ПРОЕКТИРОВАНИЯ ВПОЛНЕ ПРОСТЫХ ПОЛУГРУПП*

Рассмотрение полугрупп ряда известных классов (как, например, инверсных, клиффордовых, вполне простых) в качестве унарных полугрупп, т.е. полугрупп с дополнительной унарной операцией, можно считать уже традиционным. В рамках этого подхода естественно интересоваться проблематикой, связанной с решетками всех унарных подполугрупп. Данная работа посвящена исследованию некоторых свойств и, главным образом, изоморфизмов решеток всех унарных подполугрупп вполне простой полугруппы; такие изоморфизмы будем (по аналогии с соответствующей терминологией для групп) называть проектированиями. Очевидно, что унарные подполугруппы вполне простой полугруппы исчерпываются в точности ее вполне простыми подполугруппами. Решетку всех вполне простых подполугрупп вполне простой полугруппы S (включая пустое множество) обозначим через SubcsS; под SubS будем подразумевать решетку всех подполугрупп полугруппы S. Как отмечено в [1] (п. 2.4), решетка SubcsS не является в общем случае подрешеткой решетки SubS для вполне простой полугруппы S. Pasyмеется, в случае периодической вполне простой полугруппы S имеет место равенство SubS = SubcsS.

Решетка SubcsS для вполне простой полугруппы S уже исследовалась в работах [2] и [3]. В [2] получено описание вполне простых подполугрупп полугруппы S в терминах ее рисовского матричного представления и с помощью этого описания охарактеризованы вполне простые полугруппы S, у которых решетка SubcsS дистрибутивна или модулярна. В [3] описаны вполне простые полугруппы S, у которых решетка SubcsS удовлетворяет разнообразным обобщениям модулярности.

В настоящей работе предлагается другое описание любой вполне простой подполугруппы рисовской полугруппы матричного типа с помощью семейства подгрупп структурной группы, удовлетворяющих определенным условиям (см. предложение 1); оно эквивалентно описанию, полученному в [2], и потому предложение 1 приведено без доказательства. Предложение 2 позволяет представить строение решетки SubcsS в терминах решетки подполугрупп прямоугольной связки S/\mathcal{H} , где \mathcal{H} обозначает соответствующее

^{*}Работа выполнена при поддержке межвузовской научной программы «Университеты России — фундаментальные исследования» Министерства образования Российской Федерации (проект № 617).

[©] А. Я. Овсянников, 2000

отношение Грина на полугруппе S, и решетки подгрупп структурной группы полугруппы S. Как оказалось, это утверждение следует из результатов работы [4], относящихся к гораздо более общей ситуации.

С помощью предложений 1 и 2 изучаются как некоторые свойства решетки SubcsS, не рассматривавшиеся в [2] и [3], а именно выполнение на ней нетривиального тождества и дополняемость (см. теорему 1), так и проектирования вполне простых полугрупп, для которых решается проблема проективной классификации — аналог проблемы решеточной классификации для обычных полугрупп; см. [5], п. 23.3. Соответствующее утверждение доставляет теорема 2. Поскольку в случае периодической вполне простой полугруппы S, как было отмечено выше, имеет место равенство SubS = SubcsS, теорема 2 дает решение задачи X.13 из [5]. Она дает также необходимые условия изоморфизма решеток всех (а не только вполне простых) подполугрупп двух вполне простых полугрупп.

Результаты работы частично анонсированы в [6].

Через $\langle\!\langle X \rangle\!\rangle$ будем обозначать вполне простую подполугруппу вполне простой полугруппы, порожденную некоторым ее подмножеством X, а через SubgrG—решетку подгрупп группы G.

Для вполне простой полугруппы $S=\mathcal{M}(G,I,\Lambda,P)$ над группой G с сэндвич-матрицей $P=(p_{\lambda i})$ и подмножества A из S положим

$$I_A=\{i\in I\mid (i,g,\lambda)\in A$$
 для некоторых $g\in G,\lambda\in\Lambda\},$ $\Lambda_A=\{\lambda\in\Lambda\mid (i,g,\lambda)\in A$ для некоторых $g\in G,i\in I\},$ $A_{i\lambda}=\{g\in G\mid (i,g,\lambda)\in A\}$ для всех $i\in I_A,\lambda\in\Lambda,$ $G_{i\lambda}(A)=p_{\lambda i}A_{i\lambda},\ G_{\lambda}(A)=\bigcup_{i\in I_A}G_{i\lambda}(A).$

Эти обозначения будут использоваться в дальнейшем без особых ссылок.

