На правах рукописи

Пьянкова Людмила Александровна

НАНОЧАСТИЦЫ ВИСМУТА В ИНВЕРСИОННОЙ ВОЛЬТАМПЕРОМЕТРИИ

Специальность 02.00.02 – Аналитическая химия

Автореферат диссертации на соискание ученой степени кандидата химических наук

Екатеринбург – 2011

Работа выполнена на кафедре физики и химии

ФГБОУ ВПО «Уральского государственного экономического университета».

НАУЧНЫЙ РУКОВОДИТЕЛЬ:	заслуженный деятель науки РФ,		
	доктор химических н	аук, профессор	
	Брайнина Хьена За	лмановна	
ОФИЦИАЛЬНЫЕ ОППОНЕНТЫ:	доктор химических н	аук, профессор	
	Матерн Анатолий Иванович		
	кандидат химических	х наук,	
	старший научный со	трудник	
	Тоболкина Наталья	виссарионовна	
ВЕДУЩАЯ ОРГАНИЗАЦИЯ:	Башкирский	государственный	
	университет, г. Уфа		

Защита состоится 30 января 2012 года в 15-00 часов на заседании диссертационного совета Д 212.285.09 при ФГАОУ ВПО "УрФУ имени первого Президента России Б.Н. Ельцина" по адресу 620002, г. Екатеринбург, ул. Мира, 19, зал ученого совета (И-420).

С диссертацией можно ознакомиться в научной библиотеке ФГАОУ ВПО "УрФУ имени первого Президента России Б.Н. Ельцина".

Сведения о защите и автореферат диссертации размещены на официальном сайте ФГАОУ ВПО "УрФУ имени первого Президента России Б.Н. Ельцина" <u>www.ustu.ru</u> и на официальном сайте ВАК Министерства образования и науки РФ <u>www.vak.ed.gov.ru</u>.

Ваши отзывы в двух экземплярах, заверенные печатью организации, просим направлять по адресу: 620002, г. Екатеринбург, ул. Мира, 19, ФГАОУ ВПО "УрФУ имени первого Президента России Б.Н. Ельцина", ученому секретарю университета.

Автореферат разослан: «16» декабря 2011 года.

Ученый секретарь диссертационного совета Д 212.285.09,

д.х.н., профессор

1 Aufry

Ямщиков Л.Ф.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

<u>Актуальность темы.</u> В современном индустриальном обществе с каждым годом возрастает влияние техногенных и антропогенных факторов на состояние окружающей среды и здоровье человека. В ряде случаев такое влияние приводит к необратимым изменениям биосферы и, как следствие, является одной из причин различных генетических отклонений у живых организмов. Глобальный характер современных экологических проблем требует проведения постоянного мониторинга техногенных загрязнителей и миграции токсичных веществ в окружающей среде.

Одним из высокоэффективных методов анализа является инверсионная вольтамперометрия (ИВ), где в качестве рабочего широко используют ртутьсодержащие электроды. Тенденция полного запрета применения ртути и ее солей в анализе требует разработки новых нетоксичных электродов, приближенных по аналитическим характеристикам к используемым ртутьсодержащим электродам.

Значительно расширить возможности метода ИВ можно, изменяя свойства рабочих электродов путем их модифицирования. Поиск и применение новых электродных материалов, расширение круга исследуемых реагентовмодификаторов смогут привести к созданию новых электрохимических сенсоров, существенно улучшить селективность измерений и обеспечить снижение предела обнаружения определяемых элементов. Появление и использование наноматериалов в электроаналитической химии произвело революцию в этой области, привело к появлению нового поколения химических и биохимических сенсоров.

Актуальность диссертационной работы определяется созданием новых сенсоров, на основе наноструктур, расширяющих возможности инверсионной вольтамперометрии.

Диссертационная работа является частью исследований, проводимых на кафедре физики и химии ГОУ ВПО «Уральский государственный экономический университет» в рамках проекта РФФИ-Урал № 07-03-96070

«Нанокристаллы металлов как новые модификаторы электрохимических сенсоров» (2007-2009 гг.) и заданий Министерства промышленности и науки Свердловской области «Нанотехнологии в био- и химических сенсорах для мониторинга окружающей среды и здоровья человека» (2008-2010 гг.).

Целью исследования разработка **диссертационного** является высокочувствительных, безопасных селективных, экологически электрохимических сенсоров для вольтамперометрического определения Zn (II), Cd (II), Pb (II), Ni (II) и S (II) в водах, почвах, растительных и пищевых объектах.

Для достижения поставленной цели необходимо решить задачи:

1. Синтезировать наночастицы висмута (Ві_{нано}-*хим*) с воспроизводимыми целевыми характеристиками.

2. Исследовать распределение наночастиц по размерам в золях и на поверхности трансдьюсера.

3. Изучить электрохимические свойства наночастиц разного размера, иммобилизованных на поверхность толстопленочного графитсодержащего электрода (ТГЭ), используя для интерпретации результатов и предсказания сенсорных свойств предложенную проф. Брайниной Х.З. математическую модель, описывающую электроокисление наночастиц металлов.

4. Разработать вольтамперометрический сенсор на основе наночастиц висмута для определения Zn (II), Cd (II), Pb (II) (C-1).

5. Разработать вольтамперометрический сенсор на основе наночастиц висмута, чувствительный к сульфид-ионам (С-2), и методику их определения.

6. Разработать вольтамперометрический сенсор (С-3) на основе наночастиц висмута, чувствительного к ионам никеля, и выбрать оптимальные условия его определения.

7. Применить разработанные сенсоры для вольтамперометрического определения Zn (II), Cd (II), Pb (II), Ni (II) и S (II) в модельных растворах и реальных объектах.

Научная новизна работы

изучено •Впервые электрохимическое поведение наночастиц висмута различного размера, локализованных на поверхности ТГЭ. Установлено, что висмута при уменьшении размера наночастиц происходит смещение потенциала максимального тока окисления (I_{max}) висмута в катодную область, что указывает на увеличение электрохимической активности более мелких частиц по сравнению с объёмным металлом или крупными частицами. Показана взаимосвязь этого эффекта с величиной ΔG° .

