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Abstract: In this study, copper (Cu)- and manganese (Mn)-based layered double hydroxide (LDH)
nanosheets were produced by modest and low-cost hydrothermal technique to display an improved
photocatalytic performance toward the degradation of aqueous methylene blue (MB). The morpholog-
ical and structural properties of the as-prepared photocatalysts were characterized through various
techniques comprising XRD, FT-IR, SEM, EDS, and their MB degradation activity was evaluated un-
der visible light irradiation. SEM results explore that the synthesized LDH materials have a sheet-like
morphology and are stacked layer by layer. Various analysis parameters, such as the effect of the
contact time, concentration and pH of MB solutions were performed to optimize the performance of
fabricated LDH materials. The results revealed that the as-synthesized CuAl-LDH and MnAl-LDH
exhibited a 74.95 and 70.93% removal of MB under solar light within 180 min. Moreover, synthesized
photocatalysts showed an excellent performance of up to four regeneration cycles. We believe that
this study provides novel mechanistic insights into the design and preparation of highly competent
photocatalysts using low-cost materials, with applications in environmental remediation.

Keywords: layered double hydroxide (LDH); photocatalysis; methylene blue; CuAl-LDH; MnAl-
LDH; water treatment

1. Introduction

Given its importance to global development and health, water is one of the most
fundamental elements for humans. The rapid development of the human population is
causing a continual increase in the need for water for agricultural activities, industrial
activities, and daily living. Actually, water is a necessity for life as we know it on Earth [1,2].
Due to their significant effects on human health and the sustainable development of soci-
ety, energy depletion and environmental contamination brought on by fast-paced global
industrialization have garnered a lot of attention over the past few decades [3]. The aquatic
ecosystem and human health are both severely harmed when dye-contaminated effluents
are released into aquatic environments [4,5]. Around 70% of all dyes produced world-
wide each year are azo dyes, which have an azo group (—N=N—) as the chromophore
along with additional functional groups including sulfonic and hydroxyl groups [6]. These
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chemicals’ natural stability in the presence of light and resistance to microbial degrada-
tion make it potentially dangerous to directly discharge them into water courses or to
directly discharge their poisonous derivatives into them. A further factor aggravating the
issue is the approximately 20% annual dye output lost during the dying process, or over
7 × 105 metric tons [7]. Because it is one of the most widely used compounds in the dye
industry, methylene blue (MB) is particularly well-known because it is widely used to color
silk, wool, cotton, and paper [8,9]. Therefore, before being disposed of or consumed, it is
imperative to develop an effective and environmentally safe process for the breakdown of
methylene blue into non-toxic metabolites.

Currently, a number of methods, including adsorption, photocatalysis, advanced
oxidation processes, electro-flocculation, membrane filtering, etc., are used to remove
these hazardous pollutants from water [10–13]. When it comes to employing renewable
solar energy to address challenges of environmental degradation and energy scarcity,
photocatalysis is thought to be the most promising technology.

Numerous photocatalytic materials have been thoroughly studied for the removal of
water pollution, including ferrites, mesoporous silica, graphene oxide (GO), g-C3N4, metal
oxide nanoparticles, activated carbons (ACs), layered double hydroxides (LDHs), metal
organic frameworks (MOF), etc. [14–19]. Unfortunately, the majority of photocatalysts
have drawbacks that restrict their usefulness in the degradation of organic pollutants,
such as difficult preparation procedures, absorption restricted to the UV area, and a fast
recombination of photogenerated charge carriers [20,21].

Layered double hydroxides (LDHs) are a class of stacked inorganic sheets that are
represented by the straightforward formula M2+M3+-X, where M2+ and M3+ stand for the
divalent and trivalent metal cations, respectively, inside the hydroxide layer. Owing to its
multilayered structure, adjustable acidity–basicity surface, wide range of chemical compo-
sition, ion-exchange properties, reactive interlayer space, and ecologically advantageous
feature, it is a promising material for a range of applications, including adsorption of pollu-
tants, photocatalysis, electrocatalysis and sensors [22–27]. Furthermore, because of their
excellent structural and physicochemical qualities when interacting with contaminants
in aqueous solutions, LDHs are fascinating potential catalysts for water treatment [28].
CuAl–CO3 LDH/BNOx nanocomposite, for instance, has been reported by Coogan et al. as
an efficient way of eliminating rhodamine B, methylene blue, methyl orange, and evans
blue [29]. Nazir et al. synthesized ZnAl-LDH and CoAl-LDH to remove methylene blue
and methyl orange, respectively [30,31]. Hanifah et al. reported MgAl-LDH for the cat-
alytic degradation of malachite green [32]. ZnFe-CO3LDH was reported by Dipshikha
Bharali et al. using the co-precipitation process, and it was used to degrade phenol and its
derivatives under both UV and visible light irradiations [33].

