О ГРАНИЦЕ РАЗРЕШИМОСТИ БЕСКОНЕЧНОЙ СИММЕТРИЧЕСКОЙ ГРУППЫ

Пусть S — произвольная бесконечная симметрическая группа, рассматриваемая в сигнатуре $\langle \cdot, ^{-1}, 1 \rangle$. В [1] анонсирован следующий результат: теории языков $\forall \neg \lor$ и $\exists \neg \land$ относительно иерархии SA [2] (определения приводятся ниже) группы S являются критическими, а теории языков $\forall \exists \forall, \exists \forall \exists$ этой же группы неразрешимы. Следующее утверждение, анонсированное в [3], продолжает изучение проблемы описания границы разрешимости группы S.

Теорема. $Teopus \exists \forall \land \lor S \ paspewuma.$

Напомним кратко необходимые определения из [2]. Пусть \mathcal{E} — множество всех формул логики первого порядка некоторой сигнатуры σ , записанных в предваренной нормальной форме [4]. Пусть $Q_i \in \{\forall, \exists\}, \ Q_i \neq Q_{i+1}$ для $i \in \{1, \ldots, p-1\}$ и пусть $r, s, t \in \{0, 1\}$. Определим язык $Q_1 \ldots Q_p \neg^r \wedge^s \vee^t$ из \mathcal{E} , где $z^1 = z$ и z^0 — пустой символ для $z \in \{\neg, \land, \lor\}$, следующим образом. Во-первых, блочная схема кванторной приставки каждой из формул $Q_1 \ldots Q_p \neg^r \wedge^s \vee^t$ является подсловом слова $Q_1 \ldots Q_p$. Во-вторых, связка \neg , \wedge , \vee допускается в бескванторной части этих формул, если соответственно r=1, s=1, t=1, и не допускается, если соответственно r=0, s=0, t=0. Обозначим, кроме того, через $\neg^r \wedge^s \vee^t$ бескванторный подъязык языка $\forall \neg^r \wedge^s \vee^t$, через $\varpi \neg^r \wedge^s \vee^t$ — объединение $\bigcup_{n \in \omega} Q_1 \ldots Q_p \neg^r \wedge^s \vee^t$. В теореме,

сформулированной выше, фигурирует язык $\exists \forall \neg^0 \wedge^1 \lor^1 = \exists \forall \wedge \lor$ первого вида. Семейство SA всех языков вида $Q_1 \dots Q_p \neg^r \wedge^s \lor^t, \neg^r \wedge^s \lor^t$ и $\varpi \neg^r \wedge^s \lor^t$ упорядочивается включением и называется схемно-альтернативной иерархией

[©] Ю. В. Нагребецкая, 1999

языков. Для языка $L \in SA$ и класса K алгебраических систем сигнатуры σ через LK обозначим теорию языка L класса K, т.е. совокупность всех предложений из L, истинных на K. Cxemho-альтернативной иерархией теорий класса K называется частично упорядоченное множество

$$SAK = \langle \{LK \mid L \in SA\}; \subseteq \rangle.$$

Теория $LK \in SAK$ называется $\kappa pumuчec\kappa o \ddot{u}$, если она является минимальной в SAK неразрешимой теорией. $\Gamma panuųe \ddot{u}$ разрешимости класса K называется множество

$$\mathcal{B}(K) = \{ L \in SA \mid LK$$
 — критическая теория $\}.$

Нахождение границы разрешимости класса K означает установление полной в рамках иерархии SA алгоритмической картины для K, поскольку теория $LK \in SAK$ будет разрешимой тогда и только тогда, когда $L \not\supseteq L_1$ для любого языка $L_1 \in \mathcal{B}(K)$.

Введем следующие обозначения: S — бесконечная симметрическая группа над множеством M; для $\alpha \in S$ полагаем $\sup \alpha \Rightarrow \{a \in M \mid a\alpha \neq a\}$; $S_{fin} \Rightarrow \{\alpha \in S \mid \sup \alpha \text{ конечно}\}$; ε_N — тождественное преобразование подмножества N множества M, $\varepsilon \Rightarrow \varepsilon_M$; $\mathcal{F}(x_1,\ldots,x_n)$ — свободная группа над алфавитом $\{x_1,\ldots,x_n\}$. Кроме того, для $\alpha \in S$ и $N \subseteq M$ через $\alpha \mid N$ будем обозначать ограничение биекции α на множество N, а через $N\alpha$ — множество $\{a\alpha \mid a \in N\}$. Так как множество S_{fin} является, очевидно, нормальной подгруппой группы S, то можно рассматривать фактор-группу $\bar{S} \Rightarrow S/S_{fin}$. Для всякой биекции $\alpha \in S$ через $\bar{\alpha}$ мы будем обозначать множество $\alpha \cdot S_{fin}$. Везде ниже под \bar{a} мы будем подразумевать кортеж $a_1 \ldots a_n$, а под \bar{x} — кортеж $a_1 \ldots a_n$.

Доказательству разрешимости теории $\exists \forall \land \lor S$ предпошлем ряд лемм.