•Получена новая информация о взаимосвязи массы, размера и распределения наночастиц на поверхности трансдьюсера И свойствами сенсоров, предназначенных для реализации основных вариантов концентрирования в методе ИВ: для концентрирования в результате разряда ионов металлов тронсдьюсер должен быть модифицирован золем, содержащим 0,14 мкг наночастиц, размер которых равен 30 ± 5 нм; для концентрирования в виде малорастворимого соединения с материалом сенсора, тронсдьюсер должен быть модифицирован золем, содержащим 1,4 мкг наночастиц, размер которых равен 181 ± 7 нм; при адсорбционном концентрировании тронсдьюсер должен быть модифицирован золем, содержащим 5,6 мкг наночастиц, размер которых равен 380 ± 76 нм.

Практическая значимость работы

•Разработан быстрый и простой способ химического синтеза, позволяющий получить Ві_{нано}-*хим* размером 30 ± 5 нм в золе.

•Разработаны экологически безопасные, имеющие длительный период хранения и эксплуатации, высокочувствительные вольтамперометрические сенсоры на основе Bi_{нано}-*хим*, для определения Zn (II), Cd (II), Pb (II), Ni (II) и S (II).

•Разработан способ одновременного определения Zn (II), Cd (II) Pb (II) методом анодной ИВ (АИВ) в интервале определяемых содержаний 1 – 50 мкг/дм³. Предел обнаружения (ПрО) для Zn (II), Cd (II) и Pb (II) равен 0,52, 0,50 и 0,56

мкг/дм³, соответственно, что позволяет оценивать их содержание в водах с использованием C-1 в качестве рабочего электрода.

•Разработан способ определения сульфид-ионов в модельных растворах, методом катодной ИВ (КИВ) в интервале содержаний 0,03 – 0,2 мг/дм³ с применением С-2 в качестве рабочего электрода. ПрО составляет 5 мкг/дм³.

•Разработан способ определения Ni (II) методом адсорбционной катодной ИВ (АдКИВ) с применением С-3 в качестве рабочего электрода для анализа почв, растительных и пищевых объектов. ПрО никеля составил 0,11 мкг/дм³.

Автор выносит на защиту следующие положения:

1. Способ получения наночастиц висмута со стабильными целевыми характеристиками.

2. Результаты микроскопических исследований золей наночастиц висмута.

3. Результаты электронномикроскопических исследований поверхности ТГЭ, модифицированного наночастицами висмута (ТГЭ/Ві_{нано}), структуры и размеров формирующихся ансамблей наночастиц.

4. Результаты исследований электрохимического поведения частиц висмута разного размера, иммобилизованных на поверхность ТГЭ, и их интерпретация на основе ранее опубликованной математической модели.

5. Результаты исследований разряда-ионизации Zn^{+2}/Zn° , Cd^{+2}/Cd° , Pb^{+2}/Pb° на электродах, модифицированных $Bi_{\text{нано}}$ -*хим*.

6. Методы определения Zn (II), Cd (II), Pb (II), Ni (II) и сульфид-ионов в модельных растворах, водах, почвах, растительных и природных объектах с использованием вольтамперометрических сенсоров на основе Bi_{нано}-*хим*.

7. Результаты исследования влияния массы частиц на поверхности сенсора на тип концентрирования определяемых элементов.

<u>Апробация работы.</u> Результаты исследований представлены на Втором и Третьем международных конкурсах научных работ молодых ученых в области нанотехнологий (Москва, 2009 г, 2010 г), XX и XXI Российских молодежных научных конференциях (Екатеринбург, 2010 г, 2011 г), Съезде аналитиков «Аналитическая химия – новые методы и возможности» (Москва, 2010 г), Симпозиуме международным участием «Теория с И практика (Томск, 2010 VII электроаналитической химии» г), Всероссийской конференции по анализу объектов окружающей среды «Экоаналитика – 2011» г), XVII Российскому симпозиуму (Архангельск. 2011 по растровой электронной микроскопии и аналитическим методам исследования твердых тел «РЭМ-2011» (Черноголовка, 2011 г), XIV Всероссийском экономическом форуме научно-исследовательских работ молодых ученых и студентов «Конкурентоспособность территорий» С международным участием, Ш Всероссийском симпозиуме «Разделение и концентрирование в аналитической химии и радиохимии» с международным участием (Краснодар, 2011 г),

Публикации. По материалам диссертации опубликовано 16 работ, в том числе 4 статьи в изданиях, рекомендованных ВАК, и тезисы 12 докладов.

<u>Личное участие автора</u> состоит в проведении экспериментальной работы для решения поставленных задач, систематизации, анализе, обобщении и интерпретации полученных данных.

<u>Структура работы.</u> Работа состоит из введения, литературного обзора, 5 экспериментальных глав, выводов и списка литературы, включающего 169 ссылок на отечественные и зарубежные работы. Работа изложена на 132 страницах машинописного текста, содержит 23 таблицы и 33 рисунка.

Во *Введении* раскрыта актуальность темы исследования, определены цели и задачи, сформулированы научная новизна, практическая значимость и положения, выносимые на защиту. В *Литературном обзоре (глава 1)* рассмотрены работы, посвященные модифицированным висмутом сенсорам, используемым для определения Zn (II), Cd (II) и Pb (II) и различных металлов в АдКИВ. Представлены литературные данные, касающиеся электрохимического определения S (II). Дан обзор способов получения наночастиц висмута. Проанализированы работы, посвященные изучению особенностей физических и химических свойств наночастиц. Проведен анализ работ, посвященных использованию сенсоров, модифицированных наночастицами висмута в ИВ. В *Экспериментальной части (глава 2)* описаны используемые химические реактивы, аппаратура, конструкции и способы изготовления индикаторных электродов, методика проведения эксперимента, приготовления и анализа растворов. *Глава 3* посвящена разработке метода синтеза наночастиц висмута и изучению их электрохимических свойств. В *главе 4* изучены процессы ионизации Zn (II), Cd (II) и Pb (II) с поверхности C-1 и разработан сенсор на основе наночастиц висмута для их одновременного определения. *Глава 5* посвящена разработке метода определения сульфид-ионов в модельных растворах. *В главе 6* описана разработка вольтамперометрического сенсора на основе наночастиц висмута для определения никеля.

ОСНОВНОЕ СОДЕРЖАНИЕ ДИССЕРТАЦИИ 1. СИНТЕЗ И ИЗУЧЕНИЕ ЭЛЕКТРОХИМИЧЕСКИХ СВОЙСТВ НАНОЧАСТИЦ ВИСМУТА

Предложенный нами метод синтеза наночастиц висмута заключается в химическом восстановлении раствора Bi(NO₃)₃ четырехкратным мольным избытком NaBH₄ в течение 10 мин при температуре 100°C и постоянном перемешивании раствора.