Herein, we reported the facile, easy and economic fabrication technique that is the
hydrothermal method for the synthesis of photocatalytic CuAl-LDH and MnAl-LDH
materials to degrade methylene blue from aqueous mediums. Furthermore, CuAl-LDH
and MnAl-LDH were thoroughly characterized by SEM, EDS, XRD, and FT-IR techniques.
In the meantime, MB’s photocatalytic performance was studied in a batch procedure using
different contact times, initial dye concentrations, and pH values. Additionally, a thorough
evaluation of the mechanism, reusability, and photocatalytic degradation kinetics was
conducted.

2. Results and Discussion
2.1. Characterization

The morphologies and structures of CuAl-LDH and MnAl-LDH were observed by
using a scanning electron microscope (SEM), and the results are shown in Figure 1a,b. Clear
lamellar structures on the surface of the CuAl-LDH and MnAl-LDH are presented in the
SEM images, which suggested that a hydrotalcite-like catalyst was well prepared via the
hydrothermal technique.
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Figure 1. SEM images of (a) CuAl-LDH and (b) MnAl-LDH.

The experimental molar ratios of copper and aluminum were found to be relatively
similar to the planned theoretical stoichiometric values, according to the EDS data. Further-
more, Cu, C, Al, and O as well as Mn C, Al, and O were present in the catalysts CuAl-LDH
and MnAl-LDH as they were synthesized, respectively, and no other elements were present.
Cu and Mn were found to be uniformly dispersed, indicating homogenously dispersed
metal ions, according to the mapping results. The as-prepared MnAl-LDH and CuAl-LDH
had an elemental composition of 11% (Figure 2) and 23.2% (Figure 3) of Mn and Cu, respec-
tively. This is satisfactory because the M(II) or M(III) molar ratio x in the range of 0.2–0.33
for the LDH general formula ([M2+

1−xM3+
x (OH)2]x+ (An−)x/n mH2O) is generally thought

result in LDHs that are more appropriate for a stable structure and composition [34].
The characteristic bands and groups were seen in the as-prepared MnAl-LDH and

CuAl-LDH FTIR spectra (Figure 4a,b). The usual metal atomic vibrations that induced
the absorption below 1000 cm−1 were bands spanning 544 to 954 cm−1, corresponding to
Cu-O, Mn-O, or Al-O. These bands contained M-O, M-O-M, and O-M-O bonds [34]. The
significant signal with the 1621 cm−1 bending mode at 3536 cm−1 showed the existence of
intercalated OH−, H2O [33]. These intercalated structures and abundant metallic bands in
CuAl-LDH will provide more reaction sites for the catalytic degradation of methylene blue.

The XRD patterns of MnAl-LDH and CuAl-LDH are displayed in Figure 4c,d. The
major peaks recognized for MnAl-LDH are 15.93◦, 24.12◦, 31.51◦, 37.60◦, 41.56◦, 45.35◦,
51.63◦ and 60.35◦. These peaks are attributed to reflection planes of 101, 112, 103, 211, 220,
105, 321, 224 and 400. The successful synthesis of CuAl-LDH was confirmed by the XRD
pattern of the as-prepared product, which showed reflections at 2θ angles of 13.62◦, 16.38◦,
22.68◦, 27.98◦, 30.88◦, 35.95◦, 37.70◦, 41.24◦, and 52.51◦ (JCPDS 37-0630).