Лемма 1. Пусть

$$w_i(\vec{a}, x) \rightleftharpoons a_{i_1} x^{m_{i_1}} a_{i_2} x^{m_{i_2}} \dots a_{i_{n_i}} x^{m_{i_{n_i}}}$$

— слово из $\mathcal{F}(a_1 \ldots a_n, x)$, где $m_{ij} \in \{\pm 1\}$, $i \in \mathbb{N}$ и $\{i_1, \ldots, i_{n_i}\} \subseteq \{1, \ldots, n\}$. Тогда для любого кортежса $\vec{\alpha} \in [S \backslash S_{fin}]^n$ и любого $m \in \mathbb{N}$ существует такая биекция $\xi \in S$, что $\bar{S} \not\models \varphi(\bar{\xi})$, где $\varphi(x) \rightleftharpoons \bigvee_{i=1}^m w_i(\vec{\alpha}, x) = \bar{\varepsilon}$ и элемент $\bar{\xi}$ в группе \bar{S} имеет бесконечный порядок.

Доказательство. Пусть $\vec{\alpha} \rightleftharpoons \alpha_1 \dots \alpha_n$ — произвольный кортеж из $[S \backslash S_{fin}]^n$. Докажем сначала, что существует такое бесконечное подмножество $N \subseteq M$,

что множество supp $\alpha_i \setminus (N \cup N\alpha_i^{-1})$ бесконечно для любого $i \in \{1,\dots,n\}$. Зададим рекуррентно последовательность $\{N_i \mid i \in \{0,\dots n\}\}$ подмножеств множества M таких, что supp $\alpha_i \setminus (N_i \cup N_i\alpha_i^{-1})$ бесконечно для любого $i \in \{1,\dots,n\}$. Пусть $N_0 \rightleftharpoons M$. Допустим, что N_{i-1} уже построено. Если $L \rightleftharpoons N_{i-1} \cap \text{supp } \alpha_i$ пусто или конечно, то полагаем $N_i \rightleftharpoons N_{i-1}$. Пусть L бесконечно, тогда $L = L_1 \cup L_2 \cup L_3$ для некоторых бесконечных множеств L_1, L_2 и L_3 . Если множество $L' \rightleftharpoons L \setminus (L_1 \cup L_1\alpha_i^{-1})$ бесконечно, то, полагая $N_i \rightleftharpoons L_1$, имеем бесконечность множества supp $\alpha_i \setminus (N_i \cup N_i\alpha_i^{-1})$. Пусть множество L' пусто или конечно. Из $L_2\alpha_i^{-1} = L \setminus (L_1\alpha_i^{-1} \cup L_3\alpha_i^{-1}) \subseteq L \setminus L_1\alpha_i^{-1} \subseteq L_1 \cup L'$ следует, что $L \setminus (L_2 \cup L_2\alpha_i^{-1}) \supseteq L \setminus (L_1 \cup L_2) \setminus L' = L_3 \setminus L'$. Ввиду бесконечности множества $L_3 \setminus L'$ имеем бесконечность множества $L \setminus (L_2 \cup L_2\alpha_i^{-1})$, а значит, и бесконечность множества supp $\alpha_i \setminus (N_i \cup N_i\alpha_i^{-1})$ для $N_i \rightleftharpoons L_2$. Покажем, что бесконечное множество N_n является искомым. Коль скоро множество supp $\alpha_i \setminus (N_i \cup N_i\alpha_i^{-1})$ бесконечно, в силу включений $N_n \subseteq N_{n-1} \subseteq \ldots \subseteq N_i$ множество supp $\alpha_i \setminus (N_i \cup N_i\alpha_i^{-1})$ бесконечно, что и требовалось.

Теперь докажем следующее утверждение. Пусть A_i — бесконечное подмножество множества supp α_i для $i \in \{1,\ldots,n\}$. Тогда существуют такие элементы a_1,a_2,\ldots,a_n множеств A_1,A_2,\ldots,A_n соответственно, что множество $C_n \rightleftharpoons \{a_i,a_i\alpha_i^{-1} \mid i \in \{1,\ldots,n\}\}$ состоит из 2n элементов. Доказательство проведем индукцией по n. Пусть n=1. Выберем a_1 из A_1 . Так как $A_1 \subseteq \text{supp } \alpha_1$, то $a_1 \ne a_1\alpha_1$ и поэтому множество $C_1 \rightleftharpoons \{a_1,a_1\alpha_1^{-1}\}$ двухэлементно. Допустим, что найдены такие элементы a_1,a_2,\ldots,a_{n-1} из множеств A_1,A_2,\ldots,A_{n-1} , что множество $C_{n-1} \rightleftharpoons \{a_i,a_i\alpha_i^{-1} \mid i \in \{1,\ldots,n-1\}\}$ состоит из 2(n-1) элементов. Так как множество A_n бесконечно, а множество C_{n-1} конечно, то можно выбрать элемент $a_n \in A_n \setminus (C_{n-1} \cup C_{n-1}\alpha_n^{-1})$. Учитывая включение $A_n \subseteq \text{supp } \alpha_n$, заключаем, что мощность множества $C_n \rightleftharpoons C_{n-1} \cup \{a_n,a_n\alpha_n\}$ равна 2n.

