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Abstract: Vertical conical diffusers are used in power engineering, chemical industry, technologi-
cal processes, and other industries. The efficiency of many machines and pieces of equipment is
determined by the gas-dynamic and heat-exchange perfection of processes in diffusers. This study
assesses the influence of the air supply method on flow structure in a diffuser. The studies were
carried out on a test bench with thermal imaging for air flow rates ranging from 0.018 to 0.057 m3/s
(42,500 < Re < 150,000). Two designs were examined: (1) a conventional air supply through one
channel from below and (2) a nozzle air supply through four tubes at an angle of 45◦ to the vertical
axis. In addition, the influence of the cross-sectional shape of the supply channels of both designs
was studied. It is established that the use of a conventional air supply through one channel leads to
the generation of a pronounced central flow along the vertical axis (all configurations of the supply
channel) and the creation of stagnant zones in the corners of the diffuser (round and triangular
channels; the use of a square supply channel causes the most uniform air distribution throughout the
entire volume of the diffuser (while maintaining the central flow). It is found that with nozzle air
supply, there are no stagnant zones in the corners and intense air movement generation in the centre
of the diffuser (round and triangular tubes) can be observed; the use of square nozzle tubes causes
intense flow movement at the base of the diffuser, which quickly collapses upstream, uniformly filling
the entire volume of the diffuser’s cylindrical part. The presented data can be useful for designing
various machines and pieces of equipment with vertical conical diffusers.

Keywords: vertical diffuser; flow structure; stationary gas dynamics; supply channels; thermal
imager; thermal imaging

1. Introduction

Conical diffusers (CD) of one design or another are widely used in various technical,
technological, chemical, and scientific processes [1]. The gas-dynamic perfection of the
flow of air or liquid in a CD largely determines the efficiency of processes in a machine,
piece of equipment, or any device [1,2]. Therefore, it is a relevant objective to study the gas
dynamics of flows in a conical diffuser and develop methods for controlling the structure
of flows in a CD. CDs are exploited in various technical units. Given below are examples
of some possible areas of application. Vertical CDs are an integral part of devices for
producing synthesis gas from various carbon materials [3,4]. CDs are also used in steam
generators to assist in the separation of liquid and air [5]. Conical sections are often found in
combustion chamber elements of gas turbines or burners [6]. CDs are exploited to increase
the wind speed and efficiency (through energy recovery) of wind turbines [7,8]. CDs are
also used in the outlets of organic Rankine-cycle turbines [9]. CDs are widely exploited
in hydraulic turbines to increase productivity and efficiency [10–12]. There are also other
applications where diffusers can be used, namely turbine traction diffusers [13], water
pumps [14], and hydrokinetic turbines [15].
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Presented below are the results of other authors studying physical processes in dif-
fusers and data on the applied aspects of using CDs in various industries.

Considerable work is being carried out to create models and algorithms for forecasting
gas-dynamic characteristics in conical diffusers under various initial conditions [16–20]. For
example, A. Ferrari obtained original analytical equations for one-dimensional stationary
flows in a conical diffuser [16]. The proposed solutions complement and expand theoretical
knowledge about gas dynamics in CDs. D. M. Novković and colleagues, using custom
software, developed a mathematical model for forecasting the parameters of gas flows in a
conical diffuser with an expansion angle of 8◦ [17]. The proposed model is highly accurate
and is capable of estimating parameters for two-dimensional and three-dimensional flows.
E. S. Teshnizi and F. Momeni conducted a focused study on creating a methodology for
calculating a turbulent boundary layer in a conical diffuser [18]. Such techniques make
it possible to determine with high accuracy the specific characteristics of CDs for specific
applications. P. Véras and co-authors created an automated algorithm for forecasting the
gas dynamics of swirling flows in a conical diffuser based on machine learning technol-
ogy [19]. The developed algorithm is capable of determining the flow parameters in CDs
for stationary and non-stationary boundary conditions at the inlet.