These peaks are related with the main planes 003, 006, 012, 104, 015, 107, 018 and
110. The Cu(OH)2 and Al2O3 related peaks that were identified were most likely caused
by metal hydroxide breaking down at a high temperature. Sharp peaks indicated a high
crystallinity in the CuAl-LDH as synthesized, which was desirable because increased
electronic conductivity is a characteristic of high crystallinity [35].
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2.2. Photocatalytic Study

The photocatalytic activity of the obtained CuAl-LDH and MnAl-LDH nanosheets
was studied for the degradation in visible light irradiation of MB as a model organic
contaminant. A total of 0.02 g of each LDH catalyst was used for the degradation of
a 20 mL solution of MB having a concentration of 20 mg/L. The reaction mixture was
continuously stirred while being maintained in the dark at room temperature for 30 min
in order to assess the synthesized photocatalysts’ adsorption capabilities. Subsequently,
the reaction mixture was exposed to visible light, and a spectrophotometer was used to
determine the degree of deterioration. When synthesized photocatalysts were exposed to
a certain wavelength of light, the valence electrons moved from a lower energy state (the
valence band or oxidation area) to a higher energy state (the conduction band or reduction
region), resulting in the production of e−/h+ (electron/hole). As reported, the band gap
of CuAl-LDH was 3.70 eV [36]. This narrow band gap was quite essential for the catalytic
reduction of pollutants. The results exposed that after 180 min of contact time, 74.95
and 70.93% MB was degraded with CuAl-LDH and MnAl-LDH nanosheets, respectively
(Figure 5a–d). These degradation results of CuAl-LDH and MnAl-LDH were comparable
with the reported literature (Table 1). CuAl- and MnAl-LDH nanosheets had a better activity
because of their well-defined pore sizes, smooth and functionalized surface morphology,
more crystalline phase, and excellent photoinduced charge transportation (e−/h+ pair
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charge). These characteristics also lessen the tendency of e−/h+ pair recombination to
produce side products, which aids in the facilitation of oxidation-reduction events.
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MnAl-LDH with respect to time.

2.3. Effect of pH of MB Solution

Figure 6a,b illustrate how the pH factor, which is important in enhancing the degrada-
tion performance of synthetic materials, works. The dye’s adsorption on the photocatalyst
surface, the mode of charge transfer, the dye’s properties, and the reactants and products
involved in photocatalysis are all significantly impacted by pH [37]. NaOH and HCl
were used to change the pH in order to improve the photocatalytic performance. The
results exposed that CuAl-LDH and MnAl-LDH give a good performance in basic medium
compared to acidic or neutral mediums. The pace of degradation is slowed down by MB
because it is less adsorbed and electrically repelled from the surface of LDHs, since both
of them take up positive surface charges at a lower pH (pH = 3). Similarly, higher pH
inhibits the static interaction between LDH nanosheets and MB due to the massive forma-
tion of OH− under an alkaline medium, making it challenging to promote superior MB
decomposition. This is because an alkaline medium (pH greater than 10) causes significant
OH− production [38]. Furthermore, the pace of degradation may be slowed down if the
oxygen-containing functional groups of the LDH nanosheets dissolve in a more acidic or
alkaline medium.
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2.4. Effect of Initial Concentration of MB

A critical factor in increasing the photocatalytic degradation activity is the dye con-
centration. A dye concentration increase of 05–25 ppm greatly accelerated the pace of
degradation. This is a result of more •OH forming on the photocatalyst surface and com-
bining with the MB dye to produce the final dye degradation (CO2 + H2O). It was made
abundantly evident that the time needed to attain equilibrium was not much impacted by
initially applied concentrations of MB and that the removal ratios improved as the initial
concentrations decreased [39].

2.5. Kinetics Studies

The degradation performance of created photocatalysts can be expressed using the
Langmuir–Hinshelwood equation, which can be used to find the rate of photocatalytic
degradation, as seen below [40]:

dC/dt = −k1 C (1)

ln (C/C0) = k1t (2)

where k1 (1/min) is the first-order rate constant, and C/C0 is the ratio of the initial and
time-varying dye concentrations of methylene blue.
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The concentrations of MB in solution at time t and the starting concentrations of
MB, represented by C0 and Ct, respectively, yield the apparent first-order rate constant,
represented by the value of k or slope. As is shown in Figure 6d, pseudo-first-order kinetics
best fit the degradation of MB on CuAl-LDH and MnAl-LDH, with R2 values of 0.987 and
0.978 for CuAl-LDH and MnAl-LDH, respectively. The rate constants for CuAl-LDH and
MnAl-LDH calculated by linear fitting were 0.00663 min−1 and 0.00679 min−1, respectively.

Using the equation, the MB degradation rate values for CuAl-LDH and MnAl-LDH
are 0.00663 min−1 and 0.00679 min−1, respectively. The results show that, as compared to
CuAl-LDH, the pseudo-first-order rate constant increases and has a superior degradation
efficiency with MnAl-LDH.

