РОССИЙСКАЯ ФЕДЕРАЦИЯ

(19) **RU** (11)

2 828 809⁽¹³⁾ C1

(51) MПК *C22B 60/02* (2006.01) *C22B 3/24* (2006.01) *B01D 15/04* (2006.01)

ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

(52) CIIK

C22B 60/0265 (2024.01); C22B 3/24 (2024.01)

(21)(22) Заявка: 2023132771, 12.12.2023

(24) Дата начала отсчета срока действия патента: 12.12.2023

Дата регистрации: **21.10.2024**

Приоритет(ы):

(22) Дата подачи заявки: 12.12.2023

(45) Опубликовано: 21.10.2024 Бюл. № 30

Адрес для переписки:

620002, г. Екатеринбург, ул. Мира, 19, УрФУ, Центр интеллектуальной собственности, Маркс Т.В.

(72) Автор(ы):

Рычков Владимир Николаевич (RU), Каёткин Вадим Евгеньевич (RU), Титова Светлана Михайловна (RU), Расторгуева Марина Игоревна (RU), Скрипченко Сергей Юрьевич (RU), Наливайко Ксения Андреевна (RU)

(73) Патентообладатель(и):

Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" (RU)

N

 ∞

 ∞

ထ

(56) Список документов, цитированных в отчете о поиске: ТИТОВА С.М. Разработка технологии сорбционного извлечения урана из сульфатно-хлоридных растворов скважинного подземного выщелачивания. Диссертация на соискание ученой степени кандидата технических наук. Екатеринбург, 2018, с. 57-61, 89-90. ЛЫЗЛОВА Е.В. Выделение и концентрирование актинидов из азотнокислых растворов с применением новых (см. прод.)

(54) СПОСОБ ПЕРЕРАБОТКИ СУЛЬФАТНО-ХЛОРИДНЫХ ПРОДУКТИВНЫХ РАСТВОРОВ ПОДЗЕМНОГО ВЫЩЕЛАЧИВАНИЯ УРАНА

(57) Реферат:

Изобретение относится к области гидрометаллургии и может быть использовано для концентрирования урана из продуктивных растворов скважинного подземного выщелачивания и его очистки. Способ включает сорбцию урана фосфорсодержащим катионитом, промывку катионита водой, двухстадийную десорбцию урана растворами углеаммонийной соли и осаждение концентрата урана в виде аммонийуранилтрикарбоната из десорбатов. При

этом на первой стадии десорбцию осуществляют раствором углеаммонийной соли с концентрацией $80\text{-}100\,$ г/дм 3 , на второй стадии - раствором углеаммонийной соли с концентрацией $140\text{-}190\,$ г/дм 3 . Обеспечивается увеличение извлечения урана из сульфатно-хлоридных продуктивных растворов скважинного подземного выщелачивания и очистка урана от хлорид-ионов. 3 табл., 3 пр.

 $\overline{\zeta}$

28809

 ∞

2

٦ -

(56) (продолжение):

2828809

2

ионообменных материалов. Диссертация на соискание ученой степени кандидата технических наук. Озерск, 2014, с. 87-93, табл. 18. TITOVA S.M. et al. Processing of Chloride-Containing Productive Solutions after Uranium in-situ Leaching by Ion Exchange Method. Indones. J. Chem., 2019, 19(1), p. 231-238. RU 2797892 C1, 09.06.2023. RU 2735528 C2, 03.11.2020. US 9394587 B2, 19.07.2016.

2828809

Стр.: 2

(19) **RU** (11)

2 828 809⁽¹³⁾ C1

(51) Int. Cl. C22B 60/02 (2006.01) C22B 3/24 (2006.01) B01D 15/04 (2006.01)

FEDERAL SERVICE
FOR INTELLECTUAL PROPERTY

(12) ABSTRACT OF INVENTION

(52) CPC

C22B 60/0265 (2024.01); C22B 3/24 (2024.01)

(21)(22) Application: 2023132771, 12.12.2023

(24) Effective date for property rights:

12.12.2023

Registration date:

21.10.2024

Priority:

(22) Date of filing: 12.12.2023

(45) Date of publication: 21.10.2024 Bull. № 30

Mail address:

620002, g. Ekaterinburg, ul. Mira, 19, UrFU, Tsentr intellektualnoj sobstvennosti, Marks T.V.

