Low-temperature thermocatalytic removal of formaldehyde in air using copper manganite spinels
 Yongbiao Hua<sup>a</sup>, Kumar Vikrant<sup>a</sup>, Ki-Hyun Kim<sup>a,\*</sup>, Philippe M. Heynderickx<sup>b, c,\*</sup>, Danil W. Boukhvalov<sup>d, e</sup>
 <sup>a</sup> Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea

# 6 <sup>b</sup> Center for Environmental and Energy Research (CEER), Engineering of Materials via Catalysis and Characterization, Ghent

7 University Global Campus, 119-5 Songdo Munhwa-ro, Yeonsu-gu, Incheon 406-840, Republic of Korea

<sup>e</sup> Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B 9000 Ghent, Belgium

10 <sup>d</sup> College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing 210037, China

<sup>e</sup> Institute of Physics and Technology, Ural Federal University, Mira Street 19, 620002 Yekaterinburg, Russia

- 12
- 13

#### 14 Abstract

The removal of formaldehyde (FA) is vital for indoor air quality management in light of its 15 16 carcinogenic propensity and adverse environmental impact. A series of copper manganite spinel structures (e.g., CuMn<sub>2</sub>O<sub>4</sub>) are prepared using the sol-gel combustion method and treated with reduction or oxidation 17 18 pretreatment methods at 300°C condition. Accordingly, CuMn<sub>2</sub>O<sub>4</sub>-O ("O" suffix for oxidation pretreatment in air) is identified as the best performer to achieve 100% conversion (X<sub>FA</sub>) of FA (50 ppm) at 19 90°C; its performance, if assessed in terms of reaction kinetic rate (r) at  $X_{FA} = 10\%$ , is 5.02E-03 mmol g<sup>-1</sup> 20 h<sup>-1</sup>. The FA removal performance increases systematically with decreases in flow rate, FA concentration, 21 and relative humidity (RH) or with increases in bed mass. The reaction pathways and intermediates of FA 22 catalytic oxidation on CuMn<sub>2</sub>O<sub>4</sub>-A are studied with density functional theory simulations, temperature-23 24 programmed characterization experiments, and *in-situ* diffuse reflectance infrared Fourier transform spectroscopy. The synergistic combination of large quantities of adsorbed oxygen (O<sub>A</sub>) species and oxidized 25 metal species (e.g., Cu<sup>2+</sup>) contribute to the enhanced catalytic performance of CuMn<sub>2</sub>O<sub>4</sub>-O to oxidize FA 26 27 into CO<sub>2</sub> with the reaction intermediates of H<sub>2</sub>CO<sub>2</sub> (DOM), HCOO<sup>-</sup>, and CO. The present study is expected

- 29 their catalytic performances in relation to the key process variables.

- 31 Keywords: Formaldehyde; Volatile organic compounds; Catalytic oxidation; copper manganite spinel
- 33 \*Correspondence: <u>kkim61@hanyang.ac.kr</u> (K.-H. Kim); <u>philippe.heynderickx@ghent.ac.kr</u> (P. M. H.)

- 36 Graphical abstract



- .

44

## 45 1. Introduction

Indoor air quality control has become a crucial requirement for sustainable health management. The 46 47 volatile organic compounds (VOCs), particularly formaldehyde (FA), are well-recognized as common indoor air pollutants (Vikrant et al., 2019). Many reports confirmed that contact with FA could lead to severe 48 health issues, including allergic dermatitis, asthma, and even cancers (Ban et al., 2022; Nishikawa et al., 49 50 2021). Considering the hazardous nature of FA, the World Health Organization (WHO) proposed many regulations to manage exposure in human subjects (Vellingiri et al., 2020). For instance, the WHO 51 established an indoor air quality guideline for short- and long-term exposures to FA of 0.1 mg m<sup>-3</sup> (0.08 52 ppm) (Nielsen et al., 2017). Likewise, the limit of FA concentration in the indoor environment is set to 0.03 53 mg m<sup>-3</sup> (~0.02 ppm) by the technical standard for interior pollution control of residential buildings in China 54 (Li et al., 2020). 55

