were used, so 2·107 lines were used for each N. Data sets 
of two points that define a line were generated such that first and second points of 
each line lie on two different cube faces, see fig. 6. Such lines and points 
arrangement is the most right and practical one because in practice line – object 
intersection calculation should be always the second step after intersection the line 
with object’s bounding box.  

Runtimes of algorithms in seconds per million lines are given in table 1. All 
tests were implemented in Fortran on Intel Pentium II 1.83 GHz. The algorithm 
described in [4] was used as the line-triangle intersection test in the obvious 
algorithm. 

 

Fig. 6 Lines and points arrangement. Data sets of two points that define a line are 
located in the bounding box of points cloud 

 
It can be seen that both for calculation of intersection points and for 

intersection test the proposed algorithm is faster than the obvious one for N>4. If 
N=4 then the points cloud is a tetrahedron and its topology is really known: each 
three points form a face of the tetrahedron and each two points form an edge. If 
only intersection test is required, the proposed algorithm is 10 times faster than 
the obvious one if N=18 and it is 34 times faster if N=100. If calculation of 
intersection points is required, performance of the proposed algorithm grows as N 
increases to 16 (5.9 times superiority), but further the performance decreases. 

 

6. Conclusions 
 
The algorithm for intersection a line and a convex hull of points cloud is 
presented. The algorithm doesn’t require of convex hull construction. The 
algorithm is interesting for computer graphics, readiative heat transfer and compu-  
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tational geometry. The main ideas of the algorithm are refusing of face 
representation of convex hull and construction of sections of the points cloud. The 
proposed algorithm was tested against the obvious algorithm which intersects a 
line and each set of three points (each potential face). It is shown that the 
proposed algorithm has superior performance especially for intersection tests. 
Possible  subject  for  future  work  is application of the algorithm for convex 
polyhedron with known edge list and unknown face list. It is expected that the 
algorithm will have O(N) complexity and its performance will be comparable 
with those of known line – convex polyhedron intersection algorithms. 
 
 

Table 1. Algorithms performance 
 

 
 

 

Number of 
points 

Obvious algorithm Proposed algorithm 

Test of 
intersection 

Calculation of 
intersection 

points 

Test of 
intersection 

Calculation of 
intersection 

points 
4 0.36 0.47 0.49 0.56 
5 0.70 1.06 0.61 0.69 
6 1.19 2.07 0.66 0.87 
7 1.86 3.60 0.77 1.12 
8 2.72 5.65 0.87 1.42 
9 3.79 8.25 0.99 1.81 
10 4.98 11.66 1.11 2.31 
11 6.41 15.88 1.24 2.97 
12 8.13 20.99 1.37 3.71 
14 12.14 34.20 1.65 5.83 
16 17.61 51.97 1.97 8.85 
18 23.67 76.40 2.35 13.02 
20 29.97 106.40 2.69 19.32 
26 56.38 238.00 4.00 51.28 
32 94.33 450.90 5.69 113.69 
36 130.09 648.30 6.81 178.23 
40 176.72 893.70 8.22 263.11 
45 228.28 1328.60 10.37 422.89 
50 288.00 1741.30 12.18 699.20 
60 441.53 3057.20 16.92 1381.10 
70 642.91 4855.90 22.26 2516.90 
80 888.42 7263.40 28.92 4343.70 
90 1151.15 10445.50 36.70 6653.20 
100 1524.37 14476.40 44.50 10534.90 
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