Далее, будем строить последовательность $\{a^{(i)} \mid i \in \mathbb{N}\}$ элементов из $M \setminus N$ и последовательность $\{\zeta_i \mid i \in \omega\}$ инволюций из S_{fin} со следующими свойствами:

- (1) $a^{(i)} \neq a^{(j)}$ для любых $i, j \in \mathbb{N}, i \neq j$;
- (2) supp $\zeta_i \cap \text{supp } \zeta_{i-1} = \emptyset$ и supp $\zeta_i \cap N = \emptyset$ для любого $i \in \mathbb{N}$;
- (3) $a^{(i)}w_i(\vec{\alpha},\zeta_i) \neq a^{(i)}$ для любого $i \in \mathbb{N}$. Пусть $\zeta_0 = \varepsilon$ и пусть $\zeta_0,\zeta_1,\ldots,\zeta_{i-1}$ и $a^{(1)},a^{(2)},\ldots,a^{(i-1)}$ уже построены. Так как множество $\sup \alpha_{i_j} \setminus (N \cup N\alpha_{i_j}^{-1})$ бесконечно и $\zeta_{i-1} \in S_{fin}$, имеем бесконечность множества $A_j \Longrightarrow \sup \alpha_{i_j} \setminus \left[N \cup \sup \zeta_{i-1} \cup (N \cup \sup \zeta_{i-1})\alpha_{i_j}^{-1} \right]$ для каждого $j \in \{1,\ldots,n_i\}$. Применим ко множествам $A_{i_1},A_{i_2},\ldots,A_{i_{n_i}}$ утверждение, доказанное выше: существуют такие попарно различные элементы a_1,a_2,\ldots,a_{n_i} из $A_{i_1},A_{i_2},\ldots,A_{i_{n_i}}$ соответственно, что все элементы множества $C \Longrightarrow \{a_j,a_j\alpha_{i_j}^{-1} \mid j \in \{1,\ldots,n_i\}\}$ также попарно различны. Положим

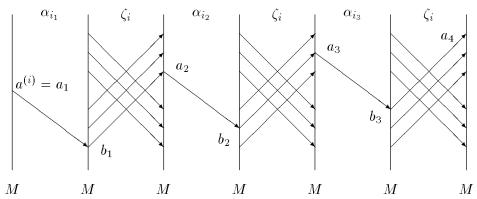
 $b_i \rightleftharpoons a_i \alpha_{i_i}$. Выберем $a_{n_i+1} \in A_{i_1} \backslash C$ и определим инволюцию ζ_i так:

$$b_j\zeta_i=a_{j+1},\ a_{j+1}\zeta_i=b_j$$
 для всех $j\in\{1,\ldots,n_i\},$ $c\zeta_i=c$ для любых $c\in M\setminus\{a_1,\ldots,a_{n_i+1},b_1,\ldots,b_{n_i}\}.$

Так как среди элементов $a_1, \ldots, a_{n_i+1}, b_1, \ldots, b_{n_i}$ нет равных, инволюция ζ_i определена корректно. Из определения множеств A_{i_j} и выбора элементов $a_j \in A_{i_j}$ следует свойство (2). Полагаем $a^{(i)} \rightleftharpoons a_1$. Тогда

$$a^{(i)}w(\vec{\alpha},\zeta_{i}) = a_{1}\alpha_{i_{1}}\zeta_{i}^{m_{i_{1}}}\alpha_{i_{2}}\zeta_{i}^{m_{i_{2}}}\dots\alpha_{i_{n_{i}}}\zeta_{i}^{m_{in_{i}}} = a_{1}\alpha_{i_{1}}\zeta_{i}\alpha_{i_{2}}\zeta_{i}\dots\alpha_{i_{n_{i}}}\zeta_{i} = b_{1}\zeta_{i}\alpha_{i_{2}}\zeta_{i}\dots\alpha_{i_{n_{i}}}\zeta_{i} = a_{2}\alpha_{i_{2}}\zeta_{i}\dots\alpha_{i_{n_{i}}}\zeta_{i} = \dots = b_{n_{i}}\zeta_{i} = a_{n_{i}+1} \neq a_{1}$$

и свойства (1) и (3) доказаны. На рисунке проиллюстрировано то, что $a^{(i)}w_i(\vec{\alpha},\zeta_i)\neq a^{(i)}$, на примере $n_i=3$.



Пусть K — счетное подмножество ранее построенного множества N. Пусть также η — биекция множества K на K такая, что единственной орбитой биекции η является само множество K, в частности supp $\eta=K$. Обозначим через η' биекцию из S, определенную следующим образом: $\eta'|K=\eta$ и $\eta'|(M\backslash K)=\varepsilon_{M\backslash K}$. В силу свойства (2) имеет смысл биекция ζ

$$\Rightarrow \eta' \cdot \prod_{i \in \omega} \operatorname{supp} \zeta_i$$
. Очевидно, $\operatorname{supp} \zeta = \left(\bigcup_{i \in \omega} \operatorname{supp} \zeta_i\right) \cup K$ и $\zeta | K = \eta$. Кро-

ме того, из построения биекций $\zeta_i \in S$ и элементов $a^{(i)} \in M$ следует, что $a^{(i)}w_i(\vec{\alpha},\zeta)=a^{(i)}w_i(\vec{\alpha},\zeta_i) \neq a^{(i)}$. Легко понять, что бесконечное множество K является одной из орбит биекции ζ . Это значит, что $\zeta^k \notin S_{fin}$ ни для какого $k \in \mathbb{N}$.

Итак, по кортежу $\vec{\alpha} \in [S \backslash S_{fin}]^n$ и последовательности $\{w_i(\vec{a},x), i \in \mathbb{N}\}$ мы построили биекцию $\zeta \in S$ и последовательность $\{a^{(i)} \mid i \in \mathbb{N}\}$ попарно различных элементов из $M \backslash N$ так, что, во-первых, $a^{(i)}w_i(\vec{\alpha},\zeta) \neq a^{(i)}$ для любого $i \in \mathbb{N}$, а во-вторых, элемент $\bar{\zeta}$ имеет в группе \bar{S} бесконечный порядок.