To date, a plethora of techniques have been proposed to reduce indoor FA levels, including adsorption, 56 plasma catalysis, photocatalytic degradation, and thermocatalytic oxidation (Robert and Nallathambi, 2021). 57 The adsorption method often suffers from the finite adsorption capacity and regeneration of the adsorbent 58 59 (Bai et al., 2016a). The plasma technique has problems of secondary pollution, high energy consumption, and high cost. The photocatalytic method is limited by the requirement of suitable light sources, and 60 generation of hazardous by-products (Luengas et al., 2015; Zhu et al., 2019). Among the methods 61 mentioned above, thermocatalysis can be regarded as one of the most effective options based on the high 62 VOC removal performance, stability, and capability to continuously oxidize the VOCs into benign end 63 products (e.g., carbon dioxide (CO<sub>2</sub>) and water (H<sub>2</sub>O)) (Wu et al., 2021). 64

65 A list of noble metals (e.g., platinum (Pt), gold (Au), palladium (Pd), rhodium (Rh), and silver (Ag))-

based catalysts have been identified for their thermocatalytic potential against FA at room temperature (RT)
(Guo et al., 2019). However, the extensive application of noble metal-based catalysts is limited due to their
high costs (Tu et al., 2021). To meet the demand for developing cost-effective materials from a practical
perspective, transition metal-based catalysts, particularly manganese-based oxides, have gained much
interest in FA thermal degradation due to their good stability, high catalytic activity, abundance, and costeffectiveness (Wu et al., 2021).

72 Manganese-based oxides with spinel AB<sub>2</sub>O<sub>4</sub> structure have attracted attention for pollutant removal due to their unique structural and physicochemical characteristics (Liu et al., 2016; Yang et al., 2019). The 73 74 AB<sub>2</sub>O<sub>4</sub> spinel structure could be tuned to achieve desirable physicochemical characteristics (e.g., defects, morphology, and electron mobility) with enhanced performance (Zhao et al., 2017). Moreover, the abundant 75 surface oxygen defects and the mobile electron environment caused by the shifting of cations at A and B 76 sites can also enhance oxidation performance (Wang et al., 2017; Wang et al., 2020). Among the transition 77 metal spinels, copper manganite (CuMn<sub>2</sub>O<sub>4</sub>) is a chemically and thermally stable material with unique 78 79 characteristics of fast electron transfer and variable valences, which are conducive to various catalytic reactions (Zhang et al., 2022; Zhao et al., 2022). Because of these characteristics, CuMn<sub>2</sub>O<sub>4</sub> has been 80 81 utilized to remediate various target pollutants such as mercury vapor and nitrogen oxides (Wang et al., 2020; 82 Yang et al., 2019). In addition, the effect of physicochemical properties (e.g., dispersion and microstructure) on the catalytic FA oxidation process of palygorskite-supported copper (Cu) and manganese oxides (MnO<sub>x</sub>) 83 84 have also been studied (Liu et al., 2018). However, there have not been sufficient efforts to adequately evaluate the thermocatalytic performance of pristine CuMn<sub>2</sub>O<sub>4</sub> against FA under the control of diverse 85 process variables. 86



a low-temperature sol-gel combustion method to determine the optimum Cu amount for the oxidative 88 removal of FA in the air. Afterward, the catalytic removal performance of optimized CuMn<sub>2</sub>O<sub>4</sub> was assessed 89 against FA under the control of various process variables (high-temperature pre-treatment environment 90 (hydrogen (H<sub>2</sub>) and air), flow rate, catalyst mass, FA concentration, and relative humidity (RH)). The 91 reaction pathway and mechanism were then explored using *in-situ* diffuse reflectance infrared Fourier 92 transform spectroscopy (DRIFTS), density functional theory (DFT) simulations, and temperature-93 94 programmed characterizations. The present work offers better support for the construction of transition metal oxides (e.g., CuMn<sub>2</sub>O<sub>4</sub>) for the thermocatalytic oxidative removal of FA under diverse process 95 96 conditions.

97

#### 98 2. Materials and methods

#### 99 2.1. Chemical reagents

100 The required materials and chemicals, including Copper(II) nitrate hemi(pentahydrate)  $(Cu(NO_3)_2 \cdot 2.5H_2O; \geq 99.99\%),$ manganese(II) nitrate tetrahydrate  $(Mn(NO_3)_2 \cdot 4H_2O; \geq 97\%),$ 101 paraformaldehyde (pFA (HO(CH<sub>2</sub>O)<sub>n</sub>H); 95%), and ethanol (CH<sub>3</sub>OH; 99.8%) were purchased from Sigma-102 103 Aldrich (USA). Citric acid monohydrate (HOC(COOH)(CH<sub>2</sub>COOH)<sub>2</sub>·H<sub>2</sub>O; 99.5%) was supplied by Yakuri Pure Chemicals Co. (Japan). Both air and H<sub>2</sub> (purity of 99.999%) were supplied by Union Gas Co., Ltd. 104 (Yongin, Republic of Korea). 105