Предложение 1. Пусть $S = \mathcal{M}(G, I, \Lambda, P)$ — вполне простая полугруппа над группой G с сэндвич-матрицей $P = (p_{\lambda i}), A$ —непустое подмножество из S. Множество A является вполне простой подполугруппой из S тогда и только тогда, когда выполняются следующие условия:

 ${
m a})$ для в $cex\;i,j\in I_A,\;\lambda\in\Lambda_A$ имеют место равенства

$$G_{i\lambda}(A) = G_{j\lambda}(A) = G_{\lambda}(A),$$

 $причем \ G_{\lambda}(A)$ является подгруппой в G;

b) для всех $i \in I_A, \; \lambda, \mu \in \Lambda_A$ имеет место равенство

$$G_{\mu}(A) = p_{\mu i} p_{\lambda i}^{-1} G_{\lambda}(A) p_{\lambda i} p_{\mu i}^{-1};$$

c) для всех $i,j\in I_A,\;\lambda,\mu\in\Lambda_A$ имеет место включение

$$p_{\lambda i}p_{\mu i}^{-1}p_{\mu j}p_{\lambda j}^{-1}\in G_{\lambda}(A).$$

При этом $A = \{(i, a, \lambda) \mid i \in I_A, \lambda \in \Lambda_A, a \in p_{\lambda i}^{-1}G_{\lambda}(A)\}.$

Замечание. Заметим, что для задания непустой вполне простой подполугруппы A вполне простой полугруппы S в предложении 1 достаточно одной подгруппы $G_{\lambda_0}(A)$, которая содержит элементы $p_{\lambda_0 i} p_{\mu i}^{-1} p_{\mu j} p_{\lambda_0 j}^{-1}$ для всех $i, j \in I_A, \ \mu \in \Lambda_A$.

Из предложения 1 непосредственно вытекает

Следствие 1. Пусть $S = \mathcal{M}(G, I, \Lambda, P)$ — вполне простая полугруппа над группой G с сэндвич-матрицей $P = (p_{\lambda i}); A, B$ — непустые вполне простые подполугруппы из S. Включение $A \subseteq B$ имеет место тогда и только тогда, когда $I_A \subseteq I_B, \ \Lambda_A \subseteq \Lambda_B, \ G_{\lambda}(A) \subseteq G_{\lambda}(B)$ для некоторого $\lambda \in \Lambda_A$.

Для полугруппы A через E_A , как обычно, обозначим множество всех идемпотентов из A. В случае, когда $A \in \operatorname{Sub}S$ для некоторой полугруппы S, возможно $A = \emptyset$; тогда будем считать, что $E_A = \emptyset$. Пусть S—вполне простая полугруппа. Определим на решетке $\operatorname{Subcs}S$ следующее отношение ρ : положим $A \rho B \Leftrightarrow E_A = E_B$.

Предложение 2. Пусть $S = \mathcal{M}(G, I, \Lambda, P)$ — вполне простая полугруппа над группой G с сэндвич-матрицей $P = (p_{\lambda i})$. Отношение ρ является конгруэнцией на решетке SubcsS. При этом фактор-решетка $(\operatorname{Subcs} S)/\rho$ изоморфна решетке подполугрупп $\operatorname{Sub}(S/\mathscr{H})$ прямоугольной полугруппы идемпотентов S/\mathscr{H} и для любой непустой подполугруппы A из $\operatorname{Subcs} S$ ρ -класс A^{ρ} , содержащий A, изоморфен интервалу $\mathbf{J} = [G_{\lambda}(\langle\!\langle E_A \rangle\!\rangle), G]$ в решетке подгрупп $\operatorname{Subgr} G$ группы G.