Применим это к доказательству утверждения леммы. Возьмем произвольное m. Для каждого $i \in \mathbb{N}$ введем слова $u_i(\vec{a},x) \rightleftharpoons w_{i(\text{mod}\,m)+1}(\vec{a},x)$. Для произвольного кортежа $\vec{\alpha} \in [S \backslash S_{fin}]^n$ существуют биекция $\xi \in S$ и последовательность $\{b^{(i)} \mid i \in \mathbb{N}\}$ попарно различных элементов из $M \backslash N$ такие, что $b^{(i)}u_i(\vec{\alpha},\xi) \neq b^{(i)}$ для любого $i \in \mathbb{N}$. Зафиксируем $i \in \{1,\ldots,m\}$. Тогда $b^{(i+km)}w_i(\vec{\alpha},\xi) = b^{(i+km)}u_{i+\mathbf{N}m}(\vec{\alpha},\xi) \neq b^{(i+km)}$ для любого $k \in \mathbb{N}$. Следовательно, ѕирр $w_i(\vec{\alpha},\xi)$ содержит бесконечное множество $\{b^{(i+km)} \mid k \in \mathbb{N}\}$ и поэтому $w_i(\vec{\alpha},\xi) \neq \bar{\varepsilon}$ в \bar{S} . Таким образом, мы доказали, что $\bar{S} \not\models \varphi(\bar{\xi})$ и, кроме того, $\bar{\xi}$ имеет в \bar{S} бесконечный порядок.

Лемма 1 доказана.

Лемма 2. Пусть

$$w_i(\vec{a}, x) \rightleftharpoons a_{i_1} x^{m_{i_1}} a_{i_2} x^{m_{i_2}} \dots a_{i_{n_i}} x^{m_{i_{n_i}}}$$

— слово из $\mathcal{F}(a_1 \ldots a_n, x)$, где $m_{ij} \in \mathbb{Z} \setminus \{0\}$, $i \in \{1, \ldots, m\}$ и $\{i_1, \ldots, i_{n_i}\} \subseteq \{1, \ldots, n\}$. Тогда для любого кортежа $\vec{\alpha} \in [S \setminus S_{fin}]^n$ и любого $m_0 \in \mathbb{N}$ существует такая биекция $\xi \in S$, что $\bar{S} \not\models \varphi(\bar{\xi})$, где $\varphi(x) \rightleftharpoons \bigvee_{j=1}^m w_i(\vec{\alpha}, x) = \bar{\varepsilon}$, и элемент $\bar{\xi}$ имеет в группе \bar{S} порядок, не менее чем m_0 .

Доказательство. Обозначим через $W(\mathcal{A},b)$ набор $\{b,b^{-1},b^{-1}ab,ab,b^{-1}a\mid a\in\mathcal{A}\}$ групповых слов над алфавитом $\mathcal{A}\cup\{b\}$. Пусть $\vec{\alpha}=\alpha_1\dots\alpha_n$ — произвольный кортеж биекций из $S\backslash S_{fin}$ и $\mathcal{A}\rightleftharpoons\{\alpha_1,\dots,\alpha_n,\alpha_1^{-1},\dots,\alpha_n^{-1}\}$. Так как множество \mathcal{A} конечно и группа \bar{S} бесконечна, существует биекция $\beta\in S\backslash(\mathcal{A}S_{fin}\cup S_{fin})$. Ввиду того что S_{fin} — нормальная подгруппа в S, имеем $W(\mathcal{A},\beta)\cap S_{fin}=\emptyset$. Нетрудно заметить, что для каждого $i\in\{1,\dots,m\}$ равенство $w_i(\vec{\alpha},\vec{\beta}y)=\bar{\varepsilon}$ равносильно в \bar{S} равенству $u_i(\vec{\gamma},y)=\bar{\varepsilon}$, где $u_i(\vec{\gamma},y)=c_{j_1}y^{l_{j_1}}c_{j_2}y^{l_{j_2}}\ldots c_{j_{k_j}}y^{l_{j_{k_j}}}$, $\{j_1,\dots,j_{k_j}\}\subseteq\{1,\dots,d\}$, $\vec{c}\rightleftharpoons c_1\dots c_d$, γ_1,\dots,γ_d — некоторые биекции из $W(\mathcal{A},\beta)$ и $l_{jt}\in\{\pm 1\}$. При этом существенно, что $\gamma_j\in S\backslash S_{fin}$. Лемма 1 гарантирует существование биекции $\eta\in S$ такой, что

$$\bar{S} \not\models \left[\left(\bigvee_{i=1}^m u_i(\vec{\bar{\gamma}}, \bar{\eta}) = \bar{\varepsilon} \right) \vee \left(\bigvee_{j=1}^{m_0} (\bar{\gamma}\bar{\eta})^j = \bar{\varepsilon} \right) \right].$$

Следовательно, для $\xi \rightleftharpoons \beta \eta$ имеем $\bar{S} \not\models \varphi(\bar{\xi})$, и, кроме того, элемент $\bar{\xi}$ имеет в группе \bar{S} порядок, не менее чем m_0 .

Лемма 2 доказана.