106

# 107 2.2. Catalyst synthesis

The catalysts were prepared using an earlier reported sol-gel combustion method with slight
 modifications (Wang et al., 2020). Specifically, 0.06 mol of HOC(COOH)(CH<sub>2</sub>COOH)<sub>2</sub>·H<sub>2</sub>O and 5 mL of

110 CH<sub>3</sub>OH were dissolved in 200 ml of deionized (DI) H<sub>2</sub>O with continuous stirring at RT. Subsequently, 0.02 111 mol of Cu(NO<sub>3</sub>)<sub>2</sub>·2.5H<sub>2</sub>O and 0.04 mol of Mn(NO<sub>3</sub>)<sub>2</sub>·4H<sub>2</sub>O were dissolved into the solution and stirred at 112  $60^{\circ}$ C for 1 h. The solution was placed in a convection oven at 85°C for 24 h to obtain a sticky sol-gel and 113 to dry it thoroughly. The dried powder was calcined in a muffle furnace at 400°C for 4 h to obtain copper 114 manganite spinel materials and further named as CuMn<sub>2</sub>O<sub>4</sub>. For preparing the Cu<sub>0.5</sub>Mn<sub>2</sub>O<sub>4</sub> and Cu<sub>2</sub>Mn<sub>2</sub>O<sub>4</sub> 115 catalysts, the amount of Cu(NO<sub>3</sub>)<sub>2</sub>·2.5H<sub>2</sub>O utilized in the synthesis was changed to 0.01 and 0.04 mol, 116 respectively, without altering the remaining procedure.

117

#### 118 2.3. Characterization instrumentation

The crystalline structures of the prepared catalysts were assessed using powder X-ray diffraction 119 (PXRD) (Bruker Corp., Billerica, MA, USA). The catalyst morphologies, along with their surface elemental 120 compositions, were analyzed with the assistance of a field emission scanning electron microscope equipped 121 with energy dispersive spectrometry (SEM-EDS) (Verios G4UC, Thermo Fisher Scientific Inc., Waltham, 122 MA, USA). Images from a high-resolution transmission electron microscope (HRTEM) model JEM-2100F 123 (JEOL Ltd., Tokyo, Japan) were obtained. The thermal stabilities of the catalysts were evaluated by 124 thermogravimetric analysis (TGA; SDT Q600 AutoDSCQ20 system, TA Instruments, Inc., New Castle, DE, 125 USA). The N<sub>2</sub> adsorption-desorption isotherms were gathered using 3Flex (Micromeritics Instruments Co., 126 USA) for analyzing the Brunauer-Emmet-Teller (BET) surface area and pore size distribution of the 127 catalysts. The surface chemistry of the catalysts was analyzed using X-ray photoelectron spectroscopy (XPS; 128 129 K-alpha TM system, Thermo Fisher Scientific Co., USA). Charge-correction to adventitious carbon (285 eV) was applied for the collected XPS data (Rudd et al., 2022). The actual bulk Cu and manganese content 130 of the catalysts was analyzed through inductively coupled plasma optical emission spectrometry (ICP-OES) 131

using the iCAP<sup>TM</sup> 7000 Series instrument from Thermo Fisher Scientific, Waltham, MA, USA.

The reducibility and desorption features of oxygen species for all prepared catalysts were analyzed by 133 H<sub>2</sub>-temperature-programmed reduction (H<sub>2</sub>-TPR) and O<sub>2</sub>-temperature-programmed desorption (O<sub>2</sub>-TPD) 134 systems, respectively (AutoChem II, Micromeritics Instrument Corp., Norcross, GA, USA)) For H<sub>2</sub>-TPR 135 experiments, the analysis temperature was raised up to 773.2 K using the heating rates of 5, 10, and 20 K 136 min<sup>-1</sup>, respectively. The catalyst mass, flow gas, and total volumetric flow rate for these experiments were 137  $50.5 \pm 0.3$  mg, H<sub>2</sub> (10% in argon (Ar)), and 50 mL min<sup>-1</sup>, respectively. Isopropyl alcohol was utilized to 138 subcool the outlet of tube (at -80°C) so as to obtain stable signal from thermal conductivity detector (TCD). 139 The above measure was taken to mitigate the impact of formed H<sub>2</sub>O while solely measuring the H<sub>2</sub> 140 consumption. Prior to each TPR experiment, loaded catalysts underwent thorough oxidation through 141 exposure it to a 50 mL min<sup>-1</sup> O<sub>2</sub> flow (5% in Ar). The temperature for these experiments was gradually 142 raised from RT to 383.2 K (10 K min<sup>-1</sup>) and held for 30 min to eliminate potential interferences such as 143 adsorbed  $H_2O$  and/or  $CO_2$ . The catalysts underwent cooling to 308.2 K with Ar gas flow (50 mL min<sup>-1</sup>) for 144 elimination of weakly adsorbed oxygen species. 145