Studies have been conducted to develop methods for controlling the gas dynamics
of flows in conical diffusers [21–23]. Thus, C. Tanasa and others proposed a method for
smoothing gas-dynamic unsteadiness associated with flow swirl in a conical diffuser by
throttling the flow at the CD outlet [21]. An advantage of this method is that hydraulic
resistance increases only slightly compared to other similar methods. J. Yang and
colleagues developed a method for controlling the flow in a CD with a ring vortex
generator [22]. The use of this method made it possible to suppress massive flow
separation in the diffuser’s expansion section and in the downstream area, as well
as to increase the efficiency of pressure recovery in a CD. There are also studies on
the development of various structural elements in a diffuser to ensure a more uniform
flow along the entire length of the CD [24,25]. For example, E. S. Shukri installed a screw
tape or spiral-screw insert on the inner surface of the conical diffuser to level the velocity
field [24,25]. A numerical study showed a significant effect in improving the uniformity of
velocity distribution throughout the entire volume of the diffuser compared to CDs without
such inserts.

However, methods of the gas-dynamic improvement of processes in conical diffusers
can cause an increase in hydraulic losses [1,2]. Therefore, researchers and professionals
are continuing to develop new ways to assess changes in the main flow parameters in
CDs [26,27]. For example, S. A. Mfon and colleagues proposed an original method for
assessing the pressure drop coefficient in a conical diffuser [26]. Yu. A. Gosteev and
others have created a new method for calculating the loss coefficient in CDs of various
designs [27].

There are comprehensive studies of the gas-dynamic features of complex flows (swirl
flows, spiral vortices, vortex cores, etc.) in conical diffusers and their possible application
in various fields [28–33]. For example, M. Tsoy and colleagues studied in detail the devel-
opment and destruction of spiral vortices in conical diffusers with different cone expansion
angles [28]. Similar studies were carried out by X. Zhou and colleagues in relation to vortex
cores and their influence on flow characteristics in CDs. A large number of researchers
are focused on studying swirl flows in conical diffusers of various configurations [30–33].
This can be explained by the fact that swirl flows help intensify heat transfer, improve
the mixing of various media, and distribute the flow throughout the entire volume of
the diffuser. Therefore, swirl flows in CDs enhance the efficiency of various devices that
use conical diffusers in their processes. Thus, Z. Liu and co-authors studied the specific
problem of the influence of the expansion angle of the pressure vessel on the vortex core
of a swirl flow with a PIV measuring system [30]. D. B. Ilić and colleagues studied the
distribution of the average gas-dynamic behaviour of a swirl flow along a diffuser with
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different expansion angles [31]. Research has confirmed that introducing moderate inlet
swirl reduces the likelihood of separation in wide-angle conical diffusers.

Thus, the literature review showed that the following:

- It remains an urgent task to study gas-dynamic behaviour in a CD for boundary
conditions;

- It is also a critical task for improving technical devices to develop methods for fore-
casting and controlling the flow structure in a CD;

- CDs are widely exploited in almost all branches of science and technology.

The key objectives of this study can be formulated as follows:

- To create a test bench and establish a methodology for conducting experiments to
study flow structure in a vertical CD with different air supply methods;

- To evaluate the influence of conventional air supply through one channel and nozzle
supply through four tubes into a vertical diffuser on the flow structure at different
flow characteristics;

- To identify the influence of a cross-sectional shape of a supply channel and nozzle
tubes on the gas-dynamic structure of the flow in a vertical diffuser.

This research is part of a larger effort to create a highly efficient plant for producing
synthesis gas from sawdust. Accordingly, it is necessary to obtain data on possible gas-
dynamic structures in a vertical conical diffuser for different air supply configurations.

2. Description of the Test Bench, Experimental Methods, and Studied Designs for
Supplying Air to a Vertical Diffuser

The flow distribution inside a vertical diffuser when air is supplied with different
supply channel designs was studied on the test bench shown in Figure 1. The test bench
consisted of a forcing compressor (with the ability to change the air flow q through the
system in the range from 0.015 to 0.06 m3/s), a duct air heater (with the ability to control
air heating temperature up to 65 ± 1 ◦C), supply systems of various configurations (the
designs are presented below), and a transparent vertical diffuser (geometric dimensions
are also given below) with a mesh inside (the mesh cell size was 1 × 1 mm). This mesh
served to record the flow structure with thermal imaging. A reservoir with a honeycomb
was installed between the compressor and the duct heater to stabilise the flow (not shown
in Figure 1).

