УДК 621.791.927.55

Альфиз Ильгизович Гареев^{1*}, Александр Вадимович Поляков¹, Ирина Петровна Семенова¹

¹Уфимский университет науки и технологий, г. Уфа, Россия **alfizg66@gmail.com*

ОСОБЕННОСТИ МИКРОСТРУКТУРЫ И СВОЙСТВ ТИТАНОВОГО СПЛАВА ВТ6 ПОСЛЕ ПЛАЗМЕННОЙ 3D НАПЛАВКИ УМЗ ПРОВОЛОКОЙ

Эта работа посвящена влиянию применения ультрамелкозернистой (УМЗ) проволоки при плазменной 3D наплавке на структуру и механические свойства титанового сплава ВТ6. Исследования показали, при наплавлении материала формируется структура с пластинчатой морфологией α-фазы в βмартенситного зернах В результате превращения при охлаждении закристаллизованного металла. Применение УМЗ проволоки приводит измельчению пластин α-фазы до 8-10 мкм. За счет измельчения структурных микротвердость наплавленного металла с использованием элементов проволоки с УМЗ структурой составляет 390±15 HV, что выше на 22%, чем микротвердость образца, выращенного с помощью обычной проволоки, микротвердость которого составляет 320±20 HV.

Ключевые слова: титановый сплав, аддитивное производство, плазменная наплавка, микроструктура, микротвердость.

Alfiz Ilgizovich Gareev, Alexander Vadimovich Polyakov, Irina Petrovna Semenova

FEATURES OF THE MICROSTRUCTURE AND PROPERTIES OF TITANIUM ALLOY VT6 AFTER PLASMA 3D WELDING OF UFG WIRE

This work is devoted to the effect of the use of ultrafine-grained (UFG) wire in 3D plasma surfacing on the structure and mechanical properties of titanium alloy VT6. Studies have shown that when the material is deposited, a structure with a lamellar morphology of the α -phase in β -grains is formed as a result of martensitic transformation during cooling of the crystallized metal. The use of UFG wire leads to the grinding of alpha-phase plates up to 8-10 microns. Due to the grinding of structural elements, the microhardness of the deposited metal using wire with an UFG structure is 390±15 HV, which is 22% higher than the microhardness of a sample grown using conventional wire, the microhardness of which is 320± 20 HV.

Key words: titanium alloy, additive manufacturing, plasma surfacing, microstructure, microhardness.

[©] Гареев А. И., Поляков А. В., Семенова И. П.

В настоящее время титановые сплавы в основном применяют в отраслях, где требуется материал с высокой прочностью в сочетании с малым весом [1]. Изготовление изделий ИЗ титановых сплавов существующими формообразующими методами требует высоких экономических И производственных затрат. Использование методов аддитивного производства позволяет снизить время обработки и повысить коэффициент использования материала.

Известно, что прочностные свойства титановых сплавов зависят от морфологии α-фазы и размеров β-зерен, которые варьируются в зависимости от температуры и скорости нагрева материала, а также от скорости охлаждения [2]. В связи с этим при применении электродуговых аддитивных технологий возникает проблема ухудшения механических характеристик сплава, из-за деградации зеренной структуры [3, 4]. Вероятно, что снижение подвода тепла при наплавке может повысить скорость нагрева и охлаждения. Ускорение процессов нагрева и охлаждения приводит к уменьшению размера β-зерен и увеличению объемной доли "более твердой" α-фазы. В свою очередь повышение объемной доли α-фазы повышает твердость синтезируемого сплава [5].

В связи с этой проблемой в данной работе предлагается новый метод механических характеристик повышения комплекса наплавленного титанового сплава ВТ6, который подразумевает применение проволоки с полученной модифицированной структурой, методом интенсивной пластической деформации. Методы ИПД за счет больших деформаций формируют в структуре большое количество дислокаций и увеличивают длину границ зерен, образуя ультрамелкозернистую структуру (УМЗ) [6, 7]. Целью данной работы является исследование влияния применения проволоки с УМЗ структурой на структуру и твердость выращенных заготовок.

В качестве материала исследования был выбран титановый сплав ВТ6. Деформационная обработка для формирования УМЗ структуры осуществлялось по схеме РКУП-Конформ. Обработка проводилась по маршруту Вс в 4 прохода при температуре 500 °C. Далее заготовка подвергалась волочению до диаметра 1,5 мм для получения сварочной проволоки.

Из полученной модифицированной и обычной проволок были выращены заготовки в 3 слоя. В таблице приведены параметры наплавления заготовок.

Наплавка выполнялась плазмотроном для послойной сварки неплавящимся электродом на токе прямой полярности. Параметры режима: диаметр плазмообразующего сопла dпс=3,4 мм, ток дуги I=120A, расход плазмообразующего газа Qп=2,0 л/мин, расход защитного газа Q3=7 л/мин, скорость наплавки vн=25 м/час, диаметр проволоки dn=1,6 мм, скорость подачи проволоки vn=4 м/мин

Травление полированных образцов проводили с использованием травителя со следующим составом: HNO₃ (20 %) + HF (20 %) + H₂O (60 %). Макро- и микроструктура наплавленных образцов исследовалась на

растровом электронном микроскопе TESCAN MIRA 3. Микротвердость образцов сплава BT6 определяли по методу Виккерса на приборе DuraScan G5.