Prior to each TPD experiment, the loaded catalysts ( $100.1 \pm 0.1 \text{ mg}$ ) underwent the pretreatment in the 146 temperature range of RT - 383.2 K (heating rate and total molar flow rate of helium (He) as 10 K min<sup>-1</sup> and 147 50 mL min<sup>-1</sup>, respectively). It was maintained at 383.2 K for 30 min to eliminate potential adsorbates such 148 as H<sub>2</sub>O and CO<sub>2</sub>. Subsequently, the sample underwent cooling to 298.2 K. The sample was saturated by O<sub>2</sub> 149 flow (5% in He) for 30 min. To physically adsorb O2 molecules, the sample was further treated with a flow 150 rate of 50 mL min<sup>-1</sup> He gas for 10 min (The TPD analysis commenced at a heating rate of 10 K min<sup>-1</sup> with 151 a 50 mL min<sup>-1</sup> He flow, reaching up to 773 K. The detailed data analysis of TPR and TPD is provided in 152 the supplementary information (SI). 153

154

### 155 2.4. FA catalytic oxidation experiments

A fixed-bed quartz tube reactor with an inner radius/length of 2/110 mm was utilized to study the FA catalytic oxidation by Cu-MnO<sub>x</sub> catalysts at atmospheric conditions. The catalyst (30-120 mg) and quartz sand (600 mg) were loaded into the quartz reactor and fixed between quartz wool end plugs. The temperature of the catalyst bed was regulated by an electric heater (TC200P, Misung Scientific Co., South Korea). The suffixes "O" and "R" were added to the catalyst names to indicate that the catalyst has undergone oxidation (air) and reduction ( $H_2 + N_2$ ) pre-treatments, respectively at 300°C for 3h with a flow rate of 50 mL min<sup>-1</sup>.

The FA gaseous primary standard (GPS) was prepared by following the standard pFA sublimation 163 method (Yoo et al., 2019). A 5 L (polyester aluminum bag (Top Trading Co., South Korea)) of FA GPS was 164 prepared by the sublimation of pFA powder (100 mg) at 130°C under N<sub>2</sub> flow with a flow rate of 100 mL 165 min<sup>-1</sup> for 50 min. The quantification of FA GPS was carried out using a standard high-performance liquid 166 chromatography system through the derivatization with 4-dinitrophenylhydrazine (Yoo et al., 2019). To 167 obtain gaseous working standard (GWS) of FA (50-500 ppm), the FA GPS was diluted in a 100 L polyester 168 aluminum bag using pure air. In order to obtain the RH in the range of 30-90% to conduct the catalytic 169 experiments in the co-presence of moisture, 680-2000 µL of DI H<sub>2</sub>O was injected into the 100 L FA GWS 170 polyester aluminum bag with the aid of a 500 µL liquid phase syringe (Trajan Scientific and Medical Co., 171 Australia). The FA flow through the catalyst bed (50-250 mL min<sup>-1</sup>) was controlled using a mini pump (MP-172  $\Sigma$ 30N, Sibata Scientific Technology Co., Japan). The catalyst bed temperature was set up from RT (30°C) 173 and raised at 15°C intervals until reaching complete FA conversion (X<sub>FA</sub>). To ensure a steady state, the 174 temperature at each interval point was sustained for a minimum of 40 min. 175

