Тесты по прикладным средствам в ЭКОНОМЕТРИКЕ

ТЕСТ-1 для подготовки к экзамену

1) Если
$$y = a(z + av)$$
, где a – константа, то $Cov(x, y) = ...$

A. 0

В. -1 или 1 в зависимости от знака a

C.
$$aCov(x,z) + a^2Cov(x,v)$$

D.
$$Cov(x,a)*[Cov(x,z)+aCov(x,v)]$$

E.
$$Cov(x, az) + [Cov(x, av)]^2$$

- 2) Выборочная ковариация Cov(x, y) является для теоретической ковариации $pop.cov(x, y) = \sigma_{xy}$
- А. отрицательно смещенной оценкой
- В. положительно смещенной оценкой
- С. несмещенной, но не состоятельной оценкой
- D. несмещенной и состоятельной оценкой

3) Если у =
$$a - 307x$$
, где $a - константа$, то $r_{x,y}$

- A. 307
- B. 1
- С. (-307) или 307 в зависимости от знака Х
- D. -1
- E. -307

4) Чтобы из выражения
$$\frac{\frac{1}{n}\sum xy - n\overline{xy}}{\frac{1}{n}\sum (x-\overline{x})^2}$$
 получить

формулу расчета оценки коэффициента β по МНК, необходимо:

A. домножить его на n или $\frac{1}{n}$

B. домножить его на
$$\frac{\displaystyle \frac{1}{n} \sum (x - \overline{x})^2}{\displaystyle \frac{1}{n} \sum x^2 - \overline{x}^2}$$

C. прибавить к нему
$$\frac{\frac{1}{n^2} \Big[\sum x \Big] \Big[\sum y \Big]}{\frac{1}{n-1} Var(x)}$$

D. домножить его на
$$\sqrt{\frac{\text{Cov}(x,y)}{\text{Var}(x)}}$$

E. ничего не делать. Это и есть формула расчета оценки коэффициента β. 5) Выберите НЕправильное утверждение

A. для парной регрессии можно показать, что $R^2 = r_{v,\,\hat{v}}$

В. коэффициент R^2 автоматически максимизируется, если мы минимизируем Var(e)

С. $R^2 = 1$, когда Var(e) = 0

D. коэффициент R^2 показывает часть дисперсии y, объясненную уравнением регрессии

E.
$$Var(y) = \frac{Var(\hat{y})}{R^2}$$

6) Как можно по имеющейся выборке $\{(x_i,y_i)\}$ посчитать, чему равна теоретическая дисперсия остаточного члена σ^2 ?

A.
$$\frac{1}{n-2}\sum e_i^2$$

B. $\frac{s^2}{nVar(x)}$

C.
$$\frac{s^2}{n} \left\{ 1 + \frac{\overline{x}^2}{Var(x)} \right\}$$

D. всеми тремя вышеуказанными способами в разных случаях.

Е. Никак нельзя.

7) Было оценено уравнение регрессии y = 307 + 2001x. При проверке гипотеза

 \boldsymbol{H}_{0} : $\boldsymbol{\beta}=0$ t-статистика оказалась равна 2,19.

Если соответствующие $t_{\kappa pum}$ равны 2,11 для 5%-

го уровня значимости и 2,898 для 1%-го, то A. гипотеза HE отвергается при 5%-ом уровне

значимости, но отвергается при 1%
В. гипотеза отвергается при 5%-ом уровне

значимости, но НЕ отвергается при 1% С. гипотеза отвергается и при 5%-ом уровне

значимости, и при 1%

D. гипотеза НЕ отвергается и при 5%-ом уровне значимости, и при 1%

Е. вероятно, в расчетах была допущена ошибка.