(72) Inventor(s):

Rychkov Vladimir Nikolaevich (RU), Kaetkin Vadim Evgenevich (RU), Titova Svetlana Mikhailovna (RU), Rastorgueva Marina Igorevna (RU), Skripchenko Sergei Iurevich (RU), Nalivaiko Kseniia Andreevna (RU)

(73) Proprietor(s):

Federal State Autonomous Educational Institution of Higher Education Ural Federal University named after the first President of Russia B.N.Yeltsin (RU)

$(54)\,$ METHOD OF PROCESSING SULPHATE-CHLORIDE PRODUCTIVE SOLUTIONS OF UNDERGROUND LEACHING OF URANIUM

(57) Abstract:

တ

0

 ∞

 ∞

2

 ∞

FIELD: hydrometallurgy.

SUBSTANCE: invention can be used for concentration of uranium from productive solutions of borehole underground leaching and its purification. Method involves sorption of uranium with a phosphorus-containing cationite, washing the cationite with water, two-stage desorption of uranium with solutions of an ammonium carbonate and precipitation of a uranium concentrate in the form of ammonium uranyl tricarbonate from the desorbates. At the same

time, at the first step, desorption is carried out with a solution of ammonium carbonate with concentration of 80–100 g/dm³, at the second stage—with a solution of ammonium carbonate with concentration of 140–190 g/dm³.

EFFECT: increased extraction of uranium from sulphate-chloride productive solutions of borehole underground leaching and purification of uranium from chloride ions.

1 cl, 3 tbl, 3 ex

 \subseteq

2 8 2

> о О

ဖ

 ∞

<u>ი</u>

Изобретение относится к области гидрометаллургии и может быть использовано в технологии природного урана для концентрирования урана из продуктивных растворов скважинного подземного выщелачивания и его очистки.

Способ переработки сульфатно-хлоридных продуктивных растворов скважинного подземного выщелачивания урана заключается в сорбции урана фосфорсодержащим катионитом, промывке катионита водой, двухстадийной десорбции урана растворами углеаммонийной соли: на первой стадии раствором углеаммонийной соли с концентрацией 80-100 г/дм³, на второй стадии - раствором углеаммонийной соли с концентрацией 140-190 г/дм³ и осаждении концентрата урана в виде аммонийуранилтрикарбоната из десорбатов. Технический результат изобретения – увеличение эффективности извлечения урана из сульфатно-хлоридных продуктивных растворов скважинного подземного выщелачивания и очистка урана от хлорид-ионов.

Известен способ переработки сульфатно-хлоридных растворов подземного выщелачивания урана, содержащих 35 мг/дм³ – U, 15000 мг/дм³ – СГ ионов, рН 1,6, включающий предварительное разбавление исходного раствора водой до концентрации урана 7 мг/дм³ и рН 6,3 и сорбцию урана сульфокатионитом или карбоксильным катионитом (Ражаббоев И.М. Исследование влияния хлорид-ионов в процессе сорбции и десорбции урана / И.М. Ражжабоев, У.З. Шарафутдинов, О.И. Остонов, Ш.О. Нурмуротова // Universum: технические науки : электрон. научн. журн. 2021. 3(84). URL: https://7universum.com/ru/tech/archive/item/11374 (дата обращения: 17.10.2023).

Недостатками данного способа являются:

- низкие значения сорбционной емкости сульфо- и карбоксильных катионитов по отношению к урану, как следствие, снижение эффективности переработки сульфатно-хлоридных продуктивных растворов;
- усложнение технологического процесса необходимостью введения дополнительной операции предварительного разбавления продуктивных растворов.

Наиболее близким по технической сущности (способ-прототип) является способ переработки сульфатно-хлоридных растворов подземного выщелачивания урана, включающий сорбцию урана винилпиридиновым анионитом, промывку анионита водой, десорбцию урана смешанным раствором NH₄NO₃ (65 г/дм³ по нитрат-ионам) и H₂SO₄ (25 г/дм³), осаждение концентрата урана аммиаком при рН 6,7-7,0 (Титова С.М. Разработка технологии сорбционного извлечения урана из сульфатно-хлоридных растворов скважинного подземного выщелачивания: дис. ... канд. техн. наук: 05.17.02 / С. М. Титова; Урал. федер. ун-т им. первого Президента России Б. Н. Ельцина. – Екатеринбург, 2019. – 177 с.).