176 The quantification of FA concentration in the reactor effluent was carried out by a gas chromatograph instrument (GC; Shimadzu Model GC-2010, Japan) coupled with a flame ionization detector (FID) and a 177 large volume injection (LVI) unit. The GC-FID conditions (e.g., oven temperature, FID temperature, 178 analysis time, and injection volume) were set at 80°C, 250°C, 4 min, and 1 mL, respectively. In addition, 179 the CO<sub>2</sub> generated by FA oxidation was quantified using a GC-FID equipped with a methanizer system 180 (Shimadzu Model GC-2030, Japan). Note that the methanizer-FID measures carbon oxides (CO<sub>x</sub>). The 181 methanizer-FID cannot separately quantify carbon monoxide (CO) and CO<sub>2</sub>. However, as excess molecular 182 oxygen (O<sub>2</sub> (21 vol.%)) was used for the oxidation experiments, it was assumed that the CO<sub>x</sub> detected by 183 the methanizer-FID was primarily comprised of CO<sub>2</sub>. As CO could also be present with CO<sub>2</sub> in the effluent 184 (since CO was detected during FA oxidation in the *in-situ* DRIFTS spectra (see Section 3.5.1)), it should 185 be noted that the detected CO<sub>2</sub> concentration in the effluent by the methanizer-FID was somewhat 186 overestimated. 187

188

#### 189 **2.5. Data analysis**

The X<sub>FA</sub> was calculated using Eq. 1. Note that FA<sub>out</sub> and FA<sub>in</sub> represent the FA concentration at the outlet 190 191 and inlet of the fixed bed reactor, respectively. The yield of  $CO_2$  (Y<sub>CO2</sub>) was estimated by Eq. 2 (Vikrant et al., 2022b). CO<sub>2t</sub> represents the theoretically expected amount of CO<sub>2</sub> generated through the complete 192 oxidation of FA, while CO<sub>2e</sub> is the experimentally detected amount of CO<sub>2</sub> at the reactor outlet. In addition, 193 Eq. 3 was utilized to calculate the steady-state reaction rate (r (mmol  $g^{-1} h^{-1}$ )) (Lee et al., 2021). V<sub>FA</sub> is the 194 FA GWS flow rate (mol s<sup>-1</sup>). m<sub>cat</sub> is the catalyst mass (mg). The determined r value using Eq. 3 is valid 195 exclusively under differential conditions, namely when X<sub>FA</sub> is less than 20% (Onrubia-Calvo et al., 2022). 196 Hence, the performance comparison was first carried out using the r value derived at  $X_{FA} = 10\%$ . However, 197

as the r at lower  $X_{FA}$  was difficult to extract from other studies, its value at  $X_{FA} = 100\%$  has also been calculated and used for simple comparison with other reported catalysts. Under the differential mode of operation, the partial pressures of reactants remain constant across the fixed bed. For simplicity, it was assumed that the disappearance rate of FA (-r<sub>FA</sub>) remains constant irrespective of the position within the fixed bed reactor.

As internal mass transfer limitations can occur during FA oxidation, the Weisz-Prater criterion (C<sub>WP</sub>) 203 was applied to check whether diffusion in the catalyst pores limits the reaction (Jiménez-Gómez et al., 204 2021). If the left-hand-side (LHS) term of the C<sub>WP</sub> is less than the right-hand-side (RHS) value, the internal 205 206 mass transfer can be neglected. The C<sub>WP</sub> was applied at the catalyst bed inlet for the harshest test condition (highest FA concentration and temperature). The observed volumetric FA reaction rate (r<sup>obs</sup><sub>v,FA</sub>) is the 207 highest at the catalyst bed entrance as the X<sub>FA</sub> is zero. Hence, if the C<sub>WP</sub> is satisfied at the reactor inlet, it 208 will be valid for the entire catalyst bed length. As shown in the SI, the C<sub>WP</sub> was satisfied. Hence, the internal 209 mass transfer limitations can be neglected for all the tested conditions in the present work, i.e., the catalysts 210 operated under the kinetic regime (Jiménez-Gómez et al., 2021). 211

212

213 
$$X_{FA}(\%) = \frac{FA_{in} - FA_{out}}{FA_{in}} \times 100$$
 (1)

214 
$$Y_{CO_2}(\%) = \frac{CO_{2e}}{CO_{2t}} \times 100$$
 (2)

215 
$$r = \frac{3600 \times 10^6 \times X_{FA} \times V_{FA}}{m_{cat}}$$
 (3)

216

# 217 2.6. DFT modeling and methodology

The DFT calculations were used to assess the mechanism and energetics of the FA catalytic reaction over the studied catalysts. The Spanish Initiative for Electronic Simulations with Thousands of Atoms