8) Если при уровне значимости 5% гипотеза

 H_0 : $\beta = 0$ отвергается, то можно сказать, что

А. с вероятностью 95% связь между x и y существует

В. с вероятностью 95% связь между x и y отсутствует

С. с вероятностью 95% связь между х и у есть, но исследование ее не обнаружило

D. с вероятностью 95% связь между *x* и *y* была, но исследование ее не могло обнаружить

E. есть ли связь между x и y или нет — науке это неизвестно

ТЕСТ-2 для подготовки к экзамену по эконометрике

В каждом вопросе выберите по одному правильному, наиболее полному ответу

- 1) В КЛММР коэффициент регрессии при каждой переменной x представляет собой:
- А. оценку ее влияния на величину y в случае неизменности влияния на нее остальных x
- В. оценку ее влияния на величину y при незначительных изменениях x
- С. оценку ее влияния на величину у
- D. эластичность данной переменной по y
- E. эластичность данной переменной по y в случае неизменности влияния на нее остальных x

- 2) Могут ли при добавлении в выборку одного дополнительного наблюдения измениться существенно оценки коэффициентов регрессии?
- А. Да, могут.
- В. Да, но только если оценивалась нелинейная регрессия.
- С. Да, но только если в модели были фиктивные переменные.
- D. Да, но только если выборка была очень мала.
- Е. Верны ответы В и С.

- 3) Если коэффициенты модели оказались незначимыми, а уравнение в целом значимо, то, скорее всего:
- А. уравнение не пригодно для анализа
- В. уравнение включает лаговую зависимую переменную
- С. модель неправильно функционально специфицирована
- D. в модели высока мультиколлинеарность
- Е. нарушено первое условие Гаусса-Маркова

4) Какой из этих тестов НЕ используется для выявления гетероскедастичности:

- А. тест Уайта
- В. тест Глейзера
- С. тест ранговой корреляции Спирмена
- D. тест Чоу
- Е. тест Голфельда-Квандта

5) Пусть у — потребление жвачки в кг на 1 человека в год, а D — фиктивная переменная, равная 1, если человек курит, и 0 — если нет. Оценили регрессию вида $y = \alpha + \beta_1 x + \beta_2 D$. Оценка $\beta_2 > 0$, гипотеза $\beta_2 = 0$ не отвергается при необходимом уровне значимости. Тогда можно утверждать:

 Курильщики, как правило, не потребляют жвачку.

- В. Курильщики не отличаются по потреблению жвачки от всех остальных.
- С. Курильщики жуют в среднем больше жвачки, чем некурящие.
- D. Если человек потребляет много жвачки, то он, скорее всего, курит.
- E. Если человек потребляет много жвачки, то он, скорее всего, НЕ курит.

скорее всего, НЕ курит.

6) Была оценена регрессия вида $y_i = \alpha \beta_1 C_i + \beta_2 D_i$, где $y_i - BB\Pi$ в і-м году в Гондурасе, C_i – валовое потребление в і-м году в Гондурасе, D_i – фиктивная переменная, равная 0 до 1977 года включительно и 1 начиная с 1998 года. Оценка $\hat{\beta}_2 > 0$ и значима.

Можно утверждать, что

- A. $\hat{y}_{1977} > \hat{y}_{1978}$
- B. $\hat{y}_{1977} < \hat{y}_{1978}$
- C. $\hat{y}_{1977} < \hat{y}_{1978}$, если $\hat{\beta}_{1} > 0$
- $D.~~\hat{y}_{1977} < \hat{y}_{1978}$, если $\hat{\beta}_{\dot{1}} > 0~$ и значима
- E. среди вышеперечисленных ответов верных нет.