Table 1. Comparison of degradation efficiency of CuAl-LDH and MnAl-LDH for the removal of MB
with the reported literature.

Catalyst Reaction Parameters % Degradation Ref.

CuAl-LDH 180 min, visible light 74.95 Current study
MnAl-LDH 180 min, visible light 70.93 Current study

Ca0.5Pb0.5−xYbxZnyFe12−yO19 hexaferrite 90 min, visible light 96.1 [41]
g-C3N4/ZnO-W/Co0.010 composite 90 min, visible light 90 [42]

Zn-PMOS 60 min, Tungsten bulb (200 W) 48 [43]
ZnO 90 min, visible light 88 [44]

ZIF-67@wood -- 90 [45]
CMO/CFO/PMS 30 min, 99 [46]

Biosynthesized ZnO 240 min, UV-light 80 [47]
MoS2/TiO2 120 min, visible light 98.5 [48]

ZnS/Zn(CO3)2(OH)6 80 min, sunlight 56 [49]
TiO2-decorated CNTs 180 min, visible light 85 [50]

2.6. Proposed Degradation Mechanism

There are various characterization methods used to confirm the composition, char-
acteristics, and photocatalytic activity of CuAl- and MnAl-LDH nanosheets towards MB
degradation. In this sense, we predicted the mechanism leading to the MB degradation
route’s appearance. Figure 7 shows the diagrammatic depiction of the mechanistic ap-
proach. It is commonly known that photogenerated active radicals, including electrons,
holes, and reactive oxygen species (ROS), are essential to the deterioration of organic dyes.

Below is a summary of the many processes that the dyes go through as they degrade.

CuAl-LDH/MnAl-LDH + hν → h+ + e− (3)

OH− + h+ → •OH (4)

2H2O + h+ →2•OH + 2H+ (5)

MB + ·OH → Degraded products (6)

CuAl-LDH’s band gap of 2.12 eV [51] is modest enough to make it simple to excite
the catalyst with visible light. The small band gap may lower the energy required for
the electron–hole transition between the valence and conduction bands [52]. Its strong
photocatalytic activity may also be explained by additional elements, including the photo-
catalysts’ high specific surface area and extremely crystalline structures [53]. The great
adsorption capacity that highly crystalline structures and a high specific surface area
would provide to the target molecules would facilitate the production of photo-induced
electron–hole pairs of active sites.
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2.7. Quenching Active Species Trapping Experiment

To leverage the active species trapping assay, reactive species involved in the break-
down of the MB dye were further investigated. Some radical or reactive species may
play a pertinent role in the degradation of dyes, including holes (h+), hydroxyl (OH•),
and superoxide radicals (O2

•−). To furnish a result, 1 mL of 0.5 mM aqueous solution of
ethylenediaminetetraacetic acid (EDTA), isopropyl alcohol (IPA), and para benzoquinone
(p-BQ) were added individually to the dye solution. The degradation process of dyes was
conducted under conditions similar to those discussed earlier for the degradation of MB
dye. The study included investigating the quenching effect of various scavengers and
evaluating the efficiency of CuAl-LDH in degrading MB. In the absence of scavengers, the
CuAl-LDH degradation efficiency was 70.93%. The degradation efficiency dropped to 33%
and 31%, respectively, in the presence of EDTA and IPA. On the other hand, the MB degra-
dation efficiency decreased to merely 68%, respectively, upon adding BQ to the MB dye
solution. From the outcome, it is believed that the main species causing MB degradation
are h+ and OH• radicals. Furthermore, it is concluded that e− and O2

•− species degrade
smaller amounts of MB. Figure 8c illustrates the effect of various radicals on the MB dye
degradation process.
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2.8. Reusability Test

In the current study, the reusability of produced photocatalysts, CuAl-LDH and MnAl-
LDH nanosheets, was investigated under optimal reaction conditions (photocatalyst weight
of 0.02 g, dye concentration 20 ppm, reaction duration 180 min) using four consecutive
reaction cycles. Prior to running the subsequent cycle, the catalyst powder was dried
at 60–100 ◦C for one hour after each run or cycle and cleaned with distilled water. The
degradation efficiency of CuAl-LDH in its fourth run was 66.7%, which was an 11% decrease
as compared to the fresh/unused CuAl-LDH catalyst. Similarly, MnAl-LDH degraded by
64.7% in its 4th cycle, which was a decrease of under 9% compared to the fresh/unused
catalyst (Figure 8a,b).