The experiments were carried out under stationary air flow conditions in the system
under consideration for different air flow rates. The Reynolds number Re for the air flow
at the outlet of the supply channel ranged from 42,500 to 150,000. The Re calculation was
performed for a diffuser configuration with air supplied through a channel with a circular
cross-section.

The thermal imaging method used in this study is described in more detail in [34].
This method consists of placing a thermal imaging grid of polymer threads in the flow
and is based on the analysis of temperature dispersion fields obtained through a thermal
imager. Accordingly, as stated above, it was necessary to preheat the air to a temperature
of 65 ± 1 ◦C to obtain thermograms (temperature dispersion fields). Thus, a qualitative
physical picture of the flow structure in a vertical diffuser was obtained using this method.
It is necessary to utilise other experimental methods to obtain quantitative characteristics
of the flow. When carrying out the experiments, the following equipment provided the
measuring base:

- A thermal imager (model Testo 890-2, Titisee-Neustadt, Germany), with which ther-
mograms of the flow distribution inside the vertical diffuser (measurement error
± 0.2 ◦C) were obtained (calibration of the device was carried out in a specialised
measuring centre);

- A constant-temperature hot-wire anemometer (model Irvis TA-5.1, Kazan, Russia)
through which air flow through the system was determined (the relative standard
measurement uncertainty q was 5.1%);
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- Thermocouples for current temperature control in different parts of the system (relative
standard measurement uncertainty was 1.5%).
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Figure 1. Three-dimensional model of a test bench for studying flow structure in a vertical diffuser:
1—compressor; 2—channel heater; 3—supply channel; 4—vertical diffuser; 5—mesh; 6—thermal
imager; 7—heating-level control unit; 8—air-flow control unit (note: the three-dimensional solid-state
model was created using Russian KOMPAS-3D (v.18) software).

This study studied the following two design methods for supplying air to a vertical
diffuser:

(1) The conventional method for supplying air through a straight channel from below
(Figure 2a);

(2) Nozzle air supply through four tubes at an angle of 45◦ (Figure 2b).
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The main geometric dimensions of the diffuser under study are presented in Figure 2.
Figure 2 also shows schematic diagrams of both design methods for supplying air.

This study further examined the influence of the cross-sectional shape of the channel
and nozzle tubes on the gas-dynamic flow structure in a vertical diffuser. Stable, longitudi-
nal, and vortex structures arise in square and triangular channels, which have a significant
impact on the gas-dynamic behaviour of air flow [35,36].

Consequently, for the traditional air supply method, three cross-sectional shapes were
used, namely circle, square, and equilateral triangle, the geometric dimensions of which
are shown in Figure 3. The geometric dimensions of the supply channels were determined
based on the equality of the equivalent hydraulic diameter for all configurations (circle
diameter—32 mm; square side—32 mm; and triangle side—55 mm). Accordingly, the
cross-sectional area of the square was 21% larger than the circular cross-section. The area
of the triangle was 39.5% larger than the circle. It should be noted that the experiments
were performed for the same volume flow through the system for all configurations of the
supply channels. The length of the supply channel in all cases was approximately 100 mm.
All supply channels had a technically smooth surface (average roughness was 6.3 µm).
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Figure 3. Sketches of the designs of supply channels with different cross-sectional shapes: (a) circle;
(b) square; (c) triangle.

Photographs of the supply channels with different cross-sections and vertical diffusers
are shown in Figure 4. It should be noted that the visualising grid did not pass through
the centre of the triangle (Figure 4c). This is due to the geometric limitations of the vertical
diffuser and the dimensions of the triangular cross-section. It can be assumed that the
thermograms will show the flow structure in one of the corners of the triangle.

A general view of another method for supplying air to a vertical diffuser with nozzle
tubes is shown in Figure 5a. Figure 5b also illustrates the geometric dimensions of nozzle
tubes with cross-sections of different shapes.

