

Applied Mathematical Sciences, Vol. 7, 2013, no. 103, 5139 - 5149

HIKARI Ltd, www.m-hikari.com
http://dx.doi.org/10.12988/ams.2013.37372

Intersection of a Line and a Convex

Hull of Points Cloud

R. P. Koptelov

Ural Federal University

19 Mira St., Ekaterinburg, 620002, Russia
r-koptelov@mail.ru

A. M. Konashkova

Ural Federal University

19 Mira St., Ekaterinburg, 620002, Russia
a_konashkova@mail.ru

 Copyright © 2013 R. P. Koptelov and A. M. Konashkova. This is an open access article
distributed under the Creative Commons Attribution License, which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

An algorithm for intersection a line and a convex hull of points cloud is
presented. The algorithm doesn’t require the convex hull construction. The points
cloud can be arbitrary and not sorted, no topology, face list or edge list is known.
The algorithm uses only vertices coordinates. Standard transformation of
coordinates is performed and the points cloud is bisected by two perpendicular
planes. Yielded 1D points set lies at the line. Bounds of the set are intersection
points of the points cloud and the line. The algorithm was compared against the
obvious algorithm which uses intersection of the line and all possible faces (sets
of three points). Presented algorithm is much faster than the obvious one.

Keywords: line, intersection, convex hull, edge, face

1 Introduction

Intersection of lines, rays and segments against various geometrical objects
is widely used in radiative heat transfer, computational geometry and computer

5140 R. P. Koptelov and A. M. Konashkova

graphics. In radiative heat transfer such objects are metal bars, furnace walls and
mechanical assemblies. In computer graphics such objects are buildings, interior
objects and animated characters [6].

In usual applications static geometrical models are used which are
represented by planar (triangle, quadrilateral, polygon) or volumetric (tetrahedron,
hexahedron, cube, sphere) objects. For such models the topology – face list, edge
list or a graph – is already known or can be determined once before all operations
with the model. Here, face list is a table containing vertices numbers for each
face, edge list is a table containing vertices numbers for each edge. The topology
can be determined by construction of the convex hull. There are many algorithms
of convex hull construction in 2D, 3D and kD: Graham’s method, «divide and
conquer» method, «gift wrapping» and others – see classic book [5]. But really
determining the topology is often not needed because it consumes too much time
and because it is often used only as a preprocessing step before intersection tests.
Such case can be occurred in animation and visualization of non rigid objects. For
such objects their topology can’t be determined beforehand, so handling of non
rigid objects becomes more and more actual problem [11].

This paper presents an algorithm of intersection a line and a convex hull of
points cloud without the convex hull construction. The paper is organized as
following:

1) Known algorithms of intersection of a line and convex polyhedron are
described;

2) Obvious approach for line – convex hull intersection is given. The
algorithm intersects a line against all combinations of 3 points assuming
each 3 points may be a face of the convex hull (face representation);

3) A new approach for line – convex hull intersection is given. In contrast
to face representation, the algorithm assumes that each 2 points may be
an edge of the convex hull (edge representation);

4) Performance comparison of the algorithms 2 and 3.

2 Known algorithms of line – convex polyhedron intersection

2.1 Early algorithms with O(N) complexity

There are two general algorithms with O(N) complexity: direct
computational algorithm and the Cyrus-Beck algorithm. Both of them are very
popular up to date.

The direct computational algorithm [2] performs direct line – triangle
intersection for each triangular face of the given polyhedron while two
intersections are not found. This algorithm is well known and very useful.

The algorithm uses point coordinates O at the line, the direction vector D, a
list of Nv polyhedron vertices coordinates Pi, the number of vertices Nv, and the
face list as input data. The outputs are t1,t2, and the intersection points Point1 and
Point2.

Intersection of a line and a convex hull of points cloud 5141

The Cyrus-Beck algorithm [1] uses the fact that a convex polyhedron can be

understood as the intersection of halfspaces. Boundaries of these halfspaces are
formed by planes in which faces of the polyhedron lie. Suppose we have a convex
polyhedron and a line with some parametrization. Searching for the intersection of
these geometrical objects, we can divide the bounding planes of the polyhedron
into two groups according to the orientation of their normal vectors. Among the
planes oriented towards the observer, we search for the point of intersection with
the maximal parameter value tl. Among planes of the other group, the minimal
parameter value t2 is found. If tl > t2, the intersection of the polyhedron with the
given line does not exist. If tl ≤ t2, we compute the points of intersection [1]. This
process is illustrated in fig. 1 for 2D case.

