РАЗМЕР КРИТИЧЕСКОГО СВОБОДНОГО ОБЪЕМА ДЛЯ НАЧАЛА СПОНТАННОГО Г-А МАРТЕНСИТНОГО ПРЕВРАЩЕНИЯ. 1. АЛГОРИТМ РАСЧЕТА ДОЛИ ПРЕВРАЩЕННОГО АУСТЕНИТА

Чащина В.Г., Федоровских Е.С., Кащенко М.П. *Руководитель – профессор, д.ф.-м.н. Кащенко М.П* Уральский государственный лесотехнический университет, Екатеринбург, mikashhenko&yandex. ru

В сплавах на основе железа при охлаждении наблюдается у-а мартенситное превращение (МП) в некотором интервале температур $M_s - M_f$. Верхняя граница интервала M_s – температура начала МП в условиях отсутствия мартенситных кристаллов, а нижняя граница M_f – в условиях, когда объем исходной фазы заметно уменьшился за счет образования мартенсита. Кроме того, уже в [1] было установлено существование критического размера зерна D_c, ниже которого протекание γ-α МП оказывается невозможным. Имеют место зависимости M_s и D_c от концентрации С второго компонента сплава. В динамической теории γ-α МП [2,3] температура M_s рассматривается как оптимальная для генерации волн смещений атомов, управляющих ростом мартенситного кристалла, неравновесными электронами. Начальный этап формирования кристалла α- фазы интерпретируется как гетерогенное [2,3] зарождение в упругих полях дислокаций. Уже отдельной дислокации достаточно для возникновения областей с благоприятным для зарождения типом деформации [4]. Поперечный размер d начального возбужденного состояния, задающий толщину мартенситного кристалла, связан с размером L_{св} объема, свободного от дефектов, соотношением:

$$d \sim 10^{-2} L_{cB},$$
 (1)

(L_{св} может быть порядка среднего расстояния между дислокациями, мартенситными кристаллами или диаметра зерна D_c). Реализация пороговых условий генерации управляющих волн, скорее всего, возможна для длин волн λ , превышающих параметр решетки аустенита *a* по порядку величины ($a \approx 3.6 \ 10^{-10}$ м). Поскольку d $\leq \lambda /2$, то, с учетом (1), L_{min} ~ (D_c) _{min} > 10³ $a \approx 0.36$ мкм. Величина (D_c) _{min} ~ 1мкм соответствует наблюдаемым в сплавах железа результатам для концентраций второго компонента вне окрестности концентрации C*, задаваемой [5] условиями D_c (C*) $\rightarrow \infty$, M_s(C*) $\rightarrow 0$. При C < C*, прекращение МП наступает, если

$$L_{cb} \le L_{min} \approx 10^3 a \approx 0.36$$
 мкм. (2)

Рис.1. Плоская модель самоподобных ансамблей кристаллов: *а*- исходная фаза, *б*- первое поколение; *в*- второе поколение

В случае быстрой автокаталитической макрокинетики МП, когда имеет место статистическое подобие между последовательно возникающими поколениями (ансамблями) кристаллов, соотношения масштабов (1) и (2) позволяют оценить доли мартенсита δ_M и остаточного аустенита $\delta_A = 1 - \delta_M$ в рамках моделей самоподобных ансамблей. На рис. 1 представлена плоская модель для ортогонального сочленения кристаллов. Число п поколений физически реализуемых самоподобных ансамблей конечно. Эффективная толщина d_{efi} кристалла в j-поколении ($1 \le j \le n$) связана с размером L_{св (j-1)}

$$d_{\rm efj} = \kappa \, d_{\rm j} = \kappa \, 10^{-2} \, L_{\rm cb \, (j-1)} = \chi L_{\rm cb \, (j-1)}, \quad \chi = \kappa \, 10^{-2}, \quad L_{\rm cb \, j} = \left[\frac{1-\chi}{2}\right]^{j} \, L_{\rm cb0}, \qquad (3)$$

где $1 \le \kappa \le 10^2$, $10^{-2} \le \chi < 1$. Значения $\kappa \sim 1$ относятся к тонкопластинчатым кристаллам, а $\kappa \sim 10$ - к линзовидным, содержащим, наряду с тонкопластинчатым двойникованным мидрибом, обрамляющую область, существенно превышающую объем. мидриба.