Доказательство. Первые два утверждения следуют из теоремы 3.4 работы [4], если спроецировать последнюю на вполне простые полугруппы. В этой работе дано и описание ρ -классов как некоторых интервалов в решетке SubcsS. Однако извлечь из него прямо третье утверждение затруднительно.

Чтобы доказать это утверждение, рассмотрим ρ -класс A^{ρ} для непустой подполугруппы $A \in \operatorname{Subcs} S$. Тогда, очевидно, $\langle \langle E_A \rangle \rangle \in A^{\rho}$, причем $\langle \langle E_A \rangle \rangle$ есть наименьший элемент подрешетки A^{ρ} . Для любого $B \in A^{\rho}$ положим $\psi(B) = G_{\lambda}(B)$. Согласно предложению 1 отображение ψ инъективно отображает A^{ρ} в **J**. Покажем, что ψ —сюръективное отображение. Возьмем $H \in \mathbf{J}$ и определим подмножество C из S, полагая $I_C = I_A$, $\Lambda_C = \Lambda_A$, $G_{\lambda}(C) = H$ и $G_{i\mu}(C) = p_{\mu i}p_{\lambda i}^{-1}Hp_{\lambda i}p_{\mu i}^{-1}$ для любых $i \in I_A$, $\mu \in \Lambda_A$. Так как $G_{\lambda}(\langle \langle E_A \rangle \rangle) \subseteq H$

и в силу условия «с» предложения 1 $p_{\lambda i}p_{\mu i}^{-1}p_{\mu j}p_{\lambda j}^{-1}\in G_{\lambda}(\langle\langle E_A\rangle\rangle)$ при любых $i,j\in I_A,\ \lambda,\mu\in\Lambda_A$, имеем

$$p_{\lambda i} p_{\mu i}^{-1} p_{\mu j} p_{\lambda i}^{-1} \in H \tag{1}$$

для всех $i,j\in I_A,\ \lambda,\mu\in\Lambda_A.$ С помощью (1) нетрудно убедиться, что для множеств I_A,Λ_A и подгрупп $G_{i\mu}(C)$ выполняются условия «а»—«с» предложения 1. Таким образом, по предложению 1 C есть вполне простая подполугруппа (очевидно, лежащая в A^ρ и обладающая свойством $\psi(C)=H$). Следовательно, ψ — сюръективное отображение A^ρ на ${\bf J}$, т.е. биекция. В силу предложения 1, ψ является изотонным отображением, т.е. изоморфизмом решетки A^ρ на ${\bf J}$.

Предложение 2 позволяет в известном смысле представить строение решетки SubcsS через строение решетки подгрупп группы G и решетки подполугрупп прямоугольной полугруппы $I \times \Lambda$.

Как сообщил автору В. Б. Репницкий, им было независимо доказано утверждение предложения 2 в частном случае периодических вполне простых полугрупп (когда SubcsS = SubS).

Для классов алгебр $\mathfrak A$ и $\mathfrak B$ данной сигнатуры через $\mathfrak A \circ \mathfrak B$ обозначим их произведение в смысле A. U. Мальцева; напомним, что этот класс состоит из всех алгебр A той же сигнатуры, имеющих такую конгруенцию σ , что $A/\sigma \in \mathfrak B$, а каждый класс конгруенции σ , являющийся подалгеброй в A, принадлежит $\mathfrak A$. Для класса вполне простых полугрупп $\mathfrak C$ через Subcs $\mathfrak C$ обозначим класс решеток, изоморфных решеткам вполне простых подполугрупп полугрупп из $\mathfrak C$; через Subgr $\mathfrak G$ обозначим класс решеток, изоморфных решеткам подгрупп групп из данного класса $\mathfrak G$ и в аналогичном смысле будем использовать обозначение Sub $\mathfrak G$ для класса решеток, изоморфных решеткам подполугрупп полугрупп из данного класса $\mathfrak G$. Из предложения 2 немедленно получается следующее утверждение.

