ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Государственное образовательное учреждение высшего профессионального образования «Уральский государственный университет им. А.М. Горького»

ИОНЦ «Бизнес информатика»

Институт управления и предпринимательства

Статистические методы анализа рынков

Экзаменационные материалы

Подпись руководителя ИОНЦ Дата

> Екатеринбург 2008

Тест №1 к зачету по курсу «Статистические методы анализа рынков».

Группа Фамилия И. О.

Часть 1. Вопросы закрытой формы.

Инструкция. Выберите среди предлагаемых вопросов номер правильного варианта и отметьте его.

- 1. События А и В называются несовместными если
 - 1. Вероятность наступления события A не зависит от того, произошло B, или нет.
 - 2. A и B образуют полную группу событий.
 - 3. A и B не могут произойти одновременно.
 - 4. A и B практически невозможны.
 - 5 A+B=AB.
- 2. Случайная величина X принимает значение равное числу опытов m проведенных до первого успеха, при этом p вероятность появления благоприятного исхода в единичном опыте, а q=1-p. По какому закону распределена случайная величина X?
 - 1. По биномиальному закону: $P(X = m) = C_n^m p^m q^{n-m}$.
 - 2. По геометрическому закону: $P(X = m) = pq^{m-1}$.
 - 3. По закону Пуассона: $P(X = m) = \frac{\lambda^m}{m!} e^{\lambda}$.
 - 4. По нормальному закону.
 - 5. По равномерному закону.
- 3. Вероятность появления события A равна P(A)=0,4. Чему равна вероятность $P(\overline{A})$ появления противоположного события \overline{A} ?

1.
$$P(\overline{A}) = 0$$
.

4.
$$P(\overline{A}) = 1$$
.

2.
$$P(\overline{A}) = 0.6$$
.

5.
$$P(\overline{A}) = 1,3$$
.

3.
$$P(\overline{A}) = 0.7$$
.

- 4. Медианой называется
 - 1. Наиболее часто встречающееся значение случайной величины.
 - 2. Вторая квартиль.
 - 3. Максимальное значение функции плотности распределения вероятности.
 - 4. Значение функции распределения в точке x=0.
 - 5. Вероятность попадания в интервал от a до b.
- 5. К использованию какой табулированной функции приводит задача о вычислении вероятности попадания в интервал значения нормально распределенной случайной величины
 - Пуассона.

4. Лагранжа.

2. Лапласа.

5. Клюева.

3. Пирсона.

совпадают, по какому из перечисленных законов она	математическое ожидание может быть распределена? альному закону.
 8. Непрерывная случайная величина X распределена в отрезке [0,11]. Какой из двух результатов верояти опыте: случайная величина приняла значение из отрез величина приняла значение из отрезка от 9 до 12? 1. Вероятность попадания в отрезок [0,2] больше, чем в 2. Вероятность попадания в отрезок [0,2] меньше, чем в 3. Вероятность попадания в отрезок [0,2] равна, вероя [9,12]. 4. Попадание в отрезок [0,2] – невозможное событие. 5. Попадание в отрезок [9,12] – достоверное событие. 	нее получить в единичном езка от 0 до 2, или случайная отрезок [9,12]. отрезок [9,12].
9. Математическое ожидание дискретной случайной вел	ичины имеет вид
1. $\sum_{i=1}^{n} p_{i}x_{i}$ 2. $\max\{x_{1}, x_{2}, x_{n}\}$ 4. $\sum_{i=1}^{n} x_{i} p_{i}$ 5. $\int_{-\infty}^{\infty} x f(x) dx$	
$3. \int_{-\infty}^{\infty} x^2 f(x) dx$	
10. Чему равно значение несобственного интеграла $\int\limits_{-\infty}^{\infty}f$	f(x)dx , где $f(x)$ - функция
плотности распределения некоторой непрерывной слу	
1. 0. 4. 1. 2. 0.5. 51.	
2. 0,5. 51. 3. ∞.	
11. Коэффициент корреляции для случайных величин X свидетельствует? 1 X и Y не связаны никакой зависимостью	и Y равен нулю - о чем это

2. Между X и Y существует обратная линейная зависимость.

4. от 0 до 1. 5. от 0 до *n*.

4. Между *X* и *Y* нет линейной зависимости.5. Хотя бы одно из событий невозможно.

12. Коэффициент корреляции изменяется в пределах

 $3. \quad X$ и Y – несовместны.

1. от -1 до 1.

2. от -∞ до 0.

6. Чему равен первый центральный теоретический момент случайной величины

4. Первому начальному

5. Бесконечности.

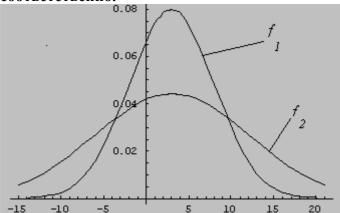
теоретическому моменту.

1. Нулю.

2. Медиане.

