Probabilities of Diagonal and Non-Diagonal Couplings between d Electrons in Transition Metal

I. The d-Band Energy

Nikolay Dubinin1,2

1Ural Federal University, Mira st. 19, 620002 Ekaterinburg, Russia
2Institute of Metallurgy of the Ural Branch of the Russian Academy of Sciences, Amundsen st. 101, 620016 Ekaterinburg, Russia
ned67@mail.ru

Abstract

It is shown that the full account of the non-diagonal couplings between d electrons sited on different atoms in a transition metal implemented within the framework of the Wills-Harrison model leads to vanishing the d-band contribution to the internal energy.

Keywords: Transition metal, Wills-Harrison model, d-state coupling

In the Wills-Harrison (WH) model [1] for the transition-metal internal energy, the d-band energy, E_b, is represented as follows (hereafter, per atom):

$$E_b = -\frac{1}{2} z_d \left(\frac{10 - z_d}{10}\right) W ,$$

where z_d is the effective d-electron valence, W - d-band width:

$$W = \left(\frac{12}{N} \sum_{m=1}^{N} \sum_{l=1}^{N} V_{d}^2(r_{ml})\right)^{1/2} ,$$

where N is the number of atoms, $V_{d}(r)$ - effective potential of the d-d interaction (hereafter, in atomic units):

$$V_{d}(r) = \frac{r_d^2}{r^3} K_b .$$
Here, r_d is the d-state radius, K_b - combinatoric coefficient, which in the WH approximation depends on diagonal only couplings between d electrons sited on different atoms:

$$K_b^\text{WH} = \left(\sum_{m=-2}^{2} \frac{y_m^2}{5} \right)^{1/2},$$

(4)

where m is the magnet quantum number,

$$y_m = y_{|m|} = -\frac{(-1)^{|m|} 180}{\pi (2 + |m|)! (2 - |m|)!}.$$

(5)

From (4), (5)

$$K_b^\text{WH} = 28.06/\pi.$$

(6)

In [2] was introduced the probability p that all 25 $d-d$ couplings between two different atoms in a metal are equiprobable. Then, the probability of the WH limit case that only 5 equiprobable diagonal couplings are possible is $(1 - p)$. From this assumption, the probability of a non-diagonal coupling is $0.8p$, probability of a diagonal coupling is $(1 - 0.8p)$ and

$$K_b = \left[\frac{1}{5} \left(\left(1 - \frac{4p}{5}\right)y_0^2 + \left(2 - \frac{6p}{5}\right)(y_i^2 + y_j^2) + \frac{4p}{5}y_0(y_i + y_j) + \frac{8p}{5}y_i y_j \right) \right]^{1/2}. $$

(7)

Now, allow us to apply (5) to (7). As a result,

$$K_b = K_b^\text{WH} / \sqrt{1 - p}.$$

(8)

This surprising result denotes that at full account of the non-diagonal couplings between d electrons sited on different atoms $(p = 1)$, the d-band energy in a transition metal is being become equal to zero.

Acknowledgments

This study is supported by the Program of UD RAS (project No 12-T-3-1022).

References

Received: March 28, 2013