Следствие 2. Пусть \mathfrak{G} — некоторый класс групп, \mathfrak{B} — некоторый класс прямоугольных полугрупп идемпотентов и $\mathfrak{C} = \mathfrak{G} \circ \mathfrak{B}$. Тогда, очевидно, \mathfrak{C} есть некоторый класс вполне простых полугрупп, и

$$Subcs \mathfrak{C} \subseteq (Subgr \mathfrak{G}) \circ (Sub \mathfrak{B}).$$

Теорема 1. Пусть S — вполне простая полугруппа над группой G.

- а) Решетка SubcsS удовлетворяет нетривиальному тождеству тогда и только тогда, когда решетка подгрупп группы G удовлетворяет нетривиальному тождеству.
- b) Решетка SubcsS есть решетка с дополнениями тогда и только тогда, когда полугруппа S идемпотентно порождена.

Доказательство. Проверим утверждение «а». Так как G изоморфна подгруппе из S, если решетка SubcsS удовлетворяет нетривиальному тождеству, то и решетка SubgrG удовлетворяет (тому же самому) нетривиальному тождеству. Для доказательства обратной импликации нам потребуется следующее утверждение, легко проверяемое непосредственно. Оно сообщено автору В. Б. Репницким.

Пемма 1. Пусть S—прямоугольная полугруппа идемпотентов. Тогда для любых $Y, X_1, X_2, X_3 \in \mathrm{Sub}S$ справедливо равенство

$$Y \cap \langle X_1, X_2, X_3 \rangle = \langle Y \cap \langle X_1, X_2 \rangle, Y \cap \langle X_1, X_3 \rangle, Y \cap \langle X_2, X_3 \rangle \rangle$$

m.e. в решетке $\mathrm{Sub}S$ выполняется тождество 3-дистрибутивности

$$y \land (x_1 \lor x_2 \lor x_3) = (y \land (x_1 \lor x_2)) \lor (y \land (x_1 \lor x_3)) \lor (y \land (x_2 \lor x_3)).$$

Пусть на решетке SubgrG выполняется нетривиальное тождество. Обозначим через $\mathfrak X$ многообразие решеток, порожденное SubgrG, и через $\mathfrak Y$ — многообразие решеток, заданное тождеством 3-дистрибутивности. Согласно следствию предложения 2 имеем Subcs $S \in \mathfrak X \circ \mathfrak Y$. В работе [7] доказано, что если $\mathfrak A$ и $\mathfrak B$ — собственные многообразия решеток (т.е. они отличны от класса всех решеток), то класс $\mathfrak A \circ \mathfrak B$ порождает собственное многообразие решеток. Следовательно, на решетке SubcsS выполняется некоторое нетривиальное тождество. Утверждение «а» доказано.

Докажем утверждение «b». Пусть SubcsS есть решетка с дополнениями. Тогда вполне простая подполугруппа K полугруппы S, порожденная всеми ее идемпотентами, имеет в SubcsS дополнение D. Так как K имеет непустое пересечение с любой непустой подполугруппой из SubcsS, имеем $D=\emptyset$. Таким образом, S=K.

Обратно, пусть $S=\mathcal{M}(G,I,\Lambda,P)$ — идемпотентно порожденная вполне простая полугруппа и $A\in \operatorname{Subcs} S$. Если A=S, то \emptyset является дополнением к A. Пусть $A\neq S$. Тогда существует идемпотент, не принадлежащий A. Это значит, что $I_A\neq I$ или $\Lambda_A\neq \Lambda$. Ради определенности предположим, что имеет место первое условие. Тогда вполне простая подполугруппа

$$D = \{(j, g, \lambda) \mid j \in I \setminus I_A, \ g \in G, \ \lambda \in \Lambda\},\$$

как легко видеть, является дополнением к A в решетке SubcsS.