The geometric dimensions of the nozzle tube cross-sections were also determined
based on the equality of the equivalent hydraulic diameter for all configurations (circle
diameter—5 mm; square side—5 mm; and triangle side—8.6 mm). The total areas of square
and triangular tubes are 21 and 39.5% larger than those for round tubes. The total length of
the nozzle tubes in all cases was approximately 100 mm. The length of the tube sections
with square and triangular cross-sectional shapes was 60 mm. All nozzle tubes had a
technically smooth surface (average roughness was 6.3 µm). It should be noted that the
experiments were carried out in modes with the same volumetric air flow through a system
with different configurations of supply tubes.
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Nozzle tubes (four pieces) were installed symmetrically on a cylindrical base at an
angle of 45◦ relative to the vertical axis. Photographs of air supply nozzles with different
tube designs and vertical diffusers are shown in Figure 6.

Therefore, in this research, six air supply designs in a vertical diffuser and their
influence on the gas dynamic structure was studied with thermal imaging.

It should be noted that half of the diffuser was manufactured for experimental studies.
The use of a half vertical diffuser assumes that the flow in the vertical diffuser is completely
symmetrical for a stationary mode of air movement.

This study is aimed at experimentally obtaining a qualitative physical picture of the
flow structure in a vertical diffuser for different air supply methods. Quantitative data and
more detailed information about the gas dynamics of flows will be obtained using the PIV
method in the future.



Appl. Sci. 2023, 13, 12141 7 of 15Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 15 
 

 
Figure 6. Photographs of the studied structures of a vertical diffuser with a nozzle air supply 
through tubes with different cross-sections: (a) circle; (b) square; (c) triangle. 

3. Analysis of the Gas-Dynamic Structure of Flow in a Vertical Diffuser with Different 
Air Supply Methods 

First, experimental data (thermograms) on the flow structure in a vertical diffuser 
were compared with the results of other authors (Figure 7). This is necessary because half 
of the diffuser was used to obtain the thermograms in this study. 

 
Figure 7. Comparison of the flow structure in a vertical diffuser for Re ≈ 40,000: (a) data [37]; (b) the 
author’s thermogram. Note: I—stagnant zone; II—core of the flow. 

Thermograms were obtained at a specific time for a stationary flow (output to the 
mode of about 10 min) in Figure 7 and all subsequent figures. Figure 7 confirms that the 
thermograms show the main elements of the flow structure in a vertical CD in comparison 
with the data of other authors. Accordingly, the method of thermal imaging is suitable 
and reliable for studying the patterns of changes in the gas dynamics of flows in the dif-
fuser for different methods of air supply. At the same time, the use of half a vertical dif-
fuser is acceptable for studying stationary flows. 

Figure 6. Photographs of the studied structures of a vertical diffuser with a nozzle air supply through
tubes with different cross-sections: (a) circle; (b) square; (c) triangle.

3. Analysis of the Gas-Dynamic Structure of Flow in a Vertical Diffuser with Different
Air Supply Methods

First, experimental data (thermograms) on the flow structure in a vertical diffuser
were compared with the results of other authors (Figure 7). This is necessary because half
of the diffuser was used to obtain the thermograms in this study.
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Thermograms were obtained at a specific time for a stationary flow (output to the
mode of about 10 min) in Figure 7 and all subsequent figures. Figure 7 confirms that the
thermograms show the main elements of the flow structure in a vertical CD in comparison
with the data of other authors. Accordingly, the method of thermal imaging is suitable and
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reliable for studying the patterns of changes in the gas dynamics of flows in the diffuser
for different methods of air supply. At the same time, the use of half a vertical diffuser is
acceptable for studying stationary flows.

It has been established that the transverse profiling of the supply channel has signif-
icant effects on the flow structure in a CD (Figure 8). Figure 8 shows the flow structure
in a vertical diffuser at an air flow rate of q = 0.018 m3/s for channels with different
configurations.
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Figure 8a demonstrates that the use of a channel with a circular cross-sectional shape
leads to the creation of a pronounced central flow (saturated colour on the thermogram) in
the vertical diffuser. At the same time, in the corners of the diffuser there is virtually no air
flow (white areas on the thermogram), that is, stagnant zones are created. It should be noted
that in the upper part of the diffuser, air movement occurs throughout the entire volume.