В ј-ом поколении размер области L_{cB} _j, свободной от кристаллов мартенсита, снижается по сравнению с исходным размером L_{cB0} в $\left[\frac{1-\chi}{2}\right]^{j}$.раз. Для монокристалла аустенита с плотностью дислокаций $\rho \approx 10^4$ см⁻² величина $L_{cB0} \approx 1/\sqrt{\rho} = 10^{-2}$ см = 10^2 мкм. При заданном L_{min} для числа п реализуемых поколений находим

$$n \leq [\ln (L_{cb0} / L_{min})] / [\ln (2 / (1 - \chi)] \equiv n_{max},$$
(4)

то есть п равно целой части величины n_{max} . Если С \rightarrow С*, то L_{min} и (D_c) растут, тогда при одном и том же L_{cb0} число п будет снижаться.

При расчете δ_M удобно перейти от размерных $L_{_{CB}j}$ и $d_{_{ef}j}$ к безразмерным \tilde{L} и \tilde{d} , путем деления на $L_{_{CB}0}$ (при этом $\widetilde{L}_{_{CB}0} = 1$, а $0 < \widetilde{L}_{_{CB}j} < 1$). Тогда для трехмерного аналога плоской модели δ_M численно совпадает с объемом,

занятым кристаллами n поколений в кубе единичного объема. Находя вклад δ_{Mj} от j-го поколения, нетрудно показать, что

$$\delta_{\rm M} = \sum_{l=1}^{n} \delta_{\rm Mj} = 1 - (1 - \chi)^{3n}, \quad \delta_{\rm A} = 1 - \delta_{\rm M} = (1 - \chi)^{3n}. \tag{5}$$

Таблица1

Результаты расчета n и δ_M для трех значений (L_{cB})_{min} при $L_{cB0} = 10^2$ мкм

(L _{cb}) _{mi}	$\chi = 0.01$		$\chi = 0.02$		$\chi = 0.1$		$\chi = 0.2$		$\chi = 0.3$	
n wixwi	n	δ_{M}	n	δ_{M}	n	δ_{M}	n	δ_{M}	n	$\delta_{\rm M}$
0.36	8	0.2143	7	0.3457	7	0.8906	6	0.9820	5	0.9953
3.6	4	0.1136	4	0.2153	4	0.7176	3	0.8658	3	0.9596
34	1	0.0297	1	0.0588	1	0.2710	1	0.4880	1	0.6570

Принципиально важно, что расчет макропараметра $\delta_{\rm M}$ осуществлен на основе фундаментального соотношения масштабов (1) и параметров, установленных в [4,5] для процесса формирования отдельного кристалла.

Список литературы

1. Scheil E. Über die Umwandlung des Austenit in geharten Stahle. – Z. anorg. Chem., 1929, 180, S. 1-6.

2. Кащенко М.П. Волновая модель роста мартенсита при γ-α превращении в сплавах на основе железа. Екатеринбург: УИФ "Наука", 1993. 224 с.

3. Kashchenko M.P. The wave model of martensite growth for the FCC-BCC transformation of iron-based alloys // arXiv: cond-mat/0601569 v3 4 Feb 2006.

4. Кащенко М.П., Чащина В.Г. Динамическая модель формирования двойникованных мартенситных кристаллов при γ→α превращении в сплавах железа. Екатеринбург: Урал. гос. лесотехн. ун-т, 2009. 98с.

5. Кащенко М.П., Чащина В.Г. Зависимость температуры начала мартенситного превращения от размера зерна/ XLVII Международная конференции "Актуальные проблемы прочности", 1-5 июля 2008 года, Нижний Новгород: материалы конференции. Часть1.- Н.Новгород, 2008. С. 237-239.