На рис. 1 представлены электронные фотографии наночастиц висмута в золе (ПЭМ). Среднемассовый размер наночастиц Ві, полученных газофазным методом (Ві_{нано}-*гф*), в золе равен 40 ± 6 нм, среднемассовый размер частиц, полученных химическим способом (Ві_{нано}-*хим*), в золе равен 30 ± 5 нм.

Рисунок 1 — Микрофотографии золей Ві_{нано}-гф (а) и Ві_{нано}-хим (в) и гистограммы распределения по размерам частиц висмута в золях (б, г), соответственно.

На рис. 2 представлены электронные фотографии поверхности ТГЭ (СЭМ), модифицированной наночастицами висмута разного размера, и гистограммы (б, г) распределения частиц по массе.

Среднемассовый радиус частиц Ві_{нано}-*гф* равен 56 ± 6 нм, частиц Ві_{нано}-*хим* – 150 ± 9 нм. Размер наночастиц в золе меньше, чем на поверхности ТГЭ, что связано с их агломерацией в процессе высыхания золя.

На рис. 3 представлена микрофотография ТГЭ с электролитически осажденной пленкой висмута (ТГЭ/Ві_{макро}).

На фотографии видно, что пленка висмута не покрывает поверхность

Рисунок 2 – Микрофотографии наночастиц висмута (а, в) и гистограммы распределения (б, г) по поверхности ТГЭ.

электрода целиком, а образует отдельные участки размером 2 – 10 мкм. Пленку висмута осаждали электролизом раствора, содержащего 0,1 г/л Bi (III), при потенциале (-1,0) В в течение 300 с при постоянном перемешивании.

Рисунок 3 – Электронная микрофотография ТГЭ/Ві_{макро}.

На рис. 4 приведены вольтамперограммы (ВА), зарегистрированные с использованием ТГЭ, модифицированного Ві_{нано}-*хим* (ТГЭ/Ві_{нано}-*хим*).

Отсутствие пика окисления висмута на анодной ВА в интервале потенциалов от (-0,1) до +0,4 В (рис. 4, кр.1) указывает на то, что наночастицы висмута на поверхности ТГЭ находятся в окисленном состоянии. Пик на катодной ветви катодно-анодной ВА (рис. 4, кр. 2) при (-0,53) В соответствует восстановлению оксидов висмута до металла, а пик на анодной ветви при 0,05 В обусловлен окислением висмута.

Рисунок 4 – BA, зарегистрированные для $T\Gamma \Im/Bi_{\text{нано}}$ -хим на фоне 0,1 М HNO₃ (pH 2±0,2) без (линии пунктирная, кр. 1 и точечная, кр. 2) и после выдерживания $T\Gamma \Im/Bi_{\text{нано}}$ -хим при потенциале (-1,2) В в течение 180 с (кр. 3, сплошная линия).

Ток окисления висмута существенно возрастает после предварительного восстановления электрода на стадии «активации» при потенциале (-1,2) В в течение 180 с (рис. 4, кр. 3) по сравнению с током окисления висмута, зарегистрированным без выдерживания электрода при потенциале «активации» (рис. 4, кр. 2). Это указывает на то, что процесс восстановления протекает во времени.

На рис. 5 приведена серия ВА окисления частиц висмута разного размера. Чётко прослеживается сдвиг экспериментальных кривых в сторону отрицательных потенциалов при уменьшении размера частиц.

Рисунок 5 – Экспериментальные ВА электроокисления Bi_{haho} -гф (r = 56 нм) (a), Bi_{haho} -хим (r = 150 нм) (6), иммобилизованных на поверхность ТГЭ, и $TГЭ/Bi_{макро}$ (b). Фоновый электролит: 0,1 M HNO₃, v = 0,1 B/c.

Для семейства BA, получения расчётных описывающих электроокисление частиц висмута размера разного использовали математическую процесса модель электрорастворения, предложенную Брайниной Х.З. с соавторами, в которой:

1. Процесс электрорастворения описывается уравнением баланса электрического заряда: $Me = Me^{n+} + ne^{-}$.

2. Суммарное количество электричества (Q_o) , затраченное на электрорастворение частиц с поверхности индифферентного электрода (начальный заряд), составляет сумму количеств электричества, затраченных на электрорастворение объемного металла (Q_{oII}) и на электрорастворение наночастиц (Q_{oIII}) : $Q_o = Q_{oII} + Q_{oIII}$.

3. Величина тока *i*, которая может быть измерена в эксперименте, рассчитывается согласно выражениям: $i = i_{II} + i_{III}$, где i_{III} и i_{III} — токи электрорастворения объемного металла и наночастиц металла, i_{III} зависит от свободной энергии Гиббса (ΔG°) наночастиц.

$$i_{H} = n F k_{s} S_{H}(t) \left\{ a_{H} \exp\left[\frac{n \beta F}{RT} \left(E - E^{\bullet}\right)\right] - c\left(x = 0, t\right) \exp\left[-\frac{n \alpha F}{RT} \left(E - E^{\bullet}\right)\right] \right\}; (1)$$

$$i_{H} = n F k_{s} S_{H}(t) \left\{ a_{H} \exp\left[\frac{n \beta F}{RT} \left(E - E^{\bullet}\right) + \frac{\beta \Delta G^{\bullet}}{RT}\right] - c\left(x = 0, t\right) \exp\left[-\frac{n \alpha F}{RT} \left(E - E^{\bullet}\right) - \frac{\alpha \Delta G^{\bullet}}{RT}\right] \right\}, (2)$$

В настоящей работе расчет вольтамперных кривых электроокисления висмута проводили, используя параметры, приведенные в таблице 1.

Таблица 1 — Параметры для расчета ВА электрохимического окисления наночастиц висмута

Параметр	Значение/единица
	измерения
R – универсальная газовая постоянная	8,31 Дж/моль*К
F – число Фарадея	96485,3 Кл/моль
а _м – активность твердой фазы	моль/см ³
М – молярная (атомная) масса висмута	209 г/моль
d – плотность висмута	9,747 г/см ³
σ – поверхностное натяжение висмута на границе с	382 дин/см
воздухом при температуре 271°С	
n – число электронов, участвующих в лимитирующей	1
стадии электрохимического процесса	
δ – доля частиц данного размера	относительных
	единиц
Е _о – стандартный электродный потенциал системы	(-0,007) B
Bi ³⁺ /Bi	
ΔG° – свободная поверхностная энергия Гиббса	Дж/моль
k _s – константа скорости электрохимического процесса	см/с
α, β – коэффициенты переноса в электродном	0,5
процессе	

Число электронов полагали равным 1 в соответствии с тем, что, по данными, полученными П. Вилсоном, лимитирующей стадией процесса электрорастворения висмута является Bi→Bi⁺.