Проблему проективной классификации для вполне простых полугрупп, заданных рисовским матричным представлением, решает

Теорема 2. Пусть $S = \mathcal{M}(G, I, \Lambda, P), \ T = \mathcal{M}(H, J, M, Q)$ — вполне простые полугруппы, заданные рисовским матричным представлением. Для того чтобы S и T проектировались друг на друга, необходимо и достаточно, чтобы группы G и H проектировались друг на друга, причем существовали бы такое проектирование φ группы G на H и такие биекции $a:I \longrightarrow aI, \ \beta:\Lambda \longrightarrow \beta\Lambda \ (3\mathrm{десь}\ \{aI,\beta\Lambda\}=\{J,M\}),$ что для любых $i,j\in I,\lambda,\mu\in\Lambda$ справедливо

$$\varphi\langle\langle p_{\lambda i} p_{\mu i}^{-1} p_{\mu j} p_{\lambda j}^{-1} \rangle\rangle = \begin{cases} \langle\langle q_{\beta \lambda a i} q_{\beta \mu a i}^{-1} q_{\beta \mu a j} q_{\beta \lambda a j}^{-1} \rangle\rangle &, ecnu \ aI = J, \ \beta \Lambda = M; \\ \langle\langle q_{a i \beta \lambda}^{-1} q_{a i \beta \mu} q_{a i \beta \mu} q_{a i \beta \lambda} \rangle\rangle &, ecnu \ aI = M, \ \beta \Lambda = I. \end{cases}$$
(2)

Доказательство. Необходимость. Пусть ψ — проектирование полугруппы S на T. Очевидно, что если $e \in E_S$, то $\psi\langle e \rangle = \langle f \rangle$ для некоторого $f \in E_T$. Таким образом, ψ индуцирует некоторую биекцию γ множества E_S на E_T . Эта биекция обладает следующим очевидным свойством: для любой непустой вполне простой подполугруппы A из S и любого $e \in E_S$ $e \in A \Leftrightarrow \gamma e \in \psi A$. Следовательно, для любых $A, B \in \operatorname{Subcs}S$ $E_A = E_B \Leftrightarrow E_{\psi A} = E_{\psi B}$. Рассматривая на S и T соответствующие конгруэнции и применяя предложение 2, констатируем, что прямоугольные полугруппы $I \times \Lambda$ и $J \times M$ проектируются друг на друга, т.е. они решеточно изоморфны. В силу теоремы 30.8 [5] они изоморфны или антиизоморфны. В первом случае существуют биекции a множества I на J и g множества Λ на M, а во втором — существуют биекции a множества I на I и I множества I на I и I предположим для определенности, что имеет место первый случай; во втором рассуждения проводятся совершенно аналогично.

Для любой подгруппы F группы G положим

$$C(i, F, \lambda) = \{(i, p_{\lambda i}^{-1} f, \lambda) \mid f \in F\}.$$

$$(3)$$

Легко проверить, что $C(i, F, \lambda)$ есть подгруппа максимальной подгруппы $S_{i\lambda} = \{(i, g, \lambda) \mid g \in G\}$ вполне простой полугруппы S. Аналогичное (3) обозначение будем использовать и для подгрупп структурной группы H вполне простой полугруппы T. Нам потребуется следующее непосредственно проверяемое утверждение.

Лемма 2. Пусть $S = \mathcal{M}(G, I, \Lambda, P)$ — вполне простая полугруппа над группой G с сэндвич-матрицей $P = (p_{\lambda i}), S_{i\lambda}$ — максимальная подгруппа полугруппы S. Тогда отображение $\sigma_{i\lambda}: \mathrm{Subcs} G \longrightarrow \mathrm{Subcs} S_{i\lambda}$, определенное равенством

$$\sigma_{i\lambda}F = C(i, F, \lambda) \tag{4}$$

для любой подгруппы F группы G, является проектированием группы G на группу $S_{i\lambda}$.

Зафиксируем $i \in I$ и $\lambda \in \Lambda$ и рассмотрим максимальную подгруппу $S_{i\lambda}$ полугруппы S. Она изоморфна G. Ясно, что $\psi S_{i\lambda} = T_{ai\beta\lambda}$. Согласно лемме 2 существует проектирование $\sigma_{i\lambda}$ группы G на S, определенное формулой (4), а также проектирование $\tau_{ai\beta\lambda}$ группы H на $T_{ai\beta\lambda}$, определенное формулой

$$\tau_{ai\beta\lambda}K = C(ai, K, \beta\lambda) \tag{5}$$

для любой подгруппы K группы H. Положим

$$\varphi_{i\lambda} = \tau_{ai\beta\lambda}^{-1} \psi \sigma_{i\lambda}. \tag{6}$$

Очевидно, что $\varphi_{i\lambda}$ есть проектирование группы G на группу H.