Лемма 3. Пусть

$$w(\vec{a}, \vec{x}) \rightleftharpoons a_1 v_1(\vec{x}) \dots a_n v_n(\vec{x})$$

— несократимое в $\mathcal{F}(a_1,\ldots,a_n,x_1,\ldots,x_n)$ слово, где $v_i(\vec{x})$ — несократимое неединичное в $\mathcal{F}(x_1,\ldots,x_n)$ слово для $i\in\{1,\ldots,n\}$ и $v_1(\vec{x})\ldots v_n(\vec{x})\neq 1$ в $\mathcal{F}(x_1,\ldots,x_n)$. Тогда для произвольного кортежа $\vec{\alpha}\in S^n$ равенство $w(\vec{\alpha},\vec{x})=\bar{\varepsilon}$ равносильно в \bar{S} либо равенству $w_1(\vec{x})=\bar{\varepsilon}$ для некоторого несократимого неединичного слова $w_1(\vec{x})\in \mathcal{F}(x_1,\ldots,x_n)$, либо равенству $w_2(\vec{\beta},\vec{x})=\bar{\varepsilon}$ для некоторого несократимого в $\mathcal{F}(a_1,\ldots,a_n,x_1,\ldots,x_n)$ слова $w_2(\vec{a},\vec{x})\equiv a_1u_1(\vec{x})\ldots a_lu_l(\vec{x})$ и кортежа $\vec{\beta}\in [S\backslash S_{fin}]^l$. При этом $l\leq n$ и $u_1(\vec{x})\ldots u_l(\vec{x})\neq 1$ в $\mathcal{F}(x_1,\ldots,x_n)$.

Доказательство проведем индукцией по n. Пусть n = 1, тогда можно считать, что $w(\vec{a},x) = a_1 w(\vec{x})$ для некоторого неединичного несократимого слова $w_1(\vec{x}) \in \mathcal{F}(x_1,\ldots,x_n)$. Для произвольного $\alpha_1 \in S$ если $\alpha_1 \in S_{fin}$, то равенство $w(\bar{\alpha}_1, \vec{x}) = \bar{\varepsilon}$ равносильно в \bar{S} равенству $w_1(\vec{x}) = \bar{\varepsilon}$, в противном случае в качестве $w_2(\vec{a},\vec{x})$ можно взять само слово $w(\vec{a},\vec{x})$, а в качестве β_1 биекцию α_1 . Предположим, мы доказали утверждение для всех m < n. Если $\bar{\alpha}_i \neq \bar{\varepsilon}$ для любого $i \in \{1, \dots, n\}$, то все доказано. В противном случае заменим в слове $w(\vec{a}, \vec{x})$ вхождение всех букв a_i пустым словом, если и только если $\bar{\alpha}_i = \bar{\varepsilon}$ для каждого $i \in \{1, \dots, n\}$. Полученное слово заменим равным ему циклически несократимым [5] в $\mathcal{F}(a_1,\ldots,a_n,x_1,\ldots,x_n)$ словом $w'(\vec{a},\vec{x})$. Очевидно, равенства $w(\vec{\alpha}, \vec{x}) = \bar{\varepsilon}$ и $w'(\vec{\alpha}, \vec{x}) = \bar{\varepsilon}$ равносильны в \bar{S} . Если $w'(\vec{a}, \vec{x}) = w_1(\vec{x})$ в $\mathcal{F}(x_1, ..., x_n)$ для некоторого $w_1(\vec{x}) \in \mathcal{F}(x_1, ..., x_n)$, то все доказано. В противном случае $w'(\vec{a}, \vec{x}) \rightleftharpoons z_1(\vec{a}) v_1'(\vec{x}) \dots z_m(\vec{a}) v_m'(\vec{x})$ для некоторых несократимых и неединичных $z_i \in \mathcal{F}(a_1,\ldots,a_n)$ и $v_i' \in \mathcal{F}(x_1,\ldots,x_n)$, причем m < n. Полагаем $\gamma_i \rightleftharpoons z_i(\vec{\alpha})$ и $w''(\vec{a}, \vec{x}) \rightleftharpoons a_1 v_1'(\vec{x}) \dots a_m v_m'(\vec{x})$. Легко понять, что слово $v_1'(\vec{x}) \dots v_m'(\vec{x})$ является циклической перестановкой слова $v_1(\vec{x}) \dots v_n(\vec{x})$ и поэтому не равно пустому слову. Значит, к слову $w''(\vec{a}, \vec{x})$ и кортежу $\vec{\gamma}$ применимо предположение индукции. А так как в S $w''(\vec{\gamma}, \vec{x}) = w'(\vec{\gamma}, \vec{x})$, имеем требуемое. Лемма 3 доказана.

Следующая лемма показывает, в частности, разрешимость теории $\exists \forall \lor S.$

Лемма 4. Пусть $\nu = \exists \vec{a} \forall \vec{x} \bigvee_{i=1}^k \varphi_i(\vec{a}, \vec{x}) = 1$ — произвольное предложение языка $\exists \forall \lor$ сигнатуры $\langle \cdot, ^{-1}, 1 \rangle$, $\vec{e}\partial e$

$$\varphi_i(\vec{a}, \vec{x}) \rightleftharpoons u_1^{(i)}(\vec{a})v_1^{(i)}(\vec{x}) \dots u_{n_i}^{(i)}(\vec{a})v_{n_i}^{(i)}(\vec{x})u_{n_i+1}^{(i)}(\vec{a})$$

— несократимое неединичное слово из $\mathcal{F}(a_1,\ldots,a_n,x_1,\ldots,x_n),\ u_j^{(i)}(\vec{a}),\ v_j^{(i)}(\vec{x})$ для $i\in\{1,\ldots,k\},\ j\in\{1,\ldots,n_i\}$ — неединичные слова из $\mathcal{F}(a_1,\ldots,a_n),$ $\mathcal{F}(x_1,\ldots,x_n)$ соответственно. Тогда $S\models\nu$ тогда и только тогда, когда существует $i\in\{1,\ldots,k\}$ такое, что $v_1^{(i)}(\vec{x})\ldots v_{n_i}^{(i)}(\vec{x})=1$ в $\mathcal{F}(x_1,\ldots,x_n)$.

