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Abstract

We study the asymptotic behavior of maximin values of a payoff
function, when relaxed constraints are tightened. The payoff function
depends on the trajectories of controlled systems of the first and second
player. An extension in the class of the Radon measures is used. The
asymptotic equivalence between two types of the constraints relaxations
is shown.
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We study the asymptotic behavior of maximin values of a payoft function,
when relaxed constraints are tightened. The payoff function depends on the
trajectories of controlled systems of the first and second player. These systems
can be non-linear; this is the important distinction from earlier papers [1, 2],
where various asymptotic effects for linear systems with impulse constraints
were considered and an extension in the class of finitely additive measures
was used (see also [3,4]). In the present paper a different approach is used
(see [6]). We implement an extension in the class of the Radon measures. This
approach is similar to the traditional one proposed in [5,7,8] and developed
by N.N. Krasovskii and by his followers [9, 10].
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We consider controlled systems of the first and second player:

i = f(t,z,u), u€PxeR" neNtecl?Z /[t (1)

g=gtyv), veQyeR" meNtel (2)

Here P,Q, P C R?,Q C R% (p,q € N) are compacta; N 2 {1,2,...}. The sets
of all admissible (open-loop) controls of players are defined as follows:

A o . . .
U= {uc P! | uis piecewise constant and right-continuous},

A L : . :
V= {ve Q| wvis piecewise constant and right-continuous}.

Phase constraints for the first and second player are set by families (NV;);e; and
(My)ier respectively; where (V; € R™")&(M; € R™) Vt € I. Let Y(z(-),y(-)) be
a continuous functional defined on trajectories of systems (1) and (2). Players
choose initial conditions for their systems from sets H, S; here H C I xR", S C
I x R™. The goal of the first player is to minimize value of T by choosing a
control u € U and an initial condition h € H, the goal of the second player is
to maximize value of T by choosing v € V and s € S. The players must comply
with the phase constraints in terms of (N¢)iejpr, (n),00] 80d (My)ielpr (s),04], Where
pri(z) and pro(2) are the first and second component of an ordered pair z. Thus
we consider the following problem:

T<¢(-;h,u),§(-;s,v)> —  sup inf (3)

(s,v)ESXV (hyu)EH XU

wrt. (ot h,u) € N, Vi lpri (), ))& (&(t:5,v) € M, Ve lpri(s), 9] ):

where for all (h,u) € H xU, (s,v) € S xV by functions ¢(-; h,u) and &£(+; s, v)
we denote trajectories of (1) and (2) respectively. Note that in this problem
it is possible to observe the following instability effect: for an arbitrarily small
relaxation of constraints in terms of the sets corresponding to the allowed
phase states and initial positions, there is an jump-like change of a problem
result (8). In this context, we construct a regularized version of the problem
that does not cause the mentioned effect. For this purpose, we will use the
approach proposed in [6, Chapter IV], [13, §7.7] and based on the using of
generalized controls (the Radon measures).

Let £,Lp, Lo be o-algebras of compacta I,I x P,I x () respectively and
let A be the trace of the Lebesgue measure on L. By P we denote the set of
all nonnegative real-valued countably additive measures p on Lp such that
VI' e £ : p(I’ x P) = AI'). Let Q be the set of all nonnegative real-valued
countably additive measures v on Lg such that VI' € £ : v(I' x Q) = A(I).
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Sets P and Q are compacta with respect to subspace *-weak topologies 77" and
79 respectively (see [6,11]). Elements of these sets will be used as generalized
controls. If (X, 7) is a topological space, then by C(X) (by C*(X)) we denote
the set of all continuous functions from X into R (from X into R¥ k € N).
From the Riesz theorem it follows that for any u € U there exists a unique
measure (generalized control) Y such that Vf, € C(I x P)

Yo

fltu(®)dt = [ fult,p)pu(d(t, p)).

to IxP

Then (for the first player) we define a mapping sy as follows:
(hyu) — (h,p) : H xU — H x P. (4)

In the same way for the second player we introduce the definition of 10 € Q
for any v € V and sy by the rule (s,v) — (s,9): SxV — 5 x Q.

If A is a subset of an Euclidean space, then A%,k > 0, is the closed k-
neighborhood of A with respect to the Chebyshev distance. We introduce sets
of all ordinary controls of the players that are admissible for the first type of
the constraints relaxation:

Ple] 2 {(h,u) € H x U | ¢(t; h,u) € NE ¥t €lpry(h) + e, 00 };

QU] £ {(s,v) € S x V| &(t;5,v) € MP Yt €lpri(s) + 6,90 }.
We now introduce the following key assumption of the generalized controls
existence (see [11, Theorem 4.1]):
Al. (Ve >0 Ple] # 0)&(Vd >0 Q[d] # 0).
The following values correspond to the first type of the constraints relax-
ation: Ve, 9 > 0

AN
Vl]e,d] = su inf  Y((h,u), (- s,v)) € R, -
=0 (s)eals) (ha)e2te] <¢( ) & )) (5)

We introduce sets of all ordinary controls of the players that are admissible for
the second type of the constraints relaxation:

Pyle] 2 {(hyu) € HE x U | ¢(t; h,u) € NEVE €lpri(h) + &, 9]},
Qulo] £ {(s,0) € S° x V| €(t; 5,0) € M? ¥t €]pri(s) + 6, 90]}.