Недостатками данного способа являются:

40

- низкая селективность винилпиридиновых функциональных групп анионита по отношению к урану в присутствии хлорид-ионов, как следствие, снижение сорбционной емкости анионитов по урану за счет конкурентной сорбции хлорид-ионов;
- невозможность сорбции катионных комплексов урана, присутствующих в значительном количестве в сульфатно-хлоридных продуктивных растворах, как следствие, снижение эффективности извлечения урана из растворов;
- высокие значения сорбционной емкости винилпиридинового анионита по хлоридионам, что обусловливает существенное загрязнение товарных урановых продуктов хлорид-ионом;
 - высокие значения остаточного содержания урана в фазе винилпиридинового

анионита после десорбции смешанным сульфатно-нитратным раствором.

Технический результат изобретения заключается в увеличении эффективности извлечения урана из сульфатно-хлоридных продуктивных растворов скважинного подземного выщелачивания и очистке урана от хлорид-ионов. Технический результат достигается тем, что:

- фосфорсодержащая функциональная группа ионита имеет высокое сродство к катионным комплексам урана при сорбции из растворов. Установлено, что в сульфатно-хлоридных продуктивных растворах подземного выщелачивания уран находится, в основном, в виде нейтральных молекул UO_2SO_4 и UO_2Cl_2 , а также катионов UO_2^{2+} и UO_2Cl^+ . При этом доля анионных комплексов урана $[UO_2(SO_4)_2]^{2-}$, $[UO_2(SO_4)_3]^{4-}$ и $[UO_2Cl_3]^{-}$ невелика.
 - сорбция хлорид-анионов катионитом полностью исключается;
- при десорбции растворами углеаммонийной соли уран образует более прочные карбонатные комплексы по сравнению с комплексным соединением, образованным ураном с функциональной группой катионита, что способствует увеличению степени вымывания урана из фазы насыщенного катионита, повышению концентрации металла в десорбатах.
- 20 Способ переработки сульфатно-хлоридных растворов подземного выщелачивания урана заключается в сорбции урана ионитом, промывке насыщенного ионита водой, десорбции урана и осаждении концентрата урана, отличающийся тем, что сорбцию урана ведут фосфорсодержащим катионитом и десорбцию осуществляют растворами углеаммонийной соли в две стадии: на первой стадии раствором углеаммонийной соли с концентрацией 80-100 г/дм³, на второй стадии раствором углеаммонийной соли с концентрацией 140-190 г/дм³.

В примерах 1-3 представлены результаты экспериментов, подтверждающие эффективность предлагаемого способа переработки сульфатно-хлоридных продуктивных растворов, в сравнении со способом-прототипом.

Пример 1

30

45

Сорбцию урана в динамическом режиме осуществляли из раствора, содержащего U - 27,9 мг/дм³; Cl⁻ - 8,712 г/дм³; H₂SO₄ - 4,41 г/дм³. В вертикально установленные колонки загружали по 5 см³ ионитов в набухшем состоянии. Эксперимент вели в сравнении со способом-прототипом, то есть с применением винилпиридинового анионита. Фильтрацию растворов осуществляли в направлении сверху вниз при удельной объемной нагрузке на колонку, равной 1,5 объемам раствора через 1 объем ионита за 1 ч. Маточники сорбции отбирали на выходе из колонки фракциями. Растворы анализировали на содержание урана методом ICP-AES, и на содержание хлорид-ионов - методом гравиметрии. Процесс вели до уравнивания концентраций урана на входе и выходе из колонок. По результатам эксперимента рассчитывали значения полной динамической обменной емкости (ПДОЕ) ионитов по урану и хлорид-ионам (таблица 1).

Таблица 1

Ионит	Тип	Функциональная группа	ПДОЕ по U, кг/м ³ ионита	ПДОЕ по СГ, кг/м ³ ионита
АНКБ-35	Амфолит	Аминокарбоксильная	8,18	0
Lewatit TP260	Амфолит	Аминометилфосфоновая	18,40	0

Purolite D5041	Катионит	Фосфорнокислая	26,18	0
Axionit VPA-2	Анионит	Винилпиридиновая	16,42	35,37

Из результатов таблицы 1 следует, что наибольшим значением сорбционной емкости по урану при сорбции из сульфатно-хлоридных растворов обладает фосфорнокислый катионит Purolite D5041, при этом, в отличие от винилпиридинового анионита, взятого по способу-прототипу для сравнения, хлорид-ионы данным ионитом не сорбировались.