After undergoing four cycles, the photocatalyst’s cyclic stability and structural in-
tegrity were found to be over 90%. To eliminate any organic contaminants or dust particles,
the photocatalyst was vacuum-filtered using Whatman filter paper and rinsed twice with
deionized water. However, it was observed critically that the following factors may con-
tribute to a decrease in degradation efficiency: (i) The photocatalyst’s decreased number
of surface functional groups as a result of the high moisture content; (ii) Weight loss of
the catalyst throughout the process of reuse in a series of cycles; (iii) The effectiveness of
degradation in each cycle may be influenced by the presence of organic contaminants or
excessive O2 production during the reaction process.
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3. Experimental Section
3.1. Materials

Sigma Aldrich (Devon, UK) supplied the copper nitrate (>98%), aluminium nitrate
nonahydrate (>98%), manganese nitrate hexahydrate (>99.0%), NaOH (>98%), and HCl
(37%) that were purchased. Shanghai Chemical Industrial Company (Shanghai, China) was
the supplier of urea (≥99.0%) and methylene blue (>98%). Before any experiments, fresh
solutions were made using distilled water.

3.2. Synthesis of CuAl-LDH and MnAl-LDH

CuAl-LDHs were produced utilizing the technique mentioned earlier with little mod-
ifications [54]. Usually, hot water was used to dissolve copper and aluminum nitrates.
Urea was added to the dissolved material to form a clear solution. This mixture was then
transferred to a round-bottom flask, and deionized water was added to increase the volume
to 400 mL. Copper nitrate, aluminum nitrate, and urea were maintained in a molar ratio
of 2:1:10. The mixture was continuously stirred for 48 h at 95 ◦C. After this period, white
precipitates formed. These precipitates were separated from the solution using pressure
filtration and then dried for ten hours at 70 ◦C in a traditional drying oven (Figure 9). Using
the same process as previously described, manganese nitrate was used in place of copper
nitrate to create MnAl-LDH.
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3.3. Photocatalytic Degradation Experiments

To test the composite’s adsorption effectiveness, 20 mg of the LDH catalyst was added
to 20 mL of the 20 mg/L MB solution, and the mixture was swirled in the dark. Portions of
5 mL were taken out of the reaction mixture at predetermined intervals and centrifuged
to extract the photocatalysts. Using a spectrophotometer, the methylene blue solutions
were measured at 665 nm [42]. Numerous experimental parameters were examined and
optimized, including contact time (0–180 min), initial MB concentration (05, 10, 15, 20 and
25 mg/L), and initial pH (4, 6.5, 9).

The following formula has been used to calculate the MB’s deterioration rate:

D =
C0 − Ct

C0
× 100% (7)



Catalysts 2024, 14, 430 13 of 16

where Ct is the final concentration of MB and C0 is its initial concentration. Similar reaction
conditions were also used in blank experiments conducted without a catalyst. To deter-
mine the ideal conditions for the degradation process, the impacts of different reaction
parameters, including the amount of catalyst, the concentration of MB, and pH, were also
investigated. All experiments were carried out in duplicate to guarantee accuracy.

4. Conclusions

CuAl-LDH and MnAl-LDH were effectively synthesized using a hydrothermal method,
and they were then employed for an improved photocatalytic breakdown of methylene
blue when exposed to visible light. The CuAl-LDH and MnAl-LDH nanosheets’ XRD and
SEM analysis verified the existence of the peak of brucite-like LDH structural features.
The photodegradation of MB through the use of CuAl-LDH and MnAl-LDH nanosheets is
influenced by several factors, such as pH, catalyst dose, and different concentrations of MB.
The CuAl-LDH and MnAl-LDH nanosheets attained 74.95 and 70.93% MB degradation
at 180 min under ideal operating conditions. Moreover, both LDH materials showed an
excellent performance at up to four cycles, proving its chemical stability and wise use as
an environmentally friendly photocatalyst. In a basic environment with visible light, the
produced LDH nanosheets exhibit a significant photocatalytic activity that is comparable to
previously reported materials. CuAl-LDH and MnAl-LDH nanosheets have a great ability
to remove MB from wastewater, as demonstrated by the suggested results, and can be a
good candidate for the treatment of industrial wastewater.
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