Практически все параметры являются справочными величинами или рассчитываются из последних. Так, значение ΔG° рассчитывали по уравнениям:

$$\Delta G^{\circ} = S \times \sigma (3)$$

где, $S = N 4\pi r^2 (4);$
 $N = \frac{v}{v_{racer}} = \frac{M \times 3}{\rho \times 4\pi r^3} (5).$

Величину k_s находили, выбирая из серии ВА, рассчитанных для $Bi_{макро}$ при разных k_s, максимально соответствующую экспериментальной ВА окисления $Bi_{макрo}$. Кривая, рассчитанная для k_s = $4,25 \times 10^{-8}$ см/с, практически совпадает с экспериментальной ВА. Эта величина k_s использовалась далее в расчётах.

Ha BA рис. 6 приведены экспериментальные расчетные И электроокисления частиц висмута разного размера. Они практически совпадают. Имеющиеся данные позволяют заключить, что причиной сдвига ВА, описывающих электроокисление наночастиц в сторону отрицательных значений является увеличение ΔG° при уменьшении размера частиц, т.е. увеличение электрохимической активности наночастиц.

Рисунок 6 – Расчетные (сплошная линия) и экспериментальные (пунктирная линия) ВА электроокисления $Bi_{нано}$ (а, б), иммобилизованных на поверхность ТГЭ, и ТГЭ/ $Bi_{макро}$ (в). Параметры для расчета: (а) r = 56 нм, Q = 41 мкКл, $\delta = 1$, $\Delta G^{\circ} = 463,6$ Дж/моль; (б) r = 150 нм, Q = 38,7 мкКл, $\delta = 1$, $\Delta G^{\circ} = 163,8$ Дж/моль; (в) r = 1 мкм, Q = 40 мкКл, $\Delta G^{\circ} = 24,57$ Дж/моль $\delta = 1$. Остальные параметры даны в табл. 1 и на рис. 5.

2. ИОНИЗАЦИЯ МЕТАЛЛОВ С ПОВЕРХНОСТИ ТГЭ/Вінано-хим

Рисунок 7 — ВА электроокисления Cd (II) с поверхности C-1 в растворе, содержащем 20 мкг/дм³ Cd (II) зарегистрированные при v от 0,1 до 1,0 В/с с шагом 0,1 В/с. Условия: 0,1 М ацетатный буфер + 20 мкг/дм³ Cd (II), $E_{3\pi} = (-1,4)$ В, $t_{3\pi} = 180$ с.

Ha 7 рис. представлены BA электрохимического растворения кадмия с поверхности ТГЭ/Ві_{нано}-хим при разных скоростях развертки потенциала (v). С увеличением v наблюдается рост I_{max}, и потенциал, соответствующий І_{тах} кадмия, смещается сторону положительных В потенциалов (при постоянном количестве участвующего процессе). вещества, В Аналогичные зависимости получены при исследовании ионизации цинка и свинца.

Среднее значение углового коэффициента зависимости lg (I_{max}) от lg (v)

для процессов ионизации цинка, кадмия и свинца (из измерений на пяти различных электродах) для каждого из исследуемых металлов близко к 1. Прямопропорциональная зависимость I_{max} от υ свидетельствует об участии в электрохимическом процессе вещества, локализованного на поверхности электрода.

Экспериментально найденные величины угловых коэффициентов зависимости E_{max} от lg (υ), полученные для рассматриваемых металлов, составляют 0,084, 0,071и 0,064 для цинка, кадмия и свинца, соответственно. Эти данные свидетельствует о необратимом характере процесса ионизации этих металлов в изученных условиях.

3. РАЗРАБОКА ВОЛЬТАМПЕРОМЕТРИЧЕСКИХ СЕНСОРОВ НА ОСНОВЕ НАНОЧАСТИЦ ВИСМУТА

Исследована возможность использования наночастиц висмута в качестве модификатора при изготовлении электрохимических сенсоров для определения Zn (II), Cd (II) и Pb (II) (сенсор C-1); S (II) (C-2) и Ni (II) (C-3) методами АИВ, КИВ и АдКИВ, соответственно.

В качестве токопроводящего материала для изготовления всех трех типов сенсоров использовали графитсодержащие чернила CIRCALOK 6971 (Lord, США), нанесенные методом трафаретной печати на полимерную подложку и отвержденные при 100°C в течение 5 ч.

Восстановление («активацию») окисленного слоя модификатора проводили при потенциалах: (-1,2) В для сенсоров С-1 и С-2, (-1,4) В для С-3, в течение 300 с во всех трех случаях.

<u>3.1 Вольтамперометрический сенсор на основе Ві_{нано}-хим для одновременного определения Zn (II), Cd (II) и Pb (II) методом АИВ (C-1)</u>

В таблице 2 приведены результаты анализа модельного раствора с использованием С-1, на поверхности которого локализована различная масса наночастиц. Увеличение массы наночастиц (>0,14 мкг) приводит к ухудшению аналитических характеристик. Возможно, это происходит из-за агрегации частиц на поверхности, в результате чего они перестают проявлять свойства отдельных наночастиц, и их активность падает. Уменьшение массы наночастиц (<0,14 мкг) также приводит к ухудшению сенсорных свойств, так как происходит уменьшение рабочей поверхности сенсора. Оптимальное содержание Ві_{нано} на поверхности ТГЭ составляет 0,14 мкг.