Покажем, что для любых $i,j\in I,\ \lambda\in\Lambda$ справедливо $\varphi_{i\lambda}=\varphi_{j\lambda}$. Пусть F — произвольная подгруппа в G. Положим $N_i=\varphi_{i\lambda}(F),\ N_j=\varphi_{j\lambda}(F)$. Рассмотрим в S подмножество $D=C(i,F,\lambda)\cup C(j,F,\lambda)$. Легко проверить, что оно будет вполне простой подполугруппой и даже прямоугольной группой. Рассмотрим подполугруппу ψD . Она порождается подполугруппами $\psi C(i,F,\lambda)=C(ai,N_i,\beta\lambda)$ и $\psi C(j,F,\lambda)=C(aj,N_j,\beta\lambda)$. Поскольку ψD расположена в одном \mathcal{L} -классе полугруппы T, идемпотенты которого образуют левосингулярную полугруппу, она является прямоугольной группой. Отсюда легко следует, что $N_i=N_j$.

Аналогично проверяется, что для любых $i \in I$, $\lambda, \mu \in \Lambda$ справедливо равенство $\varphi_{i\lambda} = \varphi_{i\mu}$. Таким образом, для любых $i, j \in I$, $\lambda, \mu \in \Lambda$, справедливо $\varphi_{i\lambda} = \varphi_{i\mu}$. Соответствующее проектирование группы G на H мы и обозначим через φ .

Рассмотрим в S вполне простую подполугруппу A, порожденную идемпотентами из максимальных подгрупп $S_{i\lambda}$, $S_{j\mu}$. Тогда $B=\psi A$ порождается идемпотентами из $T_{ai\beta\lambda}$, $T_{aj\beta\mu}$. С помощью предложения 1 нетрудно убедиться, что $A\cap S_{i\lambda}=C(i,F,\lambda)$, где $F=\langle\!\langle p_{\lambda i}p_{\mu i}^{-1}p_{\mu j}p_{\lambda j}^{-1}\rangle\!\rangle$, а $B\cap T_{ai\beta\lambda}=C(ai,K,\beta\lambda)$, где $K=\langle\!\langle q_{\beta\lambda ai}q_{\beta\mu ai}^{-1}q_{\beta\mu aj}q_{\beta\lambda aj}^{-1}\rangle\!\rangle$.

Ясно, что $\psi(A\cap S_{i\lambda})=B\cap T_{ai\beta\lambda}$. Используя равенства (4)–(6), получаем $\varphi F=\varphi_{i\lambda}F=\tau_{ai\beta\lambda}^{-1}\psi\sigma_{i\lambda}F=\tau_{ai\beta\lambda}^{-1}\psi(A\cap S_{i\lambda})=\tau_{ai\beta\lambda}(B\cap T_{ai\beta\lambda})=K,$ откуда $\varphi F=K$. Учитывая определения F и K, убеждаемся, что условие (2) в рассматриваемом случае ($aI=J,\ \beta\Lambda=\mathrm{M}$) доказано. Таким образом, необходимость условий теоремы 2 доказана.

Достаточность. Пусть все условия теоремы выполняются для вполне простых полугрупп S и T. Предположим для определенности, что aI=J и

 $\beta\Lambda={
m M}$ (другой случай рассматривается совершенно аналогично). Зафиксируем непустую вполне простую подполугруппу A в S. В соответствии с определением (3) из предложения 1 легко вывести, что

$$A = \bigcup_{i \in I_A, \, \lambda \in \Lambda_A} C(i, G_{\lambda}(A), \lambda),$$