(SIESTA) code has been carried out with a pseudopotential method (Soler et al., 2002). All the calculations 220 were performed employing the Perdew-Burke-Ernzerhof generalized gradient approximation (GGA-PBE) 221 with spin-polarization and +vdW (van der Waals) corrections for precise delineations of weak non-covalent 222 interactions (Dion et al., 2004; Perdew et al., 1996). The atomic positions were effectively optimized during 223 the course of model development based on the DFT simulation. In the optimization course, non-relativistic 224 and norm-conserving pseudopotentials were utilized to describe ion cores. The cut-off radii of Mn, Cu, O, 225 and H was 2.51, 2.08, 1.47, and 1.25 au, respectively (Troullier and Martins, 1991). Furthermore, the 226 expansion of wave functions for all species involved the utilization of a double- $\zeta$  plus polarization basis set 227 228 of localized orbitals f, with the exception of hydrogen, which utilized a double- $\zeta$  basis set. The free energies of physical adsorption are defined as  $\Delta G = \Delta H + \Delta ST$ , where  $\Delta H$  represents the enthalpy of the physical 229 adsorption calculated by the standard formula  $\Delta H = (E_{host + guest} - E_{host} - E_{guests})/N_{guests}$ . E represents the total 230 energies of the host before and after the adsorption of guest molecules and the total energy of N guest 231 molecules. The entropy change was calculated by the following formula:  $\Delta S = H_{vaporization}/T_{vaporization}$ . The 232 values of the enthalpies and temperatures of vaporization were obtained from the National Institute of 233 Standards and Technology (NIST) database. The energy of desorption is the free energy of adsorption with 234 235 an opposite sign. The energies corresponding with the steps of transformation of FA were defined as the 236 differences between the total energies of products and reactants.

237

### 238 3. Results and discussion

#### 239 **3.1.** Physicochemical characterization

The SEM images showed that the Cu<sub>0.5</sub>Mn<sub>2</sub>O<sub>4</sub>, CuMn<sub>2</sub>O<sub>4</sub>, and Cu<sub>2</sub>Mn<sub>2</sub>O<sub>4</sub> nanoparticles (NPs) were of irregular shapes (Fig. S1(a-c)). The EDS mapping confirmed the presence of Cu, manganese (Mn), and

oxygen in all the synthesized materials (Fig.S1(d-f)). The TEM images further confirmed the irregular 242 shapes of Cu<sub>0.5</sub>Mn<sub>2</sub>O<sub>4</sub>, CuMn<sub>2</sub>O<sub>4</sub>, and Cu<sub>2</sub>Mn<sub>2</sub>O<sub>4</sub> NPs (Fig. 1). The magnified TEM image of Cu<sub>0.5</sub>Mn<sub>2</sub>O<sub>4</sub> 243 indicated the lattice fringe spacing of 0.505 and 0.279 nm, corresponding to the (2 0 0) plane for 244 manganese(IV) oxide (MnO<sub>2</sub>) and (2 2 0) plane for CuMn<sub>2</sub>O<sub>4</sub>, respectively (Gao et al., 2021; Tseng et al., 245 2015) (Fig. 1b). The lattice fringe with an interplanar spacing of 0.488 nm, corresponding to the CuMn<sub>2</sub>O<sub>4</sub> 246 (1 1 1) plane, was observed for CuMn<sub>2</sub>O<sub>4</sub> (Wang et al., 2022) (Fig. 1d). The magnified TEM image of 247 Cu<sub>2</sub>Mn<sub>2</sub>O<sub>4</sub> exhibited the lattice fringe spacing of 0.214, 0.257, 0.264, and 0.502 nm, which corresponded 248 with the  $(4\ 2\ 0)$ ,  $(3\ 1\ 1)$ ,  $(1\ 1\ 1)$ , and  $(2\ 0\ 0)$  planes of manganese(III) oxide (Mn<sub>2</sub>O<sub>3</sub>), CuMn<sub>2</sub>O<sub>4</sub>, copper(II) 249 oxide (CuO), and MnO<sub>2</sub>, respectively (Li et al., 2015b; Tseng et al., 2015; Wang et al., 2022; Wang et al., 250 2018b) (Fig. 1f). 251