Figure 8b shows that the use of a channel with a square cross-section causes a signifi-
cant change in the flow structure compared to a traditional round channel. When using a
square channel, there are no stagnant zones in the corners of the diffuser. However, the
presence of a pronounced central flow along the diffuser axis (dark orange area on the
thermogram) should be noted.

Figure 8c illustrates that the use of a triangular channel to supply air to the diffuser
also leads to the formation of stagnant zones in the corners. At the same time, the flow
along the height of the diffuser is more uniform (in fact, the colour of the thermogram is
uniform) compared to round and square channels.

Such significant changes in the flow structure in a vertical diffuser when using profiled
supply channels can be explained by the influence of longitudinal vortex structures in the
corners of square and triangular profiles. In this case, these structures contribute to a more
uniform distribution of flow throughout the entire volume of the diffuser and prevent
the formation of stagnant zones. The use of square and triangular pipelines also has a
significant impact in the gas exchange systems of piston engines [38,39].

Figure 9 shows the flow structure in a vertical diffuser for holes with different sides
when air flows through the system of q = 0.047 m3/s.

Figure 9a demonstrates that an increase in flow rate (accordingly, the speed of flow)
through the system causes a significant reduction in stagnant zones in the corners of the
vertical diffuser in the case of air supply through a conventional round channel. At the same
time, a pronounced central flow along the diffuser axis is maintained. Figure 9b illustrates
that an increase in flow through the system has virtually no effect on the structure of the
flow in the diffuser when air is supplied through a square channel; there are no stagnant
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zones in the diffuser and a central flow can be recorded. Figure 9c shows that an increase
in flow characteristics through the system also had virtually no effect on the gas-dynamic
structure of the flow in a vertical conical diffuser when air is supplied through a triangular
channel, significant stagnant zones can be recorded in the corners of the diffuser, and there
is a uniform central flow with complete filling of the volume in the upper part.
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The data obtained indicate the stable influence of longitudinal vortex structures in
profiled channels, which retain their effect on the distribution of air in a vertical diffuser at
various air flow rates (velocities).

Figure 10 demonstrates the flow structure in a vertical diffuser for channels with
various configurations at an air flow rate through the system of q = 0.057 m3/s.
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channels with different cross-sectional shapes (flow rate through the system q = 0.057 m3/s): (a) circle;
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Figure 10a illustrates that an additional increase in air flow (velocity) through the
system led to a decrease in stagnant zones in the corners of the diffuser. Accordingly, we can
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conclude that stagnant zones decrease with increasing flow (velocity) through the system
under consideration (channel diffuser). Figure 10b shows that an additional increase in
flow rate through the square channel did not cause any changes in the air distribution
inside the vertical diffuser. Figure 10c demonstrates that an additional increase in flow
characteristics through the system did not cause any changes in the flow structure in the
diffuser when air was supplied through a triangular channel.

It should be noted that when studying the flow structure with air supply through a
triangular channel, the mesh was stretched not through the centre of the triangle but with a
significant shift to one of the corners. This is due to limitations in the geometric dimensions
of the diffuser and supply channel. Therefore, there are plans to refine the data for this
design by using other optical methods (in particular, through a PIV measurement system).

The following presents data on the flow structure in a vertical diffuser with nozzle
air supply. For example, Figure 11 illustrates the flow structure in a vertical diffuser for
a nozzle air supply through tubes with different cross-sections at a flow rate through the
system of q = 0.018 m3/s.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 15 
 

Figure 10a illustrates that an additional increase in air flow (velocity) through the 
system led to a decrease in stagnant zones in the corners of the diffuser. Accordingly, we 
can conclude that stagnant zones decrease with increasing flow (velocity) through the sys-
tem under consideration (channel diffuser). Figure 10b shows that an additional increase 
in flow rate through the square channel did not cause any changes in the air distribution 
inside the vertical diffuser. Figure 10c demonstrates that an additional increase in flow 
characteristics through the system did not cause any changes in the flow structure in the 
diffuser when air was supplied through a triangular channel. 