где подгруппы $G_{\lambda}(A)$ группы G удовлетворяют условиям «b» и «c» предложения 1. В силу условия (2) доказываемой теоремы подгруппы $\varphi G_{\lambda}(A)$ группы H также удовлетворяют условиям, получающимся из упомянутых условий «b» и «c» заменой коэффициентов $p_{\lambda i}$ на $q_{\beta \lambda a i}$. По предложению 1 подмножество

$$B = \bigcup_{i \in I_A, \lambda \in \Lambda_A} C(ai, \varphi G_{\lambda}(A), \beta \lambda)$$

будет вполне простой подполугруппой полугруппы T. Положим $\psi A = B$. Полагая $\psi \emptyset = \emptyset$, легко проверить непосредственно, что ψ является изотонной биекцией решетки SubcsS на SubcsT. Теорема 2 полностью доказана.

Следствие 3. Пусть $S = G \times E$ — прямоугольная полугруппа. Вполне простая полугруппа T проектируется на S тогда и только тогда, когда $T = H \times F$, где H — группа, проектирующаяся на G, F — прямоугольная полугруппа идемпотентов, изоморфная или антиизоморфная E.

Доказательство. Легко понять, что в любом рисовском матричном представлении полугруппы S сэндвич-матрица состоит лишь из единиц группы G. Непосредственный подсчет показывает, что условие (2) теоремы 2 в этом случае обеспечивает выполнение указанного свойства для сэндвич-матрицы вполне простой полугруппы T. Утверждение следствия теперь непосредственно вытекает из теоремы.

Проблема проективной определяемости для вполне простых полугрупп остается пока открытой.

Из предложения 31.1.2 [5] следует, что при изоморфизме решетки $\operatorname{Sub}S$ вполне простой полугруппы S на решетку $\operatorname{Sub}T$ для произвольной полугруппы T последняя оказывается вполне простой, если S несингулярна или не является группой, имеющей негрупповые решеточно изоморфизме образы (такие группы полностью описаны в теореме 27.2 из [5]); при этом изоморфизме вполне простые подполугруппы из S переходят на вполне простые подполугруппы из T, так что изоморфизм решеток $\operatorname{Sub}S$ и $\operatorname{Sub}T$ влечет за собой изоморфизм решеток $\operatorname{Sub}S$ и $\operatorname{Sub}T$ влечет утверждение.

Спедствие 4. Пусть S — вполне простая полугруппа, не являющаяся сингулярной полугруппой или группой, решеточно изоморфной полугруппе, не являющейся группой. Тогда любая решеточно изоморфная S полугруппа T является вполне простой и для матричных представлений полугрупп S и T справедливо заключение теоремы 2.

Автор выражает глубокую благодарность Л. Н. Шеврину за внимание к работе, а также В. Б. Репницкому и С. И. Кацману за полезные обсуждения.

Литература

- 1. Шеврин Л. Н. Полугруппы // Общая алгебра. Т.2. М.: Наука, 1991. Гл.4. С.11—191.
- 2. Johnston K. Subalgebra lattices of completely simple semigroups // Semigroup Forum. 1984. Vol.29. P.109–121.
- 3. Johnston K. Semimodularity and weak modularity in subalgebra lattices of completely simple semigroups // Semigroup Forum. 1986. Vol.33. P.285–292.
- 4. Johnston K. Decomposition of regular subsemigroup lattices // Semigroup Forum. 1994. Vol.49. P.131–135.
- 5. Шеврин Л. Н., Овсянников А. Я. Полугруппы и их подполугрупповые решетки // Свердловск: Изд-во Урал. ун-та, 1990. Ч.1; 1991. Ч.2. Англ. перевод: Shevrin L. N., Ovsyannikov A. J. Semigroups and their subsemigroup lattices. Dordrecht: Kluwer Academic Publishers, 1996.
- 6. ОВСЯННИКОВ А. Я. Унарные подполугруппы вполне простых полугрупп // Третья Международная конференция по алгебре: Сб. тез. Красноярск, 1993. С. 242—243.
- 7. ЛЕНДЕР В. Б. Об ограниченных предмногообразиях структур // Мат. записки Урал. ун-та. (Алгебраические системы. Многообразия. Решетки подсистем.) Т.13, №3. Свердловск, 1983. С.87–94.

Статья поступила 25.08.2000 г.