3. Единице.

13. Случайные величины X_1 и X_2 распределены нормально. На рисунке изображены их функции плотности распределения вероятностей $f_1(x)$ и $f_2(x)$ соответственно.



Как соотносятся их числовые характеристики.

- 1. $M[X_1] > M[X_2]$ и $D[X_1] = D[X_2]$.
- 2. $M[X_1] > M[X_2]$ $\times D[X_1] < D[X_2]$.
- 3. $M[X_1] = M[X_2]$ и $D[X_1] < D[X_2]$.
- 4. $M[X_1] = M[X_2]$ и $D[X_1] > D[X_2]$.
- 5. $M[X_1] < M[X_2]$ и $D[X_1] > D[X_2]$.

14. Какие два распределения связывает теорема Пуассона

- 1. Нормальное и биномиальное.
- 2. Показательное и Пуассона.
- 3. Пуассона и равномерное.
- 4. Геометрическое и биномиальное.
- 5. Биномиальное и Пуассона.

15. В какой из предельных теорем речь идет об относительной частоте события

- 1. Центральная предельная теорема.
- 2. Закон больших чисел в формулировке Чебышева.
- 3. Закон больших чисел в формулировке Бернулли.
- 4. Закон Паркинсона.
- 5. Теорема Четаева.

Часть 2. Открытой формы (задачи).

Инструкция: Впишите в отведенное место правильный ответ (только число, или выражение, без какого-либо обоснования)

1. Случайная величина задана рядом распределения

 ian besi	и ини эадана ра	щош	распределения	
x	-3		5	10
p	0,2		0,3	0,5

определить ее математическое ожидание.

$$m_x =$$

2. Брошены две игральные кости. Найти вероятность того, что сумма выпавших очков равна восьми.

P=	 _	

3. В ящике 10 деталей, из которых окрашены. Сборщик наудачу взял 3 детали. Найти вероятность того, что хотя бы одна из них окрашена.

4. Нормально распределенная случайная величина X задана плотностью распределения вероятности $f(x) = \frac{1}{5\sqrt{2\pi}}e^{-\frac{(x-1)^2}{50}}$. Найти математическое ожидание и дисперсию X. $m_{_{X}}= \qquad \qquad D[X]=$

5. Дана функция распределения непрерывной случайной величины X:

$$F(x) = \begin{cases} o, & npu & x \le 0\\ \sin x, & npu & 0 < x \le \pi/2\\ 1, & npu & x > \pi/2 \end{cases}$$

Найти функцию плотности распределения X.

Тест №2 к зачету по курсу «Статистические методы анализа рынков».

Фамилия, И. О. Группа

Часть 1. Вопросы закрытой формы.

Инструкция. Выберите среди предлагаемых вопросов номер правильного варианта и обведите его.

1. Что является оценкой вероятности

- 1 Оценка коэффициента корреляции.
- 2 Среднее квадратическое отклонение.
- 3 Относительная частота.
- 4 Выборочный коэффициент асимметрии.
- 5. Частота.

2 Для заданной выборки объема п сумма всех относительных частот равна

- 1. *n*.
- $2 n^2$.
 - 1
- 3. *n*
- 4. 0.
- 5. 1.

3. Несмещенная оценка дисперсии случайной величины X по выборке $\{x_1, x_2, ..., x_n\}$ имеет вид

- $1. \ \frac{1}{n} \sum_{i=1}^{n} x_i$
- 2. $\frac{1}{n} \sum_{i=1}^{n} (x_i \overline{x})^2$
- $3. \int_{-\infty}^{\infty} x^2 f(x) dx$
- 4. $\frac{1}{n-1}\sum_{i=1}^{n}(x_i-\overline{x})^2$
- $5. \int_{-\infty}^{\infty} x f(x) dx$

4. Какой из перечисленных статистических методов используется для решения вопроса о том, влияет ли некоторый качественный показатель на характер изменения случайной величины X или нет

- 1. Метод наименьших квадратов.
- 2. Метод максимального правдоподобия.
- 3. Дисперсионный анализ.
- 4. Метод интервальной оценки параметров.
- 5. Метод моментов.

5. Оценка математического ожидания случайной величины X по выборке $\{x_1, x_2, ..., x_n\}$ имеет вид

$$1. \ \frac{1}{n} \sum_{i=1}^{n} x_i$$

2.
$$\max\{x_1, x_2, ...x_n\}$$

$$3. \int_{-\infty}^{\infty} x^2 f(x) dx$$

4.
$$\frac{1}{n-1} \sum_{i=1}^{n} |x_i|$$

$$5. \int_{-\infty}^{\infty} x f(x) dx$$

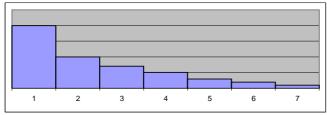
6. Выборочный коэффициент корреляции для случайных величин X и Y мало отличается от нуля, о чем это свидетельствует?