Таблица 2 – Результаты анализа модельного раствора, содержащего 0,1 M CH₃COONa + 0,025 M HCl (pH 4,7±0,2) и по 20 мкг/дм³ Zn (II), Cd (II) и Pb (II), с использованием C-1, на поверхности которого локализована разная масса наночастиц Bi (n = 5, P = 0,95). $E_{3n} = (-1,2)$ B; $t_{3n} = 120$ c; $\upsilon = 1,0$ B/c

m(Bi),		Zn (II)		Cd (II)		Pb (II)			
МКГ	I _{max} ,	Найдено,	S _r ,	I _{max} ,	Найдено,	S _r ,	I _{max} ,	Найдено,	S _r ,
	мкА	C±ΔC,	%	мкА	C±ΔC,	%	мкА	C±ΔC,	%
		мкг/дм ³			мкг/дм ³			мкг/дм ³	
1,4	2,3	16,0±1,7	10,3	1,9	32,7±17,2	28,5	0,6	10,9±4,0	20,1
0,7	2,8	34,5±16,9	27,0	3,6	27,1±10,1	20,0	0,9	12,7±2,6	11,1
0,14	4,0	20,6±2,5	6,7	4,0	18,9±1,8	5,3	2,7	$19,5\pm2,8$	7,8
0,028	2,0	24,3±3,2	15,3	2,7	17,2±3,4	10,9	1,2	13,9±6,9	27,4

Концентрирование при потенциалах (-1,2) – (-1,4) В в течение 60 с достаточно для формирования выраженных сигналов всех элементов при концентрации ионов на уровне 1 мкг/дм³. І_{тах} после концентрирования

элементов при потенциале (-1,4) В – самый высокий, поэтому именно этот потенциал был выбран для анализа как оптимальный. Прямо пропорциональная зависимость I_{max} от $t_{3\pi}$ наблюдается во временном диапазоне от 0 до 180 с при концентрации ионов в растворе 5 мкг/дм³.

Параметры градуировочных зависимостей и ПрО элементов методом АИВ с использованием С-1 представлены в таблице 3.

Таблица 3 – Показатели определения Zn (II), Cd (II) и Pb (II) методом AUB (n=5, P = 0,95). Диапазон концентраций 1 – 50 мкг/дм³. Условия определения ионов металлов: $E_{_{3Л}} = (-1,4)$ B, $t_{_{3Л}} = 180$ с, остальные параметры в таблице 2

Уравнение регрессии ^{а)}	r^{26}	ПрО,	ПДК в водах
		мкг/дм ³	рыбохозяйственного
			значения, мкг/дм ³
$I = (3,17\pm0,01) C_{Zn} +$	0,9999	0,52	10
$(1,27\pm0,19)$			
$I = (6,07\pm0,01) C_{Cd} -$	0,9997	0,50	5
$(2,07\pm0,34)$			
$I = (4,56\pm0,01) C_{Pb} -$	0,9999	0,56	6
(1,46±0,29)			
	Уравнение регрессии ^{a)} $I = (3,17\pm0,01) C_{Zn} + (1,27\pm0,19)$ $I = (6,07\pm0,01) C_{Cd} - (2,07\pm0,34)$ $I = (4,56\pm0,01) C_{Pb} - (1,46\pm0,29)$	Уравнение регрессии a) $r^{2 \text{ o}}$ I = $(3,17\pm0,01)$ C _{Zn} +0,9999 $(1,27\pm0,19)$ 0,9997I = $(6,07\pm0,01)$ C _{Cd} -0,9997 $(2,07\pm0,34)$ 0,9999I = $(4,56\pm0,01)$ C _{Pb} -0,9999 $(1,46\pm0,29)$ 0,9999	Уравнение регрессии a) $r^{2 \text{ o})}$ ПрО, мкг/дм3I = (3,17±0,01) C _{Zn} + (1,27±0,19)0,99990,52I = (6,07±0,01) C _{Cd} - (2,07±0,34)0,99970,50I = (4,56±0,01) C _{Pb} - (1,46±0,29)0,99990,56

^{а)} I – ток, мкA; ^{б)} r^2 – коэффициент корреляции.

<u>3.2 Вольтамперометический сенсор на основе Вінано-хим для определения</u>

сульфид-ионов методом КИВ (С-2)

Таблица 4 Результаты анализа модельного раствора, содержащего 0,1 М аммиачный буфер + 0,1 мг/дм³ S²⁻, с использованием электродов, на поверхности которых локализовано различное содержание $Bi_{нано}$ (n=5, P=0,95). $E_{3Л} = (-0,55)$ B, $t_{3Л} = 75$ c, v = 0,1 B/c

m(Bi),	I _{max} ,	Найдено,	S _r , %
МКГ	мкА	$C \pm \Delta C$ мг/л	
0,028	4,9	0,083±0,022	16,1
0,14	5,7	$0,086\pm0,006$	10,9
0,7	17,9	0,097±0,003	2,7
1,4	19,5	0,099±0,004	4,8
2,8	12,7	0,074±0,005	8,9

В качестве фонового электролита при определении S (II) использовали аммиачный буферный раствор (0,1 M NH₄OH + 0,1 M NH₄NO₃ (pH 9,5±0,2)), предложенный Титовой Т.В. с соавторами для определения S (II) на Pt электроде.

В таблице 4 приведена зависимость аналитических параметров С-2 от массы

наночастиц на поверхности электрода. Увеличение массы до 1,4 г/дм³ приводит к существенному улучшению исследуемых параметров. При дальнейшем

увеличении массы частиц происходит частичное растворение висмута, и при катодной развертке на ВА появляется пик его восстановления, маскирующий пик восстановления Bi₂S₃.

 I_{max} восстановления Bi_2S_3 наблюдается при E = (-0,86) В. При концентрировании сульфид-ионов на поверхности электрода в виде Bi_2S_3 большое значение имеет $E_{_{3л}}$. I_{max} восстановления Bi_2S_3 имеет наибольшую величину при $E_{_{3л}}$ в интервале (-0,5) – (-0,6) В. При смещении $E_{_{3л}}$ в анодную область относительно (-0,5) В происходит частичное растворение висмута с поверхности электрода, и при регистрации катодной вольтамперной кривой регистрируется пик восстановления висмута, а пик восстановления Bi_2S_3 резко уменьшается. При сдвиге $E_{_{3л}}$ в катодную область относительно (-0,6) В висмут с поверхности электрода практически не растворяется, вследствие чего образования малорастворимого осадка Bi_2S_3 не происходит, что также приводит к резкому уменьшению величины тока восстановления Bi_2S_3 . Оптимальная скорость развертки потенциала 0,1 В/с, и время накопления $t_{_{3n}} = 75$ с.

На рис. 8 (а) приведена серия катодных ВА зафиксированных после концентрирования Bi_2S_3 на поверхности из растворов содержащих разные концентрации S(II) и соответствующий им калибровочный график (б).

Рисунок 8 – Катодные ВА Bi_2S_3 , полученные с использованием С-2 при разных концентрациях S^{2-} в растворе (а) и соответствующий им калибровочный график (б). Фоновый электролит: 0,1 М аммиачный буфер (pH 9,5±0,2) + 0; 0,003; 0,006; 0,01; 0,013; 0,016 мг/дм³ S^{2-} (кривые 1 – 6, соответственно). Остальные параметры приведены в таблице 4.