The compositional phases of the prepared catalysts were characterized using the PXRD patterns (Fig. 252 2a). For all the synthesized samples, the primary diffraction peaks at 18.4, 30.3, 35.8, 54.1, 57.6, and 63.4° 253 254 corresponded with the (1 1 1), (2 2 0), (3 1 1), (4 2 2), (5 1 1), and (4 0 0) lattice planes of CuMn<sub>2</sub>O<sub>4</sub> (JCPDS 84-0543), respectively, agreeing with the reported literature (Saravanakumar et al., 2017; Zhang et al., 255 2021). Hence, the successful synthesis of spinel CuMn<sub>2</sub>O<sub>4</sub> was confirmed in all samples. Interestingly, the 256 257 diffraction peak at 38.7° detected in all samples should be ascribable to the existence of CuO (JCPDS 89-5895) (Vetrimani et al., 2022). In addition, the peaks at 28.6° and 37.9° indicated the presence of MnO<sub>2</sub> 258 (JCPDS 72-1984) in Cu<sub>0.5</sub>Mn<sub>2</sub>O<sub>4</sub> and Cu<sub>2</sub>Mn<sub>2</sub>O<sub>4</sub> (Weina et al., 2017) and Mn<sub>2</sub>O<sub>3</sub> (JCPDS 71-0635) in 259 260 Cu<sub>2</sub>Mn<sub>2</sub>O<sub>4</sub> (Li et al., 2015a), respectively.

 $\label{eq:cuMn2O4} CuMn_2O_4 \ displayed \ high \ thermal \ stability, \ per \ the \ TGA \ data \ with \ a \ minor \ weight \ loss \ (1.1\%) \ from \ RT$ 

to 800°C (Fig. 2b). In contrast, Cu<sub>0.5</sub>Mn<sub>2</sub>O<sub>4</sub> and Cu<sub>2</sub>Mn<sub>2</sub>O<sub>4</sub> showed more noticeable mass losses of 1.9 and

263 3.2%, respectively in the RT-800°C range. Interestingly, both  $Cu_{0.5}Mn_2O_4$  and  $Cu_2Mn_2O_4$  exhibited similar

TGA profiles with two distinct regions of weight loss including: (i) removal of adsorbed water (RT-460°C) and (ii) phase transformation to  $MnO_x$  (> 460°C) (Vikrant et al., 2022b). The larger mass loss of Cu<sub>2</sub>Mn<sub>2</sub>O<sub>4</sub> can be attributed to the phase transformation to  $MnO_x$  (e.g.,  $MnO_2$  and  $Mn_2O_3$ ). The superior thermal stability of the catalysts might exert the positive effects (e.g., promoted activation of surface lattice oxygen (O<sub>L</sub>)) on the catalytic oxidation of VOCs (Cheng et al., 2022).

The nitrogen (N<sub>2</sub>) adsorption-desorption isotherms of Cu<sub>0.5</sub>Mn<sub>2</sub>O<sub>4</sub>, CuMn<sub>2</sub>O<sub>4</sub>, and Cu<sub>2</sub>Mn<sub>2</sub>O<sub>4</sub> are 269 presented in Fig. 2c. Based on the classification criteria of the International Union of Pure and Applied 270 Chemistry (IUPAC), all the obtained isotherms showed a type-IV pattern with H3-type hysteresis loops 271 272 (Thommes et al., 2015) (Fig. 2c). In this regard, micropore filling, monolayered, and multilayered N<sub>2</sub> adsorption processes should occur at low, moderate, and high P/P<sub>0</sub> levels, respectively (Vikrant et al., 273 2022b). The presence of the H3-type hysteresis loop indicates the existence of slit-like pores, likely 274 resulting from aggregated catalyst particles (Sing, 1985). As per the pore size distribution analysis (Fig. 2d), 275 all examined materials predominantly featured mesopores (2-18 nm pore diameter) accompanied by 276 micropores (1-2 nm pore diameter). Among all the tested materials, CuMn<sub>2</sub>O<sub>4</sub> had the highest BET surface 277 area  $(21.66 \text{ m}^2 \text{ g}^{-1})$  and pore volume  $(0.036 \text{ cm}^3 \text{ g}^{-1})$  because of the non-blockage of pores due to the absence 278 279 of MnO<sub>2</sub> and Mn<sub>2</sub>O<sub>3</sub> in its structure (as confirmed by the PXRD results) (Table 1). It is generally believed that high BET surface area and large pore volume can synergistically enhance VOC adsorption for 280 heightened catalytic activity (Liu et al., 2020). The quantified content of Cu and Mn in the prepared 281 catalysts, as determined by ICP-OES, are summarized in Table 1. The experimentally determined Cu and 282 Mn amounts were in good accordance with the theoretical predictions. 283

The surface chemistry of the tested materials was analyzed using XPS (Fig. S2). The XPS spectrum indicated that all the tested materials contained Cu, Mn, and oxygen in line with the EDS results (Fig. S1).