- 1. Нет оснований считать, что X и Y связаны какой-либо зависимостью.
- 2. Статистически значимо наличие между X и Y обратной линейной зависимости.
- 3. X и Y несовместны.
- 4. Есть основания считать, что между Х и У нет линейной зависимости.
- 5. Хотя бы одно из событий невозможно.

7. Оценка коэффициента корреляции может принимать значения в пределах

- 1. От -1 до 1.
- 2. От -∞ до 0.
- 3. От 0 до ∞.
- 4. От 0 до 1.
- 5. От 0 до п.

8. На основании выборки полученной в результате наблюдений над случайной величиной X была построена гистограмма, приведенная на рисунке.



Какую гипотезу о характере распределения случайной величины X следует выдвинуть, и на каком основании проверить такую гипотезу?

- 1. Гипотеза о нормальном законе распределении, проверить на основании метода максимального правдоподобия Фишера.
- 2. Гипотеза о показательном законе распределении, проверить на основании критерия Пирсона χ^2 .
- 3. Гипотеза о нормальном законе распределении, проверить на основании критерия Пирсона χ^2 .
- 4. Гипотеза о равномерном законе распределении, проверить на основании метода моментов.
- 5. Гипотеза о показательном законе распределении, проверить на основании критерия Стьюдента.

9. Стандартное отклонение является оценкой

- 1. Дисперсии.
- 2. Ковариации.
- 3. Межквартильного размаха.
- 4. Медианы.
- 5. Среднего квадратического отклонения.

10. Корреляционная зависимость может возникнуть между

- 1. Двумя случайными величинами.
- 2. Случайной и детерминированной величинами.
- 3. Двумя детерминированными величинами.
- 4. Случайной величиной и временем.
- 5. Коэффициентами детерминации.

11. Индексы Ласпейроса и Пааше являются

- 1. Относительными показателями структурных сдвигов.
- 2. Индивидуальными индексами физического объема.
- 3. Показателями темпов прироста.
- 4. Индексами цен.
- 5. Индексами стоимости.

12. При прогнозировании среднего значения случайной величины на основе построения тренда размер доверительного интервала по мере удаления от середины динамического ряда

- 1. Уменьшается.
- 2. Увеличивается.
- 3. Колеблется.
- 4. Остается постоянной.
- 5. Изменяется случайным образом.

13. Оценка дисперсии случайной величины X по выборке $\{x_1, x_2, ..., x_n\}$ имеет вид

$$1. \ \frac{1}{n} \sum_{i=1}^{n} x_i$$

2.
$$\frac{1}{n}\sum_{i=1}^{n}(x_i-\bar{x})^2$$

$$3. \int_{-\infty}^{\infty} x^2 f(x) dx$$

$$4. \ x_{\text{max}}^{-\infty} - x_{\text{min}}$$

$$5. \int_{-\infty}^{\infty} x f(x) dx$$

14. Какая из перечисленных ниже характеристик не является мерой разброса (вариативности)

- 1. Размах вариации.
- 2. Дисперсия.
- 3. Среднее квадратическое отклонение.
- 4. Среднее линейное отклонение.
- 5. Медиана

15.	Счем	. из	перечисленного	ниже.	совпалает	вторая	квинтиль

- 1. С первой квартилью.
- 2. С четвертой децилью.
- 3. С пятой процентилью.
- 4. С третьей нонилью.
- 5. Со второй секстилью.

Часть 2. Задачи.

1. Из генеральной совокупности извлечена выборка объема n=10

Значение признака х	-4	6	10
Частота т	2	3	5

Определить оценку математического ожидания.

 $\overline{x} =$

2. По выборке объема n=10 найдена смещенная оценка дисперсии $D^*=18$. Найти несмещенную оценку дисперсии.

 $\widetilde{D} =$

3. В 15 наблюдениях над непрерывной случайной величиной X была получена выборка $\{1, 2, 5, 3, 6, 7, 7, 9, 3, 2, 4, 0, 6, 6, 8\}$. Составить интервальную выборку, сгруппировав значения по интервалам: от 0 до 3, от 3 до 6 и от 6 до 9

	phanam. or o	до 3, от 3 до	опогодох
Границы интервалов	0-3	3-6	6-9
Частота т			
Относительная частота			

4. По заданной последовательности цепных индексов $i_1^{\mathcal{U}}=1,2$, $i_2^{\mathcal{U}}=1,3$, $i_3^{\mathcal{U}}=0,8$,

 $i_4^{II}=1,\!1$ найти четвертый базисный индекс i_4^{IS}

$$i_4^E =$$

5. В семи опытах наблюдались значения пар признаков $\{x,y\}$ данные наблюдений приведены в таблице

Значение признака х	1	4	-6	10	-2	5	-3
Значение признака у	0,5	2	-3	5	-1	2,5	-1,5

Определить значение выборочного коэффициента корреляции

$$\rho_{xy} =$$