Доказательство. Не ограничивая общности, можно считать, что $u_1^{(i)}(\vec{a}) \neq 1$ и $u_{n_i+1}^{(i)}(\vec{a}) = 1$ для всех $i \in \{1,\dots,k\}$, ибо всегда можно взять циклически несократимую перестановку слова $\varphi_i(\vec{a},\vec{x})$ с таким свойством. Пусть для некоторого $i \in \{1,\dots,k\}$ слово $v_1^{(i)}(\vec{x})\dots v_{n_i}^{(i)}(\vec{x}) = 1$ в $\mathcal{F}(x_1,\dots,x_n)$. Тогда, очевидно, $S \models \nu$; для этого достаточно положить $\vec{a} \rightleftharpoons \varepsilon \dots \varepsilon$. Обратно, пусть $S \models \nu$, т.е. есть такой кортеж $\vec{\alpha} \in S^n$, что $S \models \forall \vec{x} \bigvee_{i=1}^k \varphi_i(\vec{\alpha},\vec{x}) = 1$. Положим $\beta_j^{(i)} \rightleftharpoons u_j^{(i)}(\vec{\alpha})$ для всех $i \in \{1,\dots,k\}, \ j \in \{1,\dots,n_i\}$. Тогда $\bar{S} \models \forall \vec{x} \bigvee_{i=1}^k w_i(\bar{\vec{\beta}},\vec{x}) = \bar{\varepsilon}$, где $w_i(\vec{b},\vec{x}) \rightleftharpoons b_1^{(i)}v_1^{(i)}(\vec{x})\dots b_{n_i}^{(i)}v_{n_i}^{(i)}(\vec{x})$ и $\bar{b} \rightleftharpoons b_1^{(1)}\dots b_{n_k}^{(1)}\dots b_{n_k}^{(k)}$. Ясно, что слова $w_i(\bar{b},\vec{x})$ циклически несократимы в $\mathcal{F}(b_1^{(1)}\dots b_{n_k}^{(k)},x_1,\dots,x_n)$. Мы находимся в условиях леммы 3, поэтому без ограничения общности можно считать, что

$$\bar{S} \models \forall \, \vec{x} \, \left[\left(\bigvee_{i=1}^l w_i(\vec{\bar{\beta}}, \vec{x}) = \bar{\varepsilon} \right) \vee \left(\bigvee_{i=l+1}^k w_i(\vec{x}) = \bar{\varepsilon} \right) \right]$$

для некоторого $l \leq k$, несократимых неединичных слов $w_{l+1}(\vec{x}), \ldots, w_k(\vec{x})$ из $\mathcal{F}(x_1, \ldots, x_n)$ и биекций $\beta_1^{(1)}, \ldots, \beta_{n_1}^{(1)}, \ldots, \beta_1^{(l)}, \ldots, \beta_{n_l}^{(l)}, \ldots, \beta_{n_l}^{(l)} \in S \backslash S_{fin}$. С этого места для простоты будем считать, что k=1. Все рассуждения, приводимые ниже, легко распространяются на случай произвольного k. Итак,

$$\bar{S} \models \forall \, \vec{x} \, w(\vec{\beta}, \vec{x}) = \bar{\varepsilon}, \tag{1}$$

где $w(\vec{b},\vec{x})$ — неединичное слово из $\mathcal{F}(b_1,\ldots,b_n,x_1,\ldots,x_n),\ \vec{b} \rightleftharpoons b_1\ldots b_n$ и $\vec{\beta} \rightleftharpoons \beta_1\ldots\beta_n \in [S\backslash S_{fin}]^n$. При этом слово $w(\vec{b},\vec{x})$ либо принадлежит $\mathcal{F}(x_1,\ldots,x_n)$, либо графически равно слову $b_1v_1(\vec{x})\ldots b_nv_n(\vec{x})$ для некоторых неединичных несократимых слов $v_1(\vec{x}),\ldots,v_n(\vec{x})$ из $\mathcal{F}(x_1,\ldots,x_n)$ таких, что $v_1(\vec{x})\ldots v_n(\vec{x}) \ne 1$ в $\mathcal{F}(x_1,\ldots,x_n)$. Ограничимся рассмотрением второго, более сложного случая.

Пусть слово $w(\vec{b}, \vec{x})$ графически равно слову

$$b_1 x_{i_1}^{s_1} \dots x_{j_1}^{t_1} b_2 x_{i_2}^{s_2} \dots x_{j_2}^{t_2} \dots b_n x_{i_n}^{s_n} \dots x_{j_n}^{t_n},$$

где $s_1, \ldots, t_1, s_2, \ldots, t_2, \ldots, s_n, \ldots, t_n \in \mathbb{Z} \setminus \{0\}$, и $I \subseteq \{1, \ldots, n\}$ для $I \rightleftharpoons \{i_1, \ldots, j_1, i_2, \ldots, j_2, \ldots, i_n, \ldots, j_n\}$. Опишем алгоритм, который путем последовательного применения леммы 2 получает из утверждения (1) цепочку вытекающих друг из друга следствий, последнее из которых противоречит лемме 2.