The CB algorithm uses point coordinates O at the line, the direction vector
D, faces normals Ni: i=1…N, a list of di such that di = -Ni·Pi, and the number of
faces N as input data. The outputs are t1,t2, and the intersection points Point1 and
Point2. Each face is presented by a halfspace in this algorithm, so, the Cyrus-Beck
algorithm needs the face list.

FIg. 1 Finding intervals along parameter t, where line intersects the polyhedron
given by facets f1-f5. Line L1 doesn’t intersect the polyhedron because

max(t1)>min(t2). Line L2 intersects the polyhedron because max(t1)<min(t2)

2.2 Plane tested algorithms

The main idea to accelerate two early algorithms is to reject polyhedron
faces before the main computing. The one of possible ways is to test line –
bounding volume intersection first. However, this strategy is applied usually to all
geometry but not to individual polyhedron faces.

5142 R. P. Koptelov and A. M. Konashkova

Another idea was proposed by V. Skala in [7] for triangular faces. A line L1

can be defined as an intersection of two nonparallel planes p1 and p2. If the line L1
intersects the given triangle then planes p1 and p2 intersect the given triangle, too,
but if planes p1 and p2 intersect the triangle then the line can intersect (line L1 and
planes p1 and p2) or miss the triangle (line L2 and planes p3 and p4), see fig.2.
Then we can test each triangle of the given polyhedron against p1 and p2 planes
before detailed line – triangle or line – halfspace intersection computation. If both
planes intersect the given triangle (facet) then use detailed intersection test. The
intersection of the given plane pi and the triangle exists if and only if two vertices
xj and xk of the triangle exist so that () ())()(kiji xFsignxFsign ≠ , where

0=iF is an equation for the i-th plane pi, i=1,2.

This test can be applying with direct computational algorithm or with

Cyrus-Beck algorithm and computing time may be decreased 2-4 times for 100
polyhedron faces or 34 – 6.1 times for 1000 polyhedron faces [2].

Fig. 2 Usage of two planes for line definition

The rejection test allows one to determine an edge intersected by planes p1
or p2 and next triangle shared by this edge. Thus we can test not all triangles
against plains p1 and p2, but only ring of triangles which intersected by plane p1.
By following from one triangle to next triangle with common edge (see fig. 3) we
can test only)(NO triangles. This algorithm described in details in [10].

Intersection of a line and a convex hull of points cloud 5143

Fig. 3 Testing sequence of triangles with common edge

2.3 Dual space algorithms

A line in E2 can be described by an equation 0=++ cbyax and rewritten
as qkxy += , if 1≤k , 0≠b or pmyx += , if 1<m , 0≠a .

It means, that the line L in E2 can be represented using an asymmetrical
model of dual space [3] representation as a point { })(,)(2EDqkLD ∈= or

{ })(,)(2EDpmLD ∈= . Inversely, a point in E2 can be represented as a line in
)(2ED . A point in E3 can be represented as a plane in)(2ED , and inversely, a

plane in E3 can be represented as a point in)(2ED .
These relations allow us to transform a line – polyhedron intersection test

into point in polygon test problem. Dual space representation was used for line
clipping in [2,3,8]. V. Skala proposed a line clipping algorithm with O(1)
complexity [9]. The line clipping problem is reduced into point in polygon
problem. And point in polygon problem is solved by constant time search on
uniform grid.

This is a great advancement for solving the problem if a large time for
precomputing is available and the face list is known. Anyway, dual space
algorithms also use the face list of polyhedron.

5144 R. P. Koptelov and A. M. Konashkova

3. Intersection a line and a convex hull of points cloud without
convex hull construction

3.1 The obvious algorithm

Potentially any three points may be a face of the convex hull. Obvious
algorithm intersects a line and each potential face and calculates the value of ti –
distance from point on the line to the intersection point. Max and min of all ti
represent two intersections point of the line and the convex hull of points cloud.
Loop over each set of three points (3 nested loops over point number) leads to

)(3NO complexity.
This algorithm can be simplified if coordinates of intersection points are not

needed. In this case the algorithm will be terminated if first line-triangle
intersection is found.

3.2 New algorithm

The main ideas of the algorithm are refusing of face representation of
convex hull and construction of sections of the points cloud. First section of the
points cloud by a plane containing the given line is constructed. A new planar
points cloud is obtained. Intersection points of the line and initial points cloud are
the same as intersection points of the line and obtained planar points cloud. New
section of the planar points cloud by the given line is constructed. As a result, a
1D points set belonging to the line is obtained. Bounds of the 1D point set are the
intersection points of the line and the convex hull of initial points cloud.

