Курбанова Э.Д.<sup>1</sup>, Белякова Р.М.<sup>1</sup>, Ригмант Л.К.<sup>1</sup>, Галашев А.Е.<sup>1</sup>, Полухин В.А.<sup>1,2</sup> <sup>1)</sup>Институт Металлургии УрО РАН, г. Екатеринбург <sup>2)</sup>ФГАОУ ВПО «Уральский федеральный университет им. первого Президента России Б.Н. Ельцина», г. Екатеринбург kurbellya@mail.ru

## ИССЛЕДОВАНИЕ МЕТОДОМ МОЛЕКУЛЯРНОЙ ДИНАМИКИ ВЛИЯНИЯ МЕХАНИЗМОВ СОРБЦИИ НА ТЕРМОСТАБИЛЬНОСТЬ ИНТЕРФЕЙСОВ D- МЕТАЛЛ/ ГРАФЕН<sup>\*</sup>

Для детального изучения и сравнительного анализа физикохимических свойств интерфейсных гетероструктур переходный металл/графен (TMe:, Cu /G) проведено МД-моделирование формирования интерфейсов. Для системы Pd-C энергия когезии составляет  $E_b = -43.57 \cdot 10^2$ мэВ на атом углерода, а параметр решетки 0,385нм. Системы Ni/G и Cu/G имеют меньшие, но относительно близкие параметры (опытные значения их постоянных, соответственно, равны для Ni 0,352 нм и для Cu и 0,361 нм), но существенно различающиеся энергиями потенциальных ям для профилей энергий связи Ni-G  $E_b = -91.33 \cdot 10^2$  мэВ нм<sup>-2</sup>/атом C, а для Cu-G  $E_b = -24,81 \cdot 10^2$  эВ нм<sup>-2</sup>/атом C (электронные оболочки в атоме Cu в отличие от Ni заполнены полностью).

Различие в характере энергий связи для гетероструктур Cu/G и Ni/G определяется спецификой их электронных зонных структур, как следует из анализа электронных состояний их интерфейсов и характера сорбции, соответственно, физической адсорбции и хемосорбции. Так для системы Cu/G при межатомных расстояниях  $d_{C-Cu}=0,2243$  нм уровень Ферми приближен к зонам Cu, инициируя электронный перенос от  $\pi$  зон графенового слоя к зонам металла, в то время как для расстояний  $d_{C-Cu}=0,326$  нм перекрывание  $p_z$  орбиталей атомов C и  $d_z$  орбиталей атомов Cu слабое, и электронный перенос идет из зон металла к таковым в слое G. В табл. 1 приведены для сравнения результаты, полученные с применением первопринципных подходов, а на рис. 1 их представление (с элементарными ячейками при совмещении TMe/G с параметрами  $a_{G1}=0,246$  нм и  $a_{G2}=0,492$  нм с

<sup>&</sup>lt;sup>\*</sup> Работа поддержана Отделением химии и наук о материалах РАН (проект №12-T-3-1022).

поверхностями (111), соответственно, из 4 атомов углерода вокруг одного центрирующего атома металла Ni, Co, Cu (рис. 16) и суперячейки из 8 атомов углерода и 3 центрирующих атомов металла ГЦК-плоскостей Pd, Pt, Au, Ag и Al, рис. 16). В левой половине (физическая адсорбция) расположены металлы с интерфейсом (с энергией связи плоскостей графена и металла  $E_c$  в расчете на 1 атом углерода в условно выбранном интервале величин 0,03 эВ< $E_c$ <0,052 эВ и длиной связей ТМе-С по нормали к плоскости интерфейса d>0,3 нм), классифицируемым как физико-адсорбционный, а в правой (хемосорбция)-хемосорбционный (с энергией в пределах 0,1 эВ<  $E_c$ <0,4 эВ и со связями длиной d<0,25 нм). Зарядовый допинг,  $\Delta q$ . Значение межатомных расстояния d. Сдвиг энергии Ферми  $\Delta E_{F.}$ 

Таблица 1

| Сорбция                | Физическая адсорбция (допинг) |       |      |      |      |      |      | Хемосорбция<br>(с перекрыванием <i>π-d</i> связей) |      |      |      |      |
|------------------------|-------------------------------|-------|------|------|------|------|------|----------------------------------------------------|------|------|------|------|
| Me                     | Cd                            | Al    | Ag   | Au   | Cu   | Pt   | Ir   | Pd                                                 | Ru   | Со   | Ni   | Ti   |
| E <sub>c</sub> ,       | 0,030                         | 0,031 | 0,03 | 0,03 | 0,03 | 0,04 | 0,03 | 0,09                                               | 0,13 | 0,41 | 0,14 | 0,39 |
| эВ/атом                |                               |       |      |      |      |      |      |                                                    |      |      |      |      |
| $-\Delta q, 10^2$      | -                             | 0,3   | 0,7  | 0,78 | 0,81 | 0,11 |      | 0,13                                               |      | 0,23 | 0,21 |      |
| ·e⁻                    |                               |       |      |      |      |      |      |                                                    |      |      |      |      |
| d                      | 0,36                          | 0,57  | 0,32 | 0,33 | 0,31 | 0,32 | 0,31 | 0,28                                               | 0,23 | 0,21 | 0,21 | 0,21 |
|                        |                               |       |      |      |      |      |      |                                                    |      |      |      |      |
| $\Delta E_F$ , $\Im$ B | 0,44                          | 0,49  | 0,35 | 0,20 | 0,19 | 0,15 | -0,2 |                                                    |      |      |      |      |

Результаты, полученные с применением первопринципных подходов



Рис. 1. Схема изменения электронной структуры (*a*) в координациях  $C_4(Ni,Cu)$  (б),  $C_8Pd$  (в)