- 7) Если при добавлении в модель фиктивной переменной значение R^2 уменьшилось, это значит, что
 - А. Фиктивную переменную добавлять не стоило.
 - В. Фиктивная переменная коллинеарна с одной из объясняющих переменных
 - С. Фиктивная переменная коллинеарна с зависимой переменной
 - D. Необходимо выполнить тест Чоу.
 - Е. Скорее всего, в расчеты вкралась ошибка

8) Какие гипотезы проверяются в тесте Чоу:

A.
$$H_0$$
: $\beta_i = \beta_i^{"}, (\sigma^2) = (\sigma^2)^{"}$
 H_1 : $\beta_i = \beta_i^{"}, (\sigma^2) \neq (\sigma^2)^{"}$

B. H_0 : $\beta_i^{'} = \beta_i^{''}$ для всех i H_1 : H_0 не верна

C. H_0 : $\beta_i^{\ , } \neq \beta_i^{\ , }$ хотя бы для одного і H_1 : H_0 не верна

D. H_0 : $\beta_i = \beta_i^*, (\sigma^2) = (\sigma^2)^*$ H_1 : H_0 не верна

Е. Ни один из ответов не верен

- 9) Сколько параметров подлежит оценке, если в модель линейной регрессии со свободным членом и двумя объясняющими переменными удовлетворяет всем условиям теоремы Гаусса-Маркова:
 - A. 2
 - B. 3 C. 4
 - D. 5
 - Е. информации для точного ответа недостаточно

Часть 2. Тесты множественного выбора. 30 минуможет быть оценено как модель линейной В каждом вопросе обведите цифру номера регрессии: правильного ответа.

- 1. Если объясняющая переменная х модели парной линейной регрессии принимает среднее в выборке значение $\overline{x} = \Sigma x_i/n$, To
- 1) наблюдаемая величина зависимой переменной *y* равна $\overline{y} = \Sigma y_i/n$;
- 2) рассчитанная по уравнению регрессии величина зависимой переменной у равна $\overline{y} = \Sigma y_i/n$;
- 3) рассчитанная по уравнению регрессии величина зависимой переменной у равна в среднем, но не в каждом $\overline{v} = \Sigma v_i / n$ конкретном случае;
- 4) равенство $\overline{y} = a + b \overline{x}$ свидетельствует об отсутствии корреляции между отклонениями;
- 5) равенство $\overline{y} = a + b \overline{x}$ свидетельствует о выполнении условий Гаусса-Маркова.
- 2. В модели парной линейной регрессии при использовании метода наименьших квадратов верны следующие перечисленных утверждений:
 - Квадрат коэффициента корреляции между фактическими и теоретическими значениями зависимой переменной в выборке равен R^2
 - II. Квадрат коэффициента корреляции между зависимой переменной и объясняющей переменной в выборке равен R^2
 - III. Доля остаточной (необъясненной) дисперсии зависимой переменной равна R^2
 - Только I;
 - 2) Только II;
 - 3) Только I и III;
 - 4) Только I и II;
 - 5) I, II и III.
- 3. Уравнение $Y = \alpha + \beta k + (1 \beta)l + u$, где Y темп прироста выпуска, k - темп прироста затрат капитала и l - темп прироста затрат труда,

- 1) непосредственно, c помощью обычного МНК, как зависимость Y от k и l со свободным членом;
- 2) непосредственно, с помощью обычного МНК, как зависимость Y от k и l без свободного члена;
- 3) как линейную зависимость (Y-k)от (l-k) со свободным членом;
- 4) как линейную зависимость (Y-k) от (l-k) без свободного члена:
- 5) невозможно оценить данную зависимость помощью c обычного МНК; требуется нелинейный МНК.
- 4. В модели множественной линейной регрессии с двумя объясняющими переменными $Y = \alpha + \beta_1 x_1 + \beta_2 x_2 + u$ оценка коэффициента β_l по методу наименьших квадратов для заданной выборки не зависит
- 1) наблюденных значений переменной x_1 ;
- 2) наблюденных значений переменной x_2 ;
- 3) наблюденных значений переменной Y;
- 4) значения постоянного члена α :
- 5) ковариации между x_1 и Y.
- 5. У исследователя есть данные наблюдений трех экономических переменных, y, x_1 и x_2 , и он рассматривает три гипотезы: (a) y зависит от x_1 и x_2 , (b) y зависит только от x_1 , и (c) y зависит только от При оценивании регрессий для каждой из этих моделей величины R^2 получились равными R^2 _a, R^2 _b и R^2 _c соответственно. Какое из следующих утверждений верно?
 - 1) $R_a^2 = R_b^2 + R_c^2$,