На первом шаге алгоритма фиксируем x_1 . Если $x_1 \not\in I$, то переходим ко второму шагу алгоритма и фиксируем x_2 . Если снова $x_2 \not\in I$, то рассматриваем x_3 и т.д. Не ограничивая общности, считаем, что $x_1 \in I$. Если $I = \{x_1\}$, то, воспользовавшись леммой 2, сразу же приходим к противоречию. Пусть $|I| \geq 2$. Кроме того, можно считать, что $j_n \neq 1$, ибо всегда можно взять циклически несократимую перестановку $\tilde{w}(\vec{b}, \vec{x}) \rightleftharpoons x_{j_n}^{t_n} w(\vec{b}, \vec{x}) x_{j_n}^{-t_n}$ слова $w(\vec{b}, \vec{x})$ так, чтобы при этом равенства $w(\vec{b}, \vec{x}) = 1$ и $\tilde{w}(\vec{b}, \vec{x}) = 1$ были равносильны в $\mathcal{F}(b_1, \ldots, b_n, x_1, \ldots, x_n)$. Просматриваем слово $w(\vec{b}, \vec{x})$ слева направо и выписываем так называемые x_1 -чередующиеся слова, т.е. слова вида

$$z_{m,d}(\vec{b}, x_1) \rightleftharpoons c_1 x_1^{r_1} c_2 x_1^{r_2} \dots c_d x_1^{r_d} c_{d+1},$$

где $m\in\{1,\ldots,n\},\ d\in\{0,\ldots,n-m\},\ r_i\in\{\pm 1\},\ c_i=b_{m+i-1},\ i\in\{2,\ldots,d\};$ $c_1\in\{1,b_m\},\ c_{d+1}\in\{1,b_{m+d}\}.$ При этом будем рассматривать только такие слова указанного вида, которые являются максимальными подсловами слова $w(\vec{b},\vec{x}).$ Заменим в слове $z_{m,d}(\vec{b},x_1)$ буквы c_{d+1} на b_m^{-1} , если $\bar{\beta}_{m+d}=\bar{\beta}_m^{-1},\ c_{d-1}$ — на b_{m-1}^{-1} , если $\bar{\beta}_{m+d-2}=\bar{\beta}_{m+2}^{-1},\$ и т.д. Наконец, заменим c_{d-p} на b_{m-p-1}^{-1} , если $\bar{\beta}_{m+d-p-1}=\bar{\beta}_{m+p+1}^{-1}.$ Так как слово $z_{m,d}(\vec{b},x_1)\neq 1$ в $\mathcal{F}(b_1,\ldots,b_n,x_1),$ то $p\leq \left[\frac{d}{2}\right].$ Обозначим через $z'_{m,d}(\vec{b},x_1)$ слово, полученное из слова $z_{m,d}(\vec{b},x_1)$ после этих преобразований. Пусть $z''_{m,d}(\vec{b},x_1)$ — циклически несократимое слово, равное слову $z'_{m,d}(\vec{b},x_1).$ Для слова $z''_{m,d}(\vec{b},x_1)$ возможен один из трех случаев:

- (a) $z_{m,d}''(\vec{b},x_1)=x_1^r$ в $\mathcal{F}(b_1,\ldots,b_n,x_1)$ для некоторого $r\in\mathbb{Z}ackslash\{0\};$
- (б) $z''_{m,d}(\vec{b},x_1)=b_{m+q}$ в $\mathcal{F}(b_1,\ldots,b_n,x_1)$ для некоторого $q\in\{0,\ldots,d\};$
- (в) $z''_{m,d}(\vec{b},x_1)$ является циклической перестановкой слова $g_1x_1^{r_1}g_2x_1^{r_2}\dots g_lx_1^{r_l}$, где $r_1,\dots,r_l\in\mathbb{Z}\backslash\{0\},\,g_1,\dots,g_l\in\left\{b_i,b_i^{-1},b_ib_j^{-1}\mid\bar{\beta}_i\bar{\beta}_j^{-1}\neq\bar{\varepsilon},\,i,j\in\{1,\dots,n\}\right\}$. Заметим, что для слова $w(\vec{b},\vec{x})=w(\vec{x})\in\mathcal{F}(b_1,\dots,b_n,x_1,\dots,x_n)$ x_1 -чередующиеся слова исчерпываются случаем (а). В каждом из случаев (а)–(в) мы находимся в условиях леммы 2. Следовательно, существует такая биекция $\xi\in S$, что каждое x_1 -чередующееся слово $z_{m,d}(\bar{\beta},\bar{\xi})\neq\bar{\varepsilon}$. Это значит, что в силу сделанного предположения в \bar{S} истинна формула $\forall x_2\dots x_n(w'(\bar{\gamma},\bar{y})=\bar{\varepsilon})$ для некоторого набора $\bar{\gamma}\in[S\backslash S_{fin}]^{k_1}$, $k_1\in\mathbb{N}$, где

$$w'(\vec{b}', \vec{y}) \rightleftharpoons b'_1 v'_1(\vec{y}) b'_2 v'_2(\vec{y}) \dots b'_{k_1} v'_{k_1}(\vec{y}),$$

 $\vec{b}'=b_1'\dots b_{k_1}',\ v_1'(\vec{y})$ — несократимое неединичное слово из $\mathcal{F}(x_2,\dots,x_n),$ $\vec{y} \rightleftharpoons x_2\dots x_n.$