Пик восстановления Bi_2S_3 имеет правильную, симметричную форму. Его значение увеличивается пропорционально увеличению концентрации S(II), что позволяет считать его AC.

<u>3.3 Вольтамперометрический сенсор на основе Ві_{нано}-хим для определения</u> никеля методом АдКИВ (С-3)

В табл. 5 приведены результаты исследований влияния массы наночастиц висмута на поверхности электрода на аналитические характеристики С-3. При изменении содержания висмута от 1,4 до 5,6 мкг не влияет на величину I_{max}, но при этом постепенно увеличивается значение R до 96,7%. Дальнейшее увеличение массы частиц приводит к увеличению I_{max}, однако показатель правильности при этом существенно падает.

С использованием сенсора C-3 с содержанием на поверхности $Bi_{\text{нано}}$ 5,6 мкг были найдены оптимальные условия формирования сигнала никеля: C(ДМГ) = 2,5×10⁻⁴ M, E_{эл} = (-0,8) B, v = 1,0 B/c, t_{эл} = 120 c.

Таблица 5 Аналитические характеристики сенсоров для определения Ni (II) с разным содержанием наночастиц Bi (n=3, P=0,95). Диапазон концентраций 0-5 мкг/дм³ Ni (II). Условия: 0,05 M NH₄OH + 0,025 M NH₄Cl + 0,025 M NaCl + $2,5 \times 10^{-4}$ M ДМГ (pH 9,8 ± 0,2); $E_{_{3Л}} = (-0,8)$ B; $t_{_{3Л}} = 40$ c; v = 0,5 B/c

m(Bi),	Уравнение регрессии ¹	\mathbf{r}^2	ПрО	R, % для
МКГ			мкг/дм ³	1 мкг/дм ³
1,4	$y = (21,3\pm0,39) C_{Ni(II)} - (1,3\pm1,2)$	0,9916	0,48	$37,4 \pm 19,2$
2,8	$y = (28,0\pm0,42) C_{Ni(II)} + (1,0\pm0,3)$	0,9945	0,40	$59,4 \pm 17,5$
4,2	$y = (18,6\pm0,22) C_{Ni(II)} + (0,8\pm0,7)$	0,9965	0,32	$72,2 \pm 19,1$
5,6	$y = (25,0\pm0,19) C_{Ni(II)} - (1,7\pm0,6)$	0,9985	0,21	$96,7 \pm 2,4$
7	$y = (61,0\pm0,56) C_{Ni(II)} - (9,1\pm1,8)$	0,9975	0,24	$51,9 \pm 5,8$

 $^{1}y - dI/dE (MKA/B)$

В оптимальных условиях проведено сравнение С-3, модифицированных частицами висмута различной природы: Ві_{нано}-гф, Ві_{нано}-хим и Ві_{макро}. Полученные данные приведены в таблице 6.

Аналитические характеристики ТГЭ, модифицированных Ві_{нано}-гф, свидетельствуют о невозможности его использования для определения никеля. ТГЭ, модифицированные Ві_{нано}-*хим*, по пределу обнаружения не уступают электродам, модифицированным Ві_{макро}, несмотря на некоторое снижение

чувствительности. При этом использование электродов, модифицированных Ві_{нано}-*хим*, позволяет исключить процедуру осаждения пленки висмута. Также сенсор на основе Ві_{нано}-*хим* стабильно работает в течение недели, в то время как электрод, модифицированный Ві_{макро}, может быть использован только в течение одного дня. Стабильная работа электрода на основе Ві_{нано}-*хим*, по сравнению ТГЭ/Ві_{макро}, обусловлена более высокой электрохимической активностью наночастиц.

Таблица 6 Аналитические характеристики определения Ni (II) с использованием ТГЭ, модифицированных частицами висмута различной природы. Условия: $t_{3n} = 120$ c; v = 1,0 B/c. Остальные параметры приведены в табл. 5.

Модификатор/	Уравнение	r^2	ПрО,	S _r (%) для	R(%) для
Средний	регрессии		мкг/дм ³	3 мкг/дм ³	1 мкг/дм ³
размер частиц	(n = 21)			Ni (II)	Ni (II)
				(n=14)	(n=3,
					P=0,95)
Ві _{нано} - <i>гф</i> /	$y = (7,6\pm0,1) C_{Ni} -$	0,9952	0,37	9,7	16,7±3,6
120 нм	$(1,6\pm0,3)$				
Ві _{нано} -хим/	$y = (75, 4\pm 0, 3) C_{Ni} -$	0,9996	0,11	4,8	99,9±2,0
380 нм	$(5,7\pm3,8)$				
Ві _{макро} /16 мкм	$y = (205, 8\pm 0, 8) C_{Ni}$	0,9996	0,10	6,2	101,6±4,1
	$+(192\pm0,4)$				

Известно, что электрохимические сенсоры, изготовленные на основе наночастиц металлов, обладают лучшими аналитическими характеристиками по сравнению с сенсорами, модифицированными металлом в макросостоянии. В представленной работе впервые показано, что на аналитические характеристики сенсоров существенное влияние оказывает не только размер наночастиц, но и их масса и распределение по поверхности электрода.

На рис. 10 приведена зависимость максимального тока превращения концентрата от массы наночастиц висмута на поверхности сенсора в трех основных вариантах концентрирования: разряде ионов металлов на поверхности электрода (I); образовании малорастворимого химического соединения с материалом сенсора (II); адсорбционном концентрировании (III).

Рисунок 10 – Зависимости максимальных токов превращения концентрата от массы наночастиц висмута на поверхности сенсора в разных вариантах концентрирования (см. по тексту).

Рисунок демонстрирует взаимосвязь массы наночастиц на поверхности трансдьюсера и свойств сенсоров, предназначенных для реализации основных вариантов концентрирования в методе ИВ. Для концентрирования цинка, кадмия и свинца в результате разряда ионов металлов оптимальной является масса частиц равная 0,14 мкг. В этом случае наночастицы висмута на поверхности электрода не образуют агломератов и, скорее всего, имеют такие же размеры, как в исходной модифицирующей суспензии. Для определения S(II), которые концентрируются в виде малорастворимого соединения с материалом сенсора, оптимальной является масса частиц на уровне 1,4 мкг. При этом на поверхности электрода образуются агломераты размером 181±7 нм (рис. 11(а)). При определении Ni(II), которые концентрируются в результате адсорбции его комплексного соединения с ДМГ, оптимальная масса частиц составляет 5,6 мкг. При этом на поверхности электрода образуются еще большие агломераты размером 380±76 нм (рис. 11 (б)).