The algorithm:

1. Let us consider the line DtOL ⋅+= . Use transformation of coordinates
to place O in the origin and DO ⋅+ 0.1 on the z-axis. In practice, x or y
axis may be used.

2. Separate points into two groups: 0<yP - with y coordinate less than
zero, and 0≥yP - with y coordinate not less than zero. If one of two groups
is empty then L doesn’t intersect the points cloud (its convex hull).

3. Connect each 0<∈ yi Pp with 0≥∈ yj Pp and compute 00 ≥< ⋅ yy NN
points 0=yP , which lie at the polyhedron section by plane y = 0 (fig. 4a).
The set 0=yP is non convex, therefore 2D algorithms of line-polygon
intersection can’t be used.

Intersection of a line and a convex hull of points cloud 5145

4. Separate points 0=yP into two groups: 0,0 <= xyP - with x coordinate less
than zero, и 0,0 ≥= xyP - with x coordinate not less than zero (fig. 4b). If one
of two groups is empty then L doesn’t intersect the points cloud (its
convex hull).

5. Connect each 0,0 <=∈ xyi Pp with 0,0 ≥=∈ xyj Pp and compute

0,00,0 ≥=<= ⋅ xyxy NN points 0, =yxP . They lie at the line L and have only z
coordinate.

6. Find min z and max z coordinate of points 0, =yxP . Here z parameter is the
same as parameter t in algorithms that use parametric line equation

DtOL ⋅+= . So, we can compute intersection points
DzOPo ⋅+= minint1 , DzOPo ⋅+= maxint 2 .

Illustration of the algorithm executing for non-convex points set is given in fig. 5.

O

O+D

O+D

O

a b

Fig. 4 Illustration of the algorithm: a – steps 2,3; b – steps 4,5; «1-2» - point that
obtained by connection initial points 1 and 2.

In the worst case P is separated by plane y = 0 into equal parts:
2/00 NNN yy == ≥< , where N - number of points. 0=yP also is separated by

plane x = 0 into equal parts: () 82 2
000,00,0 NNNNN yyxyxy === ≥<≥=<= . Total

5146 R. P. Koptelov and A. M. Konashkova

number of connections is 644
0,00,0 NNN xyxy =⋅ ≥=<= . So, the worst case

complexity of the algorithm is O(N4). In the best case: 10 =<yN , 10 −=≥ NN y
and 10,0 =<= xyN , 1)1(0,0 −−=≥= NN xy . So, the best case complexity of the
algorithm is O(N).

Fig. 5 Illustration of the algorithm executing for non-convex points set. Initial

points set – two cubes connected with a parallelepiped. If each 0<∈ yi Pp
connect with 0≥∈ yj Pp , then points 1 and 4, 2 and 5, 3 and 6 will be connected

and the convex hull of points set will be used further.

This algorithm is suitable not only for calculations with non rigid points

clouds or if face list and edge list are unknown, but also for CAD applications.
For example, one can manually pick a point subset on the screen without
connecting the points and send the data to the intersection calculations module,
while connection the points by hand is time consuming and must not be made by
man.

The algorithm can also be simplified if intersection points are not needed. In
this case steps 1-3 are not changed. Step 4 has to be changed: separate points

0=yP into two groups: 0,0 <= xyP - with x coordinate less than zero, и 0,0 ≥= xyP -
with x coordinate not less than zero. If one of two groups is empty then L doesn’t
intersect the points cloud (its convex hull), otherwise there is an intersection.

5. Performance comparison

The new algorithm was tested against the obvious one. Algorithms were
tested for number of points N from 4 to 100. For each N, 100 randomly generated

Intersection of a line and a convex hull of points cloud 5147

points clouds were used, the clouds were inscribed into the cube that has minimal
bounds x,y,z = -1 and maximal bounds x,y,z = +1. For each N and for each
points cloud, 2·105 lines were used, so 2·107 lines were used for each N. Data sets
of two points that define a line were generated such that first and second points of
each line lie on two different cube faces, see fig. 6. Such lines and points
arrangement is the most right and practical one because in practice line – object
intersection calculation should be always the second step after intersection the line
with object’s bounding box.

Runtimes of algorithms in seconds per million lines are given in table 1. All
tests were implemented in Fortran on Intel Pentium II 1.83 GHz. The algorithm
described in [4] was used as the line-triangle intersection test in the obvious
algorithm.