The following values correspond to the second type of the constraints relax-
ation: Ve, o > 0

A
Vlieg,0| = su inf  Y(o(h,u),é(;s,v)) €R. G
=0 (S,U)GQJP\/[[CS] (h,u)€P Ne] <¢( ), &( )) (6)
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We will study the asymptotic behavior of values (5) and (6) in the case of the
tightening of the constraints that are relaxed by 5 0> 0.

By definition, put H = cl(H, 7"y and § £ cl(S (m+y: where 7 is
the topology of coordinate-wise convergence in R¥ and cl(G, 7) is the closure
of G with respect to a topology 7. We suppose that the following conditions
hold for systems (1), (2) [11, conditions 3.1, 3.2]:

C1.The condition of the generalized uniqueness;

C2.The condition of local boundedness of solutions for the systems.

If C1 holds, then for any generalized control there exists a unique generalized
trajectory (see [11]). This allows us to introduce the following definitions of

generalized trajectories ¢(-; , ) (for (1)) and £(-;s,v) (for (2)):
(6021 ) = pra(h) vt € [to,pra ())& (985, 1) = pra(h) +
+ [ F(t,6(r), u(d(r,w)) Ve € [pra(h), do]) ¥(h,p0) € H x P:
[pri(h),t[x P
(f =pra(s) Vt e [to,prl(s)o&(é(t;s,y) = pra(s) +

—l—/ g(t,&(1),v)v(d(r,v)) Vte [PT1(8)7790]> Y(s,v) €S x Q.
[pri(s),t[xQ

If C1 and C2 hold, then the following mappings are continuous (see [11]):

(hyp) — (- hyp) : Hx P — C*(I), (s,v) — E(55,0) : S x Q — C™I). (7)

By definition, put P = {(h,1) € HXP | ¢(t; h, ) € Ny Vt €]pry(h), 9]} and
Q 2 {(s,v) € §x Q| &(t;s,v) € M, ¥t €]pri(s),Jo]}. Then sets P, Q are
closed. Combining this with A1 and [11, Theorem 4.1], we obtain that P, Q
are compacta. Consequently the following value is well defined:

A . )
V = max min T( oy ), -;s,y)e '
(5,0)€Q (h,p)€P gb( M> é( ) R

In this paper we show that if A1 holds, then the asymptotics (in the sense
of the tightening relaxed constraints) of values (5) and (6) coincide and equal
to value V of the generalized problem. To prove this, we use the main results
from papers [11,12].

Let ([ X] be the set of all filter bases on X [15]. From A1 it follows that

{Ple] | € > 0} € Bo[R"™ x U], {Pn[e] | € > 0} € Bo[R™ x U], (8)

{Q[3] [ 6 > 0} € Bo[R™ x V], {Qu[d] | & > 0} € Bo[R™F x V. (9)
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Using ideas from article [12] (that deals with an asymptotic behavior of
abstract maximin problems) and from articles [13,14] (that deal with a con-
struction of attraction sets [14, §1 and p. 1053]), we now specify the following
compactifiers [14, p. 1060] for the ordinary control sets:

(TPt gerl s, (6030 0) g erp)» |95 Qm s@72 v, (€C55,1) (0ol

where ® stands for a topology product and 7|x means a subspace topology

on set K with respect to a topology 7 (see [15]). Note that we have (see [11])
the following presentation of auxiliary attraction sets (see [12-14]) via the sets
of generalized controls:

et (st | () € Blel}, 7 ©77) =

e>0

= Net({(hso() | (hu) € By} 2 @ 7F) =P

e>0

et ({(srsv) | (5,0) € Q7+ @72 =

>0

_mcl( s,sv(v) | (s,0) € Qu[d]}, 7 ® ):Q. (10)

6>0

We see that the auxiliary attraction sets are universal with respect to "the
asymptotic constraints” defined as the first and second type of the constraints
relaxation. By 75 we denote the topology of uniform convergence in C*(I), k €
N. The next theorem is the specific version of Proposition 5.2.1 [13].

Theorem 1. The following equations hold:

N et({o(shu) | (hu) € P} 75 ) = (et ({0 h,u) | (hu) € Pye]},7C) =

e>0 e>0
={oC:h.pw)|(h,) €PYs ) cl({&(-;s,v) | (s,0) € @[5]}775) =
6>0
= N et({&65,0) | (5,0) € Quldl} 75 ) = {35l (s,v) € Q).
6>0

To prove this, we used continuity of (7) and (8)—(10). Theorem 1 shows
the presentations of attraction sets in spaces of trajectories of (1) and (2).

Combining Theorem 1, (8), (9), continuity of (7), and [12, Theorem 1,
Proposition 5], we obtain the following theorem that characterizes V as the
generalized limit of values Ve, 0] and Ve, §] under the tightening constraints
that are relaxed by €,d > 0.

Theorem 2. The following is true: Yk > 0 ), > 0 :

<\V Ve, 8| < /@)&(yv Ve, 8| < ﬁ) Ve, 5 €]0, .
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Theorem 2 shows that for problem (3) there exists the asymptotic equiv-
alence between two types of the constraints relaxations. Moreover, setting
appropriate limits for extreme levels of the relaxations, we can guarantee any
proximity of values (5) and (6).
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