 - 1) R_a = R_b + R_c,
 2) R_a² > R_b² + R_c,
 3) R_a² = R_b² R_c,
 4) R_a² < R_b² + R_c,
 5) R_a² может быть больше, а может быть меньше, чем $R_{b}^{2} + R_{c}^{2}$
- 6. У исследователя есть данные наблюдений трех экономических переменных, y, x_1 и x_2 , и он рассматривает три гипотезы: (a) y зависит от x_1 и x_2 , без свободного члена; (b) y зависит только от x_1 , со свободным членом, и (с) у зависит

только от x_2 , со свободным членом. При оценивании регрессий для каждой из этих моделей величины RSS получились равными RSS_a , RSS_b и RSS_c соответственно. Какое из следующих утверждений верно?

- 1) $RSS_a > \max\{RSS_b, RSS_c\}$
- 2) $RSS_a > RSS_b + RSS_c$,
- 3) $RSS_a < \min\{RSS_b, RSS_c\}$
- 4) $RSS_a < RSS_b + RSS_c$,
- 5) RSS_a может быть больше, а может быть меньше, чем $RSS_b + RSS_c$
- 7. В модели множественной линейной регрессии высокая корреляция между двумя объясняющими переменными приводит к:
 - 1) смещенности оценок коэффициентов, полученных по методу наименьших квадратов.
 - 2) несостоятельности оценок коэффициентов, полученных по методу наименьших квадратов.
 - 3) неэффективности оценок коэффициентов, полученных по методу наименьших квадратов.
 - 4) значительной дисперсии оценок коэффициентов, полученных по методу наименьших квадратов.
 - 5) равенству нулю оценок коэффициентов, полученных по методу наименьших квадратов.
- 8. Переменная y определяется величинами x_1 и x_2 и случайным членом u по следующей формуле: $y = \alpha + \beta_1 x_1 + \beta_2 x_2 + u$

По данным выборки оценено следующее уравнение регрессии: $\hat{y} = a + b_1 x_1$

Переменные x_1 и x_2 положительно коррелированы. Величины β_1 и β_2 положительны. Тогда:

- 1) b_1 всегда меньше, чем β_1
- 2) b_1 всегда больше, чем β_1
- 3) оценка b_1 смещена в сторону завышения
- 4) оценка b_1 смещена в сторону занижения

- b_1 является несмещенной оценкой β_1 .
- 9. Введение линейного ограничения на параметры в регрессионную модель
 - 1) приводит к незначительному сокращению суммы квадратов отклонений, если ограничение значимо
 - 2) приводит к значительному сокращению суммы квадратов отклонений, если ограничение значимо
 - 3) приводит к незначительному сокращению суммы квадратов отклонений, если ограничение незначимо
 - 4) приводит к значительному сокращению суммы квадратов отклонений, если ограничение незначимо
 - 5) все перечисленное неверно
- 10. Тест Голдфелда-Квандта в модели $y = \alpha + \beta x + u$ используется для
 - 1) обнаружения гетероскедастичности любого вида
 - 2) обнаружения гетероскедастичности вида $\sigma_{ui} = \gamma x_i$
 - 3) обнаружения гетероскедастичности вида $\sigma_{ui} = \delta + \gamma \, x_i^{\,\mu}$
 - 4) проверки на некоррелированность значений случайного члена между собой
 - 5) проверки на некоррелированность значений случайного члена и объясняющей переменной
- 11. Оценена линейная регрессионная зависимость величины заработка респондента y от совокупности факторов $(x_1,x_2,...,x_n)$. Исследователь предполагает, что величина заработка зависит также от места проживания респондента, которое может принадлежать к одному из трех типов: крупный город, малый город, сельская местность. Для того, чтобы учесть это в модели, нужно:

- 1) ввести фиктивную переменную, которая может принимать три разных значения;
- 2) ввести фиктивную переменную, которая может принимать два разных значения;
- 3) ввести две фиктивные переменные, каждая из которых может принимать два разных значения;
- 4) ввести три фиктивные переменные, каждая из которых может принимать два разных значения;
- 5) ввести две фиктивные переменные, каждая из которых может принимать три разных значения.
- 12. Оценена регрессионная зависимость величины спроса потребителей на VideoCD (VCD) от их дохода (Y) и от уровня цен на VideoCD (Pvcd) в виде: $log(VCD) = \alpha +$ $\beta_1 log(Y) + \beta_2 log(Pvcd) + u.$ В выборку включены только те потребители, у которых имеется персональный компьютер. Далее исследователь предполагает, эластичности спроса на VideoCD по доходу по цене зависят ОТ наличия И потребителей DVD-проигрывателя. Для того, чтобы учесть это в модели, нужно:
 - 1) ввести фиктивную переменную для свободного члена;
 - 2) ввести две фиктивные переменные для свободного члена;
 - 3) ввести одну общую фиктивную переменную для коэффициентов наклона;
 - 4) ввести две фиктивные переменные для коэффициентов наклона;
 - 5) ввести две фиктивные переменные, по одной для свободного члена и для коэффициентов наклона.

Часть 3. (1 час 30 минут). Ответьте письменно на любые два из следующих трех вопросов.

1. Исследователь интересуется факторами, определяющими динамику потребления мяса (B) в США в 1960 — 1987 годах (фунты в год на душу населения). В качестве факторов он рассматривает цену P (центы за фунт) и личный располагаемый доход

(тысячи долларов в год в расчете на душу населения) Y.

1.1. Вначале он строит модель парной регрессии потребления мяса от личного располагаемого дохода

$$\hat{B} = 77.3 + 3.48 \cdot Y \qquad R^2 = 0.26$$
(9.7) (1.11)

В скобках приведены стандартные ошибки. Оцените качество модели, приведя обоснование своих суждений и выводов на основе t-тестов и F-теста (F-статистику рассчитайте двумя разными способами). Дайте интерпретацию коэффициентов модели.

1.2. Затем он строит парную регрессию по пенам

$$\hat{B} = 102.3 + 0.115 \cdot P \qquad R^2 = 0.03$$
(4.87) (0.119)

Дайте интерпретацию коэффициентов модели и выскажите свое суждение о качестве модели.

1.3. Не удовлетворенный полученным результатом, исследователь попытался построить модель множественной регрессии одновременно по обоим исследованным факторам.

$$\hat{B} = 37.5 + 11.89 \cdot Y - 0.88 \cdot P \qquad R^2 = 0.66$$

$$(10.04)(1.76) \quad (0.16)$$

$$(3)$$

Охарактеризуйте значимость отдельных факторов модели и дайте интерпретацию коэффициентов модели. В чем причина различия между значениями коэффициентов при величине дохода в моделях (1) и (3)? Какое из значений следует считать более правильным и почему?

- 1.4. Можно ли считать значимым вклад фактора цены в модели (3) по сравнению с моделью (1)? Как согласуется Ваш вывод с оценкой значимости модели (2)?
- 1.5. Скорректированный коэффициент детерминации модели (1) равен $\overline{R}^2=0.237$, тогда как для модели (3) он составляет $\overline{R}^2=0.63$. Поясните смысл скорректированного коэффициента

детерминации и прокомментируйте эти числа и различие между ними.