Fig. 6 Lines and points arrangement. Data sets of two points that define a line are
located in the bounding box of points cloud

It can be seen that both for calculation of intersection points and for

intersection test the proposed algorithm is faster than the obvious one for N>4. If
N=4 then the points cloud is a tetrahedron and its topology is really known: each
three points form a face of the tetrahedron and each two points form an edge. If
only intersection test is required, the proposed algorithm is 10 times faster than
the obvious one if N=18 and it is 34 times faster if N=100. If calculation of
intersection points is required, performance of the proposed algorithm grows as N
increases to 16 (5.9 times superiority), but further the performance decreases.

6. Conclusions

The algorithm for intersection a line and a convex hull of points cloud is
presented. The algorithm doesn’t require of convex hull construction. The
algorithm is interesting for computer graphics, readiative heat transfer and compu-

5148 R. P. Koptelov and A. M. Konashkova

tational geometry. The main ideas of the algorithm are refusing of face
representation of convex hull and construction of sections of the points cloud. The
proposed algorithm was tested against the obvious algorithm which intersects a
line and each set of three points (each potential face). It is shown that the
proposed algorithm has superior performance especially for intersection tests.
Possible subject for future work is application of the algorithm for convex
polyhedron with known edge list and unknown face list. It is expected that the
algorithm will have O(N) complexity and its performance will be comparable
with those of known line – convex polyhedron intersection algorithms.

Table 1. Algorithms performance

Number of
points

Obvious algorithm Proposed algorithm

Test of
intersection

Calculation of
intersection

points

Test of
intersection

Calculation of
intersection

points
4 0.36 0.47 0.49 0.56
5 0.70 1.06 0.61 0.69
6 1.19 2.07 0.66 0.87
7 1.86 3.60 0.77 1.12
8 2.72 5.65 0.87 1.42
9 3.79 8.25 0.99 1.81
10 4.98 11.66 1.11 2.31
11 6.41 15.88 1.24 2.97
12 8.13 20.99 1.37 3.71
14 12.14 34.20 1.65 5.83
16 17.61 51.97 1.97 8.85
18 23.67 76.40 2.35 13.02
20 29.97 106.40 2.69 19.32
26 56.38 238.00 4.00 51.28
32 94.33 450.90 5.69 113.69
36 130.09 648.30 6.81 178.23
40 176.72 893.70 8.22 263.11
45 228.28 1328.60 10.37 422.89
50 288.00 1741.30 12.18 699.20
60 441.53 3057.20 16.92 1381.10
70 642.91 4855.90 22.26 2516.90
80 888.42 7263.40 28.92 4343.70
90 1151.15 10445.50 36.70 6653.20
100 1524.37 14476.40 44.50 10534.90

Intersection of a line and a convex hull of points cloud 5149

References

[1] M. Cyrus, J. Beck, Generalized two and three dimensional clipping,

Computers & Graphics, 3 (1979), 23-28.

[2] I. Kolingerova 3D - Line Clipping Algorithms - A Comparative Study, The
Visual Computer, 11(2), (1994), 96-104.

[3] I. Kolingerova, Convex polyhedron-line intersection detection using dual

representation, The Visual Computer 13(1), (1997), 42–49.

[4] T. Müller and B. Trumbore, Fast, Minimum Storage Ray-Triangle
Intersection, Journal of Graphics Tools, (1997), 22-28.

[5] F.P. Preparata, M.I. Shamos, Computational Geometry - An Introduction,
Springer-Verlag, 1985.

[6] P. Shirley, Fundamentals of computer graphics , Second Edition, AK Peters,
2005.

[7] V. Skala, An Efficient Algorithm for Line Clipping by Convex and
Non-Convex Polyhedrons in E3, Computer Graphics Forum, 15(1), (1996),
61-68.

[8] V. Skala, Line Clipping in E3 with Expected Complexity O(1), Machine
Graphics and Vision, Poland Academy of Sciences, 1996.

[9] V. Skala, Trading Time for Space: an O(1) Average time Algorithm for
Point-in-Polygon Location Problem. Theoretical Fiction or Practical Usage?
Machine Graphics and Vision, 5(3), (1996), 483-494.

[10] V. Skala, A Fast Algorithm for Line Clipping by Convex Polyhedron in E3,
Computers & Graphics, Pergamon Press, 21(2), (1997), 209-214.

[11] I. Wald, W.R. Mark, J. Gunther, S. Boulos, T. Ize et al., State of the Art in
Ray Tracing Animated Scenes, Computer graphics forum, 28(6), (2009),
1691-1722.

Received: July 5, 2013