Пример 2

Десорбцию урана из фазы насыщенных ионитов вели, по способу-прототипу, смешанным раствором NH_4NO_3 (65 г/дм 3 по NO_3 - иону) + H_2SO_4 (25 г/дм 3). Фильтрацию модельных растворов осуществляли в направлении сверху вниз при удельной объемной нагрузке на колонку, равной 1,5 объемам раствора через 1 объем ионита за 1 ч. Десорбаты отбирали на выходе из колонок фракциями. Растворы анализировали на содержание урана методом ICP-AES. Время фильтрации десорбирующего раствора составило 24 ч. По результатам эксперимента рассчитывали степень десорбции урана и остаточную емкость ионитов по урану (таблица 2).

Таблица 2

	Ионит	Содержание урана в ионите до десорбции, кг/м ³	2	Степень десорб- ции урана, %	2
		десороции, кт/м	урана в ионите, кг/м3	ции урана, л	урана в десорбате, мг/дм ³
20	Lewatit TP260	18,40	17,88	2,85	21,70
	Purolite D5041	26,18	18,42	29,66	181,21
	АНКБ-35	8,18	1,16	85,78	759,17
	Axionit VPA-2	16,42	1,08	93,44	2555,35

Из результатов таблицы 2 следует, что смешанный сульфатно-нитратный раствор не обеспечивает высоких значений степени десорбции урана. Максимальное значение степени десорбции получено для винилпиридинового анионита Axionit VPA-2. Для фосфорсодержащего катионита Purolite D5041 степень десорбции равна 29,66%, при этом концентрация урана в товарном десорбате составила всего 181,21 мг/дм³, что указывает о невозможности концентрирования урана при сорбционной переработке сульфатно-хлоридных продуктивных растворов.

Пример 3

Десорбцию урана из фазы насыщенных ионитов вели растворами углеаммонийной соли в две стадии. Концентрация углеаммонийной соли (УАС) на 1 ступени составила $80 \, \text{г/дм}^3$, а на 2 ступени - $190 \, \text{г/дм}^3$. Соотношение фаз Т:Ж составило 1:5. Время контакта ионитов с десорбирующим раствором на каждой стадии - 1 ч. По окончании эксперимента фазу смолы отделяли от фазы десорбата, отбирали пробы десорбатов, анализировали на содержание урана методом ICP-AES. По результатам эксперимента рассчитывали степень десорбции урана и концентрацию урана в десорбатах (таблица 3).

Таблица 3

40

45

T .	Lewatit TP260	Purolite D5041	Axionit VPA-2
Параметр десорбции	1 стадия (80 г/дм ³ УАС)		
Концентрация U в десорбате, мг/дм ³	8119,9	16561,9	230,6
Степень десорбции U, %	50,01	77,00	3,51
	2 стадия (190 г/дм ³ УАС)		
Концентрация U в десорбате, мг/дм ³	3071,3	3496,2	162,1
Степень десорбции U, %	29,00	21,99	3,23

RU 2828809 C1

	Суммарные значения		
Степень десорбции U, %	79,01	98,99	6,74

Применение в качестве десорбента раствора углеаммонийной соли обеспечивает высокое суммарное значение степени десорбции урана (98,99%) из фазы насыщенного фосфорсодержащего катионита Purolite D5041. Концентрация урана в десорбате уже на первой стадии составила 16561,9 мг/дм³, что указывает на возможность эффективного концентрирования урана при переработке сульфатно-хлоридных продуктивных растворов. Такое значение концентрации урана в десорбате достаточно для получения готового продукта - концентрата урана в виде кристаллов аммонийуранилтрикарбоната.

(57) Формула изобретения

10

20

25

30

35

40

45

Способ переработки сульфатно-хлоридных растворов подземного выщелачивания урана, включающий сорбцию урана ионитом, промывку насыщенного ионита водой, десорбцию урана и осаждение концентрата урана, отличающийся тем, что сорбцию урана ведут фосфорсодержащим катионитом, десорбцию осуществляют растворами углеаммонийной соли в две стадии: на первой стадии раствором углеаммонийной соли с концентрацией 80-100 г/дм³, на второй стадии - раствором углеаммонийной соли с концентрацией 140-190 г/дм³.

Стр.: 7