1.6. Наконец, исследователь решает использовать логарифмы для всех переменных в уравнении множественной регрессии

$$LO\hat{G}(B) = 3.59 + 1.07 \cdot LOG(\hat{Y}) - 0.34 \cdot LOG(\hat{P})$$

$$(0.41) \quad (0.148) \qquad (0.06)$$

$$(4)$$

Как изменится интерпретация коэффициентов модели (4) по сравнению с моделью (3)? Каким видом товара является мясо в соответствии с этой моделью (предмет первой необходимости, предмет роскоши, нормальное благо, худшее благо, товар Гиффена и т.п.)?

- 2. Фирма управляет двумя предприятиями, величина месячной прибыли (в сотнях тысяч рублей) которых за год описывается переменными *P1*, *P2*. Общая прибыль фирмы *P* складывается из прибыли обоих предприятий за вычетом некоторых дополнительных постоянных издержек и, возможно, отчислений из прибыли каждого из предприятий. Имеется 13 помесячных наблюдений за полный год и январь следующего года.
- 2.1. Регрессионная модель зависимости общей прибыли от прибыли предприятий выглядит следующим образом:

$$P = -5.4 + 1.09 \cdot P1 + 0.8 \cdot P2 \qquad R^2 = 0.47$$

$$(12.7)(0.69) \qquad (0.59)$$

$$(1)$$

Дайте содержательную интерпретацию модели. Охарактеризуйте значимость каждого из факторов на основе t-статистик и значимость модели в целом на основе F-критерия. Там, где нужно, выполните односторонний тест и объясните причину его использования.

2.2. Как можно объяснить на содержательном уровне очевидное противоречие между значимостью отдельных факторов и значимостью модели

- в целом (подробно опишите, в чем заключается это противоречие).
- 2.3. Что выражает различие значений двух коэффициентов при независимых переменных? Является ли их соотношение мерой различия вкладов обоих каредогриятий? А мерой различия предельных вкладов предприятий? Можно ли принять гипотезу, что каждый из факторов входит в уравнение с коэффициентом, равным единице?
- 2.4. Ковариационная матрица для переменных модели выглядит следующим образом.

	Р	P1	P2
Р	458.4986	99.97390	96.99030
P1	99.97390	57.53368	24.81317
P2	96.99030	24.81317	77.88488

Определите коэффициенты корреляции между переменными модели, взятыми попарно. Какие дополнительные выводы можно сделать из этих данных?

2.5. Далее была оценена парная регрессия
$$P = -33.7 + ... \cdot P1$$
 $R^2 = 0.38$ (12.1) (...)

Воспользовавшись имеющимися данными, рассчитайте коэффициент наклона и стандартную ошибку в модели (2). Рассматривая модель (1) как правильную, объясните смещение коэффициента наклона в модели (2), пользуясь ковариационной матрицей.

2.6. Если сгенерировать новую переменную P0=P1+P2, то можно получить следующую регрессионную зависимость

$$P = -6.2 + 1.06 \cdot P0$$

$$(2.7) (0.34)$$

$$(3)$$

Сравните модель (3) с моделью (1). Сформулируйте введенное линейное ограничение и проверьте его значимость. Что можно сказать о наличии общих постоянных издержек, а также отчислений

от прибыли каждого из предприятий до перечисления в общий фонд?

- 3. Рассматривается зависимость совокупных расходов на косметику в США от совокупного личного располагаемого дохода за 1959-1983 гг. С этой целью строится ряд линейных регрессий.
- 3.1. Уравнение зависимости уровня расходов на косметику от логарифма личного располагаемого дохода получилось следующим

$$COSM = -34.02 + 6.1 \cdot \log(DPI)$$
 $R^2 = 0.95$ (1.95) (0.29)

Дайте интерпретацию модели и ее коэффициентов. Запишите уравнение, не используя логарифмы.