Таким образом, нам удалось избавиться от переменной x_1 в исходной формуле. Если |I| > 2, то переходим ко второму шагу алгоритма, а именно фиксируем x_2 и выделяем x_2 -чередующиеся слова — подслова слова

 $w'(\vec{b}',\vec{y})$ и т.д. Продолжаем до тех пор, пока не дойдем до последней переменной, например x_n . Тогда получим, что в силу сделанного предположения в \vec{S} истинна формула $\forall x_n(w^{(n)}(\vec{\delta},x_n)=\bar{\varepsilon})$ для некоторого набора $\vec{\delta}\in[S\backslash S_{fin}]^{k_n}$, $k_n\in\mathbb{N}$, где $w^{(n)}(\vec{b}^{(n)},x_n)\rightleftharpoons b_1^{(n)}x_n^{p_1}b_2^{(n)}x_n^{p_2}\dots b_{k_n}^{(n)}x_n^{p_{k_n}}$, $\vec{b}^{(n)}=b_1^{(n)}\dots b_{k_n}^{(n)}$, $p_j\in\mathbb{Z}\backslash\{0\}$, причем $p_1+p_2+\dots+p_{k_n}\neq 0$. Это противоречит лемме 2. Следовательно, предположение о том, что $v_1(\vec{x})\dots v_k(\vec{x})\neq 1$ в $\mathcal{F}(x_1\dots x_n)$, неверно.

Лемма 4 доказана.

Доказательство теоремы. Покажем разрешимость теории $\exists \forall \land \lor S$. Пусть $\nu \Rightarrow \exists \vec{a} \forall \vec{x} \bigwedge_{i=1}^{n} \bigvee_{j=1}^{m_i} w_{ij}(\vec{a}, \vec{x}) = 1$ — произвольное предложение языка $\exists \forall \land \lor$ сигнатуры $\langle \cdot, ^{-1}, 1 \rangle$, представленное в конъюнктивной нормальной форме, где $w_{ij}(\vec{a}, \vec{x}) \Rightarrow u_1^{(ij)}(\vec{a})v_1^{(ij)}(\vec{x})\dots u_{k_{ij}}^{(ij)}(\vec{a})v_{k_{ij}}^{(ij)}(\vec{x})u_{k_{ij}+1}^{(ij)}(\vec{a})$ — несократимое неединичное слово из $\mathcal{F}(a_1, \dots, a_n, x_1, \dots, x_n)$, причем $u_l^{(ij)}(\vec{a}) \neq 1$ и $v_d^{(ij)}(\vec{x}) \neq 1$ для $l \in \{1, \dots, n\}, d \in \{1, \dots, k_{ij}\}$. Докажем, что $S \models \nu$ тогда и только тогда, когда для любого $l \in \{1, \dots, n\}$ существует такое $i_j \in \{1, \dots, m_i\}$, что в $\mathcal{F}(x_1, \dots, x_n)$ истинно равенство

$$v_1^{(i,j_i)}(\vec{x})v_2^{(i,j_i)}(\vec{x})\dots v_{k_{i,j_i}}^{(i,j_i)}(\vec{x}) = 1.$$
 (2)

Заметим вначале, что в силу полноты элементарной теории $\mathcal{E}S$

$$[S \models \nu] \Leftrightarrow \left[\exists \vec{a} \bigwedge_{i=1}^{n} \forall \vec{x} \bigvee_{j=1}^{m_i} w_{ij}(\vec{a}, \vec{x}) = 1 \right].$$

Пусть $S \models \nu$, т.е. существует кортеж $\vec{\alpha} \in S^n$ такой, что для любого i истинно в \bar{S} предложение $\forall \vec{x} \bigvee_{j=1}^{m_i} w_{ij}(\vec{\alpha}, \vec{x}) = \bar{\varepsilon}$. Применяя лемму 4, приходим к выводу, что найдется такое $i_j \in \{1, \ldots, m_i\}$, что в $\mathcal{F}(x_1, \ldots, x_n)$ справедливо равенство (2). Обратно, пусть справедливо равенство (2). Тогда, взяв в качестве \vec{a} кортеж $\varepsilon \ldots \varepsilon$, имеем $S \models \nu$. Так как проблема равенства слов в свободной группе $\mathcal{F}(x_1, \ldots, x_n)$ разрешима [5], то таким образом доказана разрешимость теории $\exists \forall \wedge \vee S$.

Теорема доказана.

Автор выражает признательность научному руководителю Ю.М.Важенину за постановку задачи и ряд полезных замечаний при оформлении статьи.

Литература

- 1. Маевский В.В. Об ограниченных теориях бесконечных групп и полугрупп // Тез. докл. Международ. конф. по алгебре, посвященной памяти А.И.Мальцева, Новосибирск, 21–26 авг. 1989 г. Новосибирск, 1989. С.73.
- Важенин Ю.М. Критические теории // Сиб. матем. журн. 1986. Т.29, №1. С.23– 31.
- 3. Важенин Ю.М., Нагребецкая Ю.В. О границах разрешимости групп и полугрупп преобразований бесконечного множества // Тез. докл. Международ. конф. "Комбинаторные и вычислительные методы в математике", Омск, 28–31 авг. 1998 г. Омск, 1998. С.43.
- 4. Ершов Ю.Л., Палютин Е.А. Математическая логика. М.:Наука, 1979.
- 5. Магнус В., Каррас А., Солитэр Д. Комбинаторная теория групп. М.:Наука, 1974.

Статья поступила 04.03.1999 г.; окончательный вариант 16.08.1999 г.