Микроструктура выращенных заготовок характеризовалась пластинами α-фазы внутри β-зерен. Микроструктура имела тип корзинчатого плетения αпластин. На макроизображениях наблюдаются столбчатые макрозерна, которые выросли перпендикулярно подложке, следуя наибольшему градиенту температур. Размер макрозерен составлял около 400 мкм в обоих случаях. Макроструктура образцов за 3 цикла наплавки, используя проволоку с обычной и УМЗ структурами представлена на рис. 1.

Рис. 1. Макроструктура образцов за 3 цикла наплавки проволокой: *a* – с использованием обычной; *б* – с использованием УМЗ

Различия были заметны в микроструктуре образцов при больших увеличениях. При наплавке из УМЗ проволоки, длина пластин в среднем составляла 8-10 мкм. При использовании обычной проволоки размеры пластин α-фазы заметно больше и достигали размеров макрозерен. Объемная доля матричной β-фазы в образце, полученном из УМЗ проволоки, заметно меньше, чем в образце после наплавки обычной проволокой (7 и 15 % соответственно). Внутризеренная микроструктура образцов с использованием обычной и УМЗ проволок, показана на рис. 2.

Данное явление объясняется тем, что за счет быстрых процессов нагрева и охлаждения в материале наследуются особенности фазового строения. Таким образом, использование проволоки с УМ3 структурой, кристаллической характеризующейся дефектов большим количеством решетки, приводит к увеличению центров зарождения α-фазы И, следовательно, к значительному измельчению структуры выращиваемой заготовки.

Рис. 2. Микроструктура образцов за 3 цикла наплавки проволокой: *a* – с использованием обычной; *б* – с использованием УМЗ

Для исследования механических свойств наплавленного материала были проведены измерения микротвердости. Результаты измерений микротвердости представлены на рис. 3.

Рис. 3. Микротвердость в сечении образцов из сплава ВТ6, изготовленных с использованием обычной и УМЗ проволок.

Микротвердость образцов измерялась от верхнего слоя наплавки к подложке. По результатам измерений выявлено, что микротвердость образцов с применением УМЗ проволоки на 22% выше по сравнению с использованием обычной проволоки. Повышенная микротвердость образца из УМЗ проволоки объясняется формированием более тонкодисперсной пластинчатой структуры.

выводы

1. Макроструктура образцов после трехслойной наплавки в обоих случаях состояла из столбчатых β-зерен толщиной 400 мкм вследствие их эпитаксиального роста вдоль градиента теплового потока, перпендикулярного границе раздела подложек.

- Сформированная микроструктура наплавленного металла, выращенного с использованием обычной и УМЗ проволок, характеризовалась пластинчатой морфологией α-фазы в β-зернах в результате мартенситного превращения при охлаждении кристаллизованного металла.
- 3. Было обнаружено, что значения микротвердости металла, синтезированного с использованием проволоки с УМЗ структурой, составляет 390±15 HV. При применении обычной проволоки, микротвердость составила 320±20 HV.

REFERENCES

- 1. Materials Properties Handbook: Titanium Alloys / R. Boyer [et al]. OH, USA: ASM International: Novelty, 1998. 788 P.
- 2. Lutjering G. Titanium / G. Lutjering, J. C. Williams Berlin/Heidelberg, Germany, New York, NY, USA: Springer, 2007. 442 P.
- Brandl E. Deposition of Ti–6Al–4V using laser and wire, part II: Hardness and dimensions of single beads / E. Brandl [et al] // Surf. Coat. Technol. 2011. V. 206. № 6. P.1130–1141. https://doi.org/10.1016/j.surfcoat.2011.07.094
- Mok S. H. Deposition of Ti–6Al–4V using a high power diode laser and wire, Part II: Investigation on the mechanical properties / S. H. Mok [et al] // Surf. Coat. Technol. 2008. V. 202. № 19. P. 4613–4619. https://doi.org/10.1016/j.surfcoat.2008.03.028
- Brandl E. Morphology, microstructure, and hardness of titanium (BT6) blocks deposited by wire-feed additive layer manufacturing (ALM) / E. Brandl, A. Schoberth, C. Leyens // Mater. Sci. Eng. A. 2012. V. 532. P. 295–307. https://doi.org/10.1016/j.msea.2011.10.095
- Valiev R. Z. Bulk Nanostructured Materials: Fundamentals and Applications / R. Z. Valiev, A. P. Zhilyaev, T. G. Langdon. NJ, USA: Wiley/TMS: Hoboken, 2014. 440 P.
- Semenova I. P. Ultrafine-Grained Titanium-Based Alloys: Structure and Service Properties for Engineering Applications / I. P. Semenova [et al] // Adv. Eng. Mater. 2019. V. 22. № 1. https://doi.org/10.1002/adem.201900651