It should be noted that when studying the flow structure with air supply through a 
triangular channel, the mesh was stretched not through the centre of the triangle but with 
a significant shift to one of the corners. This is due to limitations in the geometric dimen-
sions of the diffuser and supply channel. Therefore, there are plans to refine the data for 
this design by using other optical methods (in particular, through a PIV measurement 
system). 

The following presents data on the flow structure in a vertical diffuser with nozzle 
air supply. For example, Figure 11 illustrates the flow structure in a vertical diffuser for a 
nozzle air supply through tubes with different cross-sections at a flow rate through the 
system of q = 0.018 m3/s. 

Figure 11a shows that when air is supplied through a nozzle and round tubes, intense 
air movement can be recorded at the base of the diffuser. At the same time, there are no 
stagnant zones in the corners of the diffuser. The further distribution of air flow along the 
height of the diffuser is almost uniform, with some deviation towards the right side. 

From Figure 11b it can be seen that with nozzle air supply through square tubes, 
there is also an intense flow movement at the base of the diffuser, with further uniform 
distribution of air throughout the entire volume of the diffuser. Thus, it can be concluded 
that the use of a square nozzle tube did not have a significant effect on flow structure in 
the vertical conical diffuser. 

Figure 11c demonstrates that the use of triangular nozzle tubes causes the most uni-
form distribution of air throughout the entire volume of the diffuser compared to other 
nozzle tube configurations. In this case, intense air movement can be seen along the verti-
cal axis over almost the entire height of the diffuser (the shape of this movement resembles 
a ‘carrot’). 

 
Figure 11. Thermograms of the flow structure in a vertical diffuser with nozzle air supply through 
tubes with different cross-sectional shapes (flow through the system q = 0.018 m3/s): (a) round; (b) 
square; (c) triangular. 

A pronounced central flow in the diffuser is not created when using a nozzle air sup-
ply. The jet collapse can be seen at the very beginning of the diffuser (square tubes), in the 
middle part (round tubes), or in the upper part (triangular tubes). 
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Figure 11a shows that when air is supplied through a nozzle and round tubes, intense
air movement can be recorded at the base of the diffuser. At the same time, there are no
stagnant zones in the corners of the diffuser. The further distribution of air flow along the
height of the diffuser is almost uniform, with some deviation towards the right side.

From Figure 11b it can be seen that with nozzle air supply through square tubes,
there is also an intense flow movement at the base of the diffuser, with further uniform
distribution of air throughout the entire volume of the diffuser. Thus, it can be concluded
that the use of a square nozzle tube did not have a significant effect on flow structure in the
vertical conical diffuser.

Figure 11c demonstrates that the use of triangular nozzle tubes causes the most
uniform distribution of air throughout the entire volume of the diffuser compared to other
nozzle tube configurations. In this case, intense air movement can be seen along the vertical
axis over almost the entire height of the diffuser (the shape of this movement resembles
a ‘carrot’).

A pronounced central flow in the diffuser is not created when using a nozzle air supply.
The jet collapse can be seen at the very beginning of the diffuser (square tubes), in the
middle part (round tubes), or in the upper part (triangular tubes).

Figure 12 illustrates the flow structure in a vertical diffuser for nozzle air supply
through tubes of different configurations at a flow rate of q = 0.047 m3/s.
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Figure 12a shows that an increase in flow rate through the system with a nozzle air
supply and round tubes does not lead to a change in the flow structure in the vertical
diffuser. There is also intense air movement at the base of the diffuser, which is gradually
distributed over the entire volume of the cylindrical part with some displacement to the
right side.

Figure 12b demonstrates that an increase in flow characteristics through the system
with nozzle air supply and square tubes does not cause changes in the flow structure
compared to q = 0.018 m3/s. In this case, there is a small area of intense air movement
in the lower part of the diffuser and a nearly uniform distribution of air in the rest of the
diffuser volume.

Figure 12c illustrates that an increase in air flow through the triangular nozzle tubes
actually led to a central air flow in the vertical diffuser. In this case, the flow structure is the
most uniform compared to nozzle tubes with round and square cross-sections.