Рисунок 11 – Микрофотографии поверхности ТГЭ/Ві_{нано}хим, модифицированных наночастицами Ві массой 1,4 мкг (а) и 5,6 мкг (б).

Таким образом, при создании сенсоров, предназначенных для реализации различных вариантов концентрирования, необходимо принимать во внимание взаимосвязь сенсорных свойств с массой, размером и распределением наночастиц на поверхности трансдьюсера.

ПРИМЕНЕНИЕ РАЗРАБОТАННЫХ СЕНСОРОВ ДЛЯ ОПРЕДЕНЕНИЯ Zn (II), Cd (II) и Ni (II) В РЕАЛЬНЫХ ОБРАЗЦАХ

<u>4.1 Определение Zn (II) и Cd (II) в сточных водах цинкового производства.</u>

Образцы отбирались на входе в очистные сооружения Челябинского электролитного цинкового завода (АООТ «ЧЭЦЗ»).

ИВ Результаты полученные методом c анализа сточных вод, использованием С-1 И независимым методом атомной абсорбционной (ААС), приведены в таблице 7. Хорошее совпадение спектроскопии результатов анализа образцов двумя методами свидетельствует о правильности результатов, полученных методом ИВ с использованием С-1.

Таблица 7 Результаты анализа сточных вод на содержание Zn (II) и Cd (II), полученные методом ИВ с использованием C-1 и независимым методом AAC^{1} (n=3, P=0,95)

$\Pi_{\mu} \circ \mathcal{F}_{\mu}$ $\Pi_{\mu} \circ \mathcal{F}_{\mu} \circ \mathcal{F}$				
Проба Наидено Zn (П), мг/дм Наидено	Найдено Cd (II), мг/дм ³			
	AAC ^o			
\mathbb{N}_{2} $\mathbb{C} \pm \Delta \mathbb{C}$ $\mathbb{S}_{r}, \%$ $\mathbb{C} \pm \Delta \mathbb{C}$ $\mathbb{S}_{r}, \%$ $\mathbb{C} \pm \Delta \mathbb{C}$ $\mathbb{S}_{r}, \%$	$C \pm \Delta C = S_r,\%$			
$1 17,9 \pm 0,7 1,6 17,6 \pm 0,6 2,7 1,2 \pm 0,1 4$	$1,2\pm0,1$ 8,3			
$2 \qquad 57,4 \pm 1,5 \qquad 1,0 \qquad 59 \pm 0,6 \qquad 0,8 \qquad 6,4 \pm 0,6 \qquad 3$	$6,9\pm0,4$ 4,3			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	7 7,8 \pm 0,2 2,0			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$2 26,6 \pm 0,5 1,6$			
$5 \qquad 102 \pm 11 \qquad 4,3 \qquad 102 \pm 4,4 \qquad 3,5 \qquad 11,8 \pm 1,8 \qquad 6$	$2 12,4 \pm 0,4 2,7$			

^{a)} – $E_{_{3Л}} = (-1,4)$ В для Zn и (-1,2) В для Cd; $t_{_{3Л}} = 10 - 40$ с.

<u>4.2 Определение Ni (II) в растительных, пищевых объектах и почвах.</u>

Наиболее сильное мешающее влияние на определение никеля с использованием С-3 оказывают ионы кобальта. Оценка перечня стандартных образцов (СО), содержащих никель, показала, что образцы, содержащие кобальт в больших количествах, чем никель, практически не встречаются.

Результаты определения Ni (II) в CO листьев оливы, клубней картофеля и различных видах дерново-подзолистых супесчаных почв (ДПСП) с использованием сенсора C-3 приведены в табл. 8.

Очевидна хорошая сходимость результатов анализа СО на содержание никеля с аттестованными значениями, что доказывает корректность

¹ Результаты, методом ААС, были получены в лаборатории санитарии и экологического мониторинга АООТ «ЧЭЦЗ».

предлагаемого нами метода АдКИВ определения никеля в почвах, пищевых и природных объектах с использованием разработанного сенсора.

Таблица 8 Результаты определения никеля в СО методом АдКИВ с использованием С-3 (n = 5, P = 0,95)

СО	Аттестованное значение	Найдено Ni (II),	S _r , %
	Ni (II) в CO, мкг/г	ΜΚΓ/Γ	
Листья оливы	$8,0 \pm 0,4$	$8,09 \pm 0,18$	1,9
Клубни картофеля	$1,3 \pm 0,2$	$1,29 \pm 0,03$	2,3
ДПСП-1	10 ± 2	$9,9 \pm 0,5$	3,7
ДПСП-2	87 ± 9	82 ± 4	3,8
ДПСП-3	290 ± 10	292 ± 7	1,8

ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ

 Предложен химический метод синтеза наночастиц висмута, заключающийся в восстановлении его ионов из раствора соли сильным восстановителем.
 Методом ПЭМ установлено, что размер полученных наночастиц висмута составляет 30 ± 5 нм (в золе).

2. Методом СЭМ установлено, что на поверхности ТГЭ Bi_{haho} -*гф* распределены равномерно и не образуют больших агломератов, а Bi_{haho} -*хим* объединяются в достаточно большие агломераты.

3. Методами ПЭМ и СЭМ выявлены различия в размерах получаемых различными методами Bi_{haho} в золях и на поверхности ТГЭ после их нанесения. 4. Изучены электрохимические свойства $Bi_{макро}$, Bi_{haho} -*хим* и Bi_{haho} -*гф*, иммобилизованных на поверхность ТГЭ. Установлено, что при уменьшении размера частиц происходит сдвиг потенциала электрохимического окисления висмута в катодную область, что обусловлено увеличением ΔG° , т.е. возрастанием их активности, что согласуется с предложенной проф. Брайниной Х.3. математической моделью.

5. Предложен новый безртутный сенсор на основе Ві_{нано}-*хим* и разработан способ одновременного определения цинка, кадмия и свинца в диапазоне концентраций 1 – 50 мкг/дм³. Пределы обнаружения элементов составляют 0,52 (Zn), 0,50 (Cd) и 0,56 (Pb) мкг/дм³. Разработанный способ применен для анализа

сточных вод. Получено хорошее соответствие результатов анализа разработанным способом и независимым методом ААС.