3.2. Если, наоборот, взять логарифм только от величины расходов, то уравнение принимает вид

$$\log(COSM) = 0.77 + 0.0014 \cdot DPI \qquad R^2 = 0.83$$
(0.10) (0.00013)

(2)

Дайте интерпретацию коэффициентов модели. Запишите уравнение, не используя логарифмы.

3.3. Модель в двойных логарифмах принимает вид

$$\log(COSM) = -5.20 + 1.06 \cdot \log(DPI) \qquad R^2 = 0.90$$

$$(0.48) \quad (0.07)$$

$$(3)$$

Дайте интерпретацию коэффициентов модели. Запишите уравнение, не используя логарифмы.

3.4. Если выполнить преобразование Зарембки, сформировав новую переменную COSMZ взамен COSM, то получим следующее линейное уравнение

$$COSMZ = 0.05 + 0.001 \cdot DPI$$
 $R^2 = 0.89$ $(0.001) (0.00009)$

(4)

В чем состоит преобразование Зарембки и для чего оно используется?

- 3.5. Значение суммы квадратов остатков для модели (4) составило 0.0877, тогда как для модели (3) оно равно 0.21. Сопоставимы ли значения RSS и R^2 в этих двух моделях? Можно ли утверждать, что одна из моделей имеет преимущество перед другой? Приведите статистическое обоснование своего вывода. Можно ли выбрать наилучшую из моделей (1)-(4)?
- 3.6. Известно, что альтернативным методом к методу Зарембки является процедура пось Бокса-Кокса. Опишите ее смысл и последовательность действий для $R^2 = 0.95$ рассматриваемого примера.

1. Перечень примерных контрольных вопросов и заданий для самостоятельной работы

- Коэффициент линейной корреляции, его сущность.
- Парные коэффициенты корреляции.
- Частные коэффициенты корреляции.
- Коэффициент множественной корреляции
- Проверка на значимость рассчитанных коэффициентов корреляции
- Понятие модели, ее экономическая сущность.
- Типы моделей, их краткая характеристика.
- Модели временных рядов.
- Регрессионные модели с одним уравнением.
- Спецификация модели.
- Идентифицируемость модели.
- Модель парной линейной регрессии.
- Построение парной линейной регрессии методом наименьших квадратов.
- Качество оценивания модели парной регрессии.
- Свойства, экономическая интерпретация и оценка параметров линейного
- уравнения регрессии.
- Проверка гипотез о значимости регрессионной модели и проверка значимости ее
- параметров.
- Оценка значимости коэффициента корреляции.
- Критерии Стьюдента и Фишера.
- Интервалы прогноза по линейному уравнению регрессии.
- Построение доверительных интервалов для прогнозируемых значений.
- Стандартные ошибки коэффициентов регрессии.
- Средняя ошибка аппроксимации.
- Нелинейная регрессия.
- Схема применения метода наименьших квадратов в нелинейных моделях.
- Системы нормальных уравнений для нелинейных моделей.
- Корреляция для нелинейной регрессии.
- Модель множественной регрессии.
- Спецификация переменных в моделях множественной регрессии.
- Процедура пошагового отбора переменных.
- Отбор факторов при построении множественной регрессии.
- Матрица парных корреляций.
- Понятие мультиколлинеарности.
- Выбор формы уравнения множественной регрессии.
- Частные уравнения регрессии.

- Свойства, экономическая интерпретация и оценка коэффициентов уравнения множественной регрессии.
- Определение оценки надежности результатов множественной регрессии и корреляции.
- Проверка общего качества уравнения регрессии и выполнимости предпосылок метода наименьших квадратов. Статистика Дарбина-Уотсона.
- Понятие гетероскедастичности и автокорреляции.
- Характеристика ошибок измерения. Фиктивные переменные во множественной регрессии.
- Нелинейные модели множественной регрессии.
- Прогнозирование в моделях множественной регрессии.
- Понятие и экономическая сущность оценки параметров эконометрических моделей.