Based on the presented data, it can be stated that when air is supplied through a nozzle
into the diffuser, the influence of transverse profiling of the tubes on the flow structure is
not very significant. However, it was previously found that the use of square and triangular
tubes increases the intensity of turbulence by up to 30% compared to air supply through
round tubes [40]. This can have a positive impact on heat exchange processes in real devices
since the higher the intensity of turbulence, the higher the level of heat transfer [41].

Figure 13 shows the flow structure in a vertical diffuser for nozzle air supply through
tubes of different configurations at a flow rate of q = 0.057 m3/s.

Figure 13 illustrates that an additional increase in air flow through the system confirms
the general patterns of the creation of flow structure in a vertical conical diffuser when air
is supplied through nozzle tubes with round, square, and triangular cross-sections.

Thus, the evolution of changes in flow structure in the diffuser with nozzle air
supply is shown, as is the influence of cross-sectional shape on the distribution of
air flow in the diffuser. By choosing the initial conditions and geometric dimensions
of the nozzle tubes, it is possible to control the flow structure in a vertical diffuser.
In practical terms, this will allow for the customisation of chemical or technological
processes to meet the needs of production.
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4. Conclusions

Based on the experimental studies of flow structure in a vertical conical diffuser, the
following conclusions can be formulated:

1. An experimental setup was created to study various design methods for supplying
air to a vertical diffuser under different initial conditions (flow characteristics).

2. Features of the flow structure in a vertical diffuser with a conventional air supply
from below through one channel are as follows:

- A pronounced central air flow is created in the diffuser along the vertical axis of
the diffuser when using all channel configurations;

- The shape of the cross-section of the supply channel has a significant impact on
flow structure in a CD (round channel—stagnant zones in the corners; square
channel—absence of stagnant zones; triangular channel—stagnant zones with a
more uniform flow);

- The main patterns of changes in the flow structure are preserved with an increase
in air flow through the system from 0.02 to 0.067 m3/s.

3. Features of the flow structure in a vertical diffuser with nozzle air supply through
four tubes at an angle of 45◦ include the following:

- There are no stagnant zones or central flow in the diffuser;
- The use of square and triangular nozzle tubes leads to a more uniform distribution

of air flow throughout the entire volume of the vertical CD;
- An increase in flow characteristics through the system contributes to a more

uniform distribution of air flow throughout the entire volume of the diffuser
(while the main patterns in the flow structure are preserved).

4. In terms of application, the following recommendations can be formulated:

- The use of conventional air supply through one channel can lead to the creation
of stagnant zones in the corners of the diffuser, which is typical of round and
triangular cross-sections, and the use of a square supply channel causes a more
uniform distribution of air throughout the entire volume of the diffuser;

- Nozzle supply ensures the uniform distribution of air throughout the entire
volume of the vertical diffuser with the creation of intense movement in the
centre, which is most typical of round and triangular nozzle tubes, and the use
of square nozzle tubes causes intense flow movement in the lower part of the
diffuser, which quickly collapses upstream, thereby uniformly filling the entire
volume of the cylindrical part of the diffuser;
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- Conventional air supply through one channel leads to a central flow along the
axis of the vertical diffuser with the presence or absence of stagnant zones in the
corners of the diffuser, and the nozzle air supply causes uniform distribution of
air throughout the entire volume of the diffuser with the creation of an area of
intense movement along the vertical axis.

5. According to the authors, the most suitable configurations of air supply to the vertical
diffuser are profiled nozzle tubes for the installation for synthesis gas production. In
these cases, stagnant zones are not formed in the diffuser, and the main flow has a
shape close to the “carrot” (this is the optimal structure for the sawdust floating in the
diffuser).

6. Areas for further research are related to obtaining detailed data on the gas dynamics
of flow in a vertical diffuser with a hot-wire anemometer and/or PIV system, as well
as studying the structure of flow in a two-stage conical diffuser. An additional line of
research could be to study the effect of the inclination of the nozzle tubes on the gas
dynamics and flow structure in a vertical CD.
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