6. Показана принципиальная возможность использования сенсора, модифицированного Ві_{нано}-*хим*, для определения S (II) методом КИВ. Диапазон определяемых концентраций составляет 0,03 – 0,2 мг/дм³.

7. Разработан способ определения Ni (II) методом АдКИВ с использованием сенсора на основе Bi_{нано}-*хим*. Предел обнаружения никеля составляет 0,11 мкг/дм³. Способ применен для анализа СО. Наблюдается хорошее совпадение результатов, полученных разработанным способом, с аттестованными значениями содержания никеля в анализируемых СО.

8. Получена новая информация о взаимосвязи массы, размера и распределения наночастиц на поверхности трансдьюсера и свойствами сенсоров, предназначенных для реализации основных вариантов концентрирования в методе ИВ: при разряде ионов металлов на поверхности электрода (определение Zn (II), Cd (II) и Pb (II)); при образовании малорастворимого химического соединения с материалом сенсора (определение S (II)); при адсорбционном концентрировании (определениеNi (II)).

Основное содержание диссертации опубликовано в следующих работах:

В реферируемых изданиях, рекомендованных ВАК:

1. Пьянкова Л.А., Малахова Н.А., Стожко Н.Ю., Мурзакаев А.М., Брайнина Х.З. Сенсор на основе наночастиц висмута в безртутной вольтамперометрии тяжелых металлов // Заводская лаборатория. Диагностика материалов. 2010. т. 76. № 11. С. 3-7.

2. Piankova L.A., Malakhova N.A., Stozhko N.Yu., Brainina Kh.Z., Murzakaev A.M., Timoshenkova O.R., Bismuth nanoparticles in adsorptive stripping voltammetry of nickel // Electrochemistry Communications. 2011. V. 13. № 9. P. 981-984.

3. Пьянкова Л.А., Малахова Н.А., Стожко Н.Ю., Брайнина Х.З., Кудрявцева Т.М., Гончаревич А.В. Вольтамперометрический сенсор на основе наночастиц висмута для определения никеля в пищевых, природных объектах и почвах //

Современные проблемы науки и образования. 2011. № 4. URL: <u>www.science-</u> education.ru/98-4724 (дата обращения: 12.09.2011).

4. Brainina Kh.Z., Galperin L.G., Piankova L.A., Stozhko N.Yu., Myrzakaev A.M., Timoshenkova O.R. Bismuth nanoparticles electrooxidation: theory and experiment // Journal of Solid State Electrochemistry. 2011. V. 15. № 11-12. P. 2469-2475.

В других изданиях:

5. Пьянкова Л.А. Нетоксичные электрохимические сенсоры на основе наночастиц висмута для определения тяжелых металлов // Тез. докл. Второго международного конкурса научных работ молодых ученых в области нанотехнологий. Москва. 2009. с. 569-570.

6. Пьянкова Л.А. Электрохимическое определение следовых количеств Zn (II), Cd (II) и Pb (II) с помощью наночастиц висмута // Тез. докл. XX Российской молодежной научной конференции. Екатеринбург. 2010. с. 76-78.

7. Пьянкова Л.А., Стожко Н.Ю. Вольтамперометрический сенсор на основе химически синтезированных наночастиц висмута // Тез. докл. Съезда аналитиков России «Аналитическая химия – новые методы и возможности». Москва 2010. с. 233.

8. Малахова Н.А., Пьянкова Л.А., Стожко Н.Ю., Брайнина Х.З. Вольтамперометрический сенсор на основе наночастиц висмута в анализе сточных вод // Сборник трудов Симпозиума с международным участием «Теория и практика электроаналитической химии». Томск. 2010. с. 75-76.

9. Пьянкова Л.А., Брайнина Х.З., Малахова Н.А., Стожко Н.Ю. Определение сульфид-ионов с использованием сенсора на основе наночастиц висмута // Сборник трудов Симпозиума с международным участием «Теория и практика электроаналитической химии». Томск. 2010. с.77-78.

10. Стожко Н.Ю., Малахова Н.А., Сараева С.Ю., Викулова Е.В., Пьянкова Л.А., Добрынина Т.Ю., Брайнина Х.З. Вольтамперометрические сенсоры: от макро к наноструктурированной поверхности // Сборник трудов Симпозиума с международным участием «Теория и практика электроаналитической химии». Томск. 2010. с.16-18.

11. Пьянкова Л.А., Добрынина Т.Ю., Варзакова Д.П., Брайнина Х.З. Электрохимические сенсоры на основе наночастиц металлов для мониторинга окружающей среды и клинического анализа // Тез. докл. Третьего Международного конкурса работ молодых ученых в области нанотехнологий. Москва. 2010. 1 электрон. опт. диск (DVD-ROM).

12. Пьянкова Л.А., Брайнина Х.З. Вольтамперометрический сенсор на основе наночастиц висмута для определения никеля // Тез. докл. XXI Российской молодежной научной конференции. Екатеринбург. 2011. с. 180-181.

13. Пьянкова Л.А., Малахова Н.А., Сараева С.Ю., Стожко Н.Ю., Брайнина Х.З. Электрохимический сенсор на основе наночастиц висмута для определения следовых количеств никеля в природных и пищевых объектах // Тез. докл. VII Всероссийской конференции по анализу объектов окружающей среды «Экоаналитика – 2011». Архангельск. 2011. с. 234.

14. Тимошенкова О.Р., Мурзакаев А.М., Брайнина Х.З., Викулова Е.В., Пьянкова Л.А., Добрынина Т.Ю. Исследование зависимости характеристик электрода от размера и расположения наночастиц на его поверхности // Тез. докл. XVII Российский симпозиум по растровой электронной микроскопии и аналитическим методам исследования твердых тел «РЭМ-2011», Черноголовка. 2011. с. 171.

15. Пьянкова Л.А., Малахова Н.А., Стожко Н.Ю. Определение никеля с использованием электрода на основе наночастиц висмута // Тез. докл. XIV Всероссийского экономического форума научно-исследовательских работ молодых ученых и студентов «Конкурентоспособность территорий» с международным участием. Екатеринбург. 2011. ч. 11., с. 107-108.

16. Малахова H.A., Пьянкова Л.А., Стожко Н.Ю., X.3. Брайнина Адсорбционная вольтамперометрия никеля с использованием наночастиц висмута. // Тез. докл. III Всероссийский симпозиум «Разделение И концентрирование в аналитической химии и радиохимии» с международным участием. Краснодар. 2011 г. с. 60.