As illustrated in Fig. S2(a-f), the Cu 2p XPS spectra of all the tested materials could be deconvoluted into 286 four characteristic peaks, Cu 2p<sub>3/2</sub>, Cu 2p<sub>1/2</sub>, and two satellite peaks (Wang et al., 2019). In this regard, the 287 Cu 2p spectra of all the air pre-treated catalyst materials exhibited two characteristic peaks for Cu<sup>+</sup> (around 288 931 and 950.8 eV) and Cu<sup>2+</sup> (around 933.7 and 953.5 eV) species (Wang et al., 2019) (Fig. S2(a-c)). The 289 characteristic Cu 2p<sub>3/2</sub>/Cu2p<sub>1/2</sub> peaks for Cu<sub>0.5</sub>Mn<sub>2</sub>O<sub>4</sub>-R, CuMn<sub>2</sub>O<sub>4</sub>-R, and Cu<sub>2</sub>Mn<sub>2</sub>O<sub>4</sub>-R were detected at 290 932.9/952.7, 932.7/952.6, and 932.6/952.5 eV, respectively (Fig. S2(d-f)) (Xu et al., 2019). Hence, metallic 291 Cu (Cu<sup>0</sup>), Cu<sup>+</sup>, and Cu<sup>2+</sup> species should co-exist in the reduced samples (Wan et al., 2017). CuMn<sub>2</sub>O<sub>4</sub>-O 292 had the highest  $Cu^{2+}$  content (72.2%) relative to  $Cu_{0.5}Mn_2O_4$  (66.8%) and  $Cu_2Mn_2O_4$  (47.9%) (Table 2). 293 The high valence metal states have thus been reported to display better oxidation activity against VOCs 294 (Cheng et al., 2022). The Cu<sup>2+</sup> content of Cu<sub>0.5</sub>Mn<sub>2</sub>O<sub>4</sub>-R, CuMn<sub>2</sub>O<sub>4</sub>-R, and Cu<sub>2</sub>Mn<sub>2</sub>O<sub>4</sub>-R displayed a 16.3, 295 29.4, and 16.3% reduction, respectively, relative to their oxidized counterparts, due to the reduction pre-296 treatment (Table 2). 297

298 The Mn 2p XPS spectra for all the analyzed materials were mainly composed of the Mn 2p<sub>3/2</sub> and Mn  $2p_{1/2}$  peaks, as presented in Fig. S2(g-l). The Mn  $2p_{3/2}$  peak could be deconvoluted into two peaks 299 corresponding with the Mn<sup>3+</sup> and Mn<sup>4+</sup> species (Vikrant et al., 2022c). As listed in Table 2, the Mn<sup>4+</sup> content 300 301 of the Cu-MnO<sub>x</sub> materials increased from 40 to 52.7% with the increment in the Cu content (Cu/Mn ratio from 0.5/2 to 1/2). Hence, increasing the amount of Cu in the Cu-MnO<sub>x</sub> materials enhances the Mn<sup>4+</sup> content 302 (Yi et al., 2018). The high Mn<sup>4+</sup> content is beneficial for oxidation reactions (Liu et al., 2019). The Mn<sup>4+</sup> 303 content for Cu<sub>2</sub>Mn<sub>2</sub>O<sub>4</sub>-O was estimated as 38.1% (Cu/Mn ratio: 2/2). The Mn<sup>4+</sup> content for Cu<sub>0.5</sub>Mn<sub>2</sub>O<sub>4</sub>-R, 304 CuMn<sub>2</sub>O<sub>4</sub>-R, and Cu<sub>2</sub>Mn<sub>2</sub>O<sub>4</sub>-R were 31.2, 45.1, and 31.2%, respectively. 305

306 The O 1s XPS spectra of the tested materials were shown In Fig. S2(m-r). O 1s spectra of all the tested

materials can be deconvoluted into two peaks locating at round 529.6 and 530.9 eV, to match with the  $O_L$ 

and adsorbed oxygen (O<sub>A</sub>) species, respectively (Cheng et al., 2022) (Fig. S2(m-o)). The O<sub>L</sub>/O<sub>A</sub> peaks for Cu<sub>0.5</sub>Mn<sub>2</sub>O<sub>4</sub>-O, CuMn<sub>2</sub>O<sub>4</sub>-O, and Cu<sub>2</sub>Mn<sub>2</sub>O<sub>4</sub>-O occurred at 529.8/531.0 eV without any shifts. However, the O<sub>L</sub>/O<sub>A</sub> peaks for Cu<sub>0.5</sub>Mn<sub>2</sub>O<sub>4</sub>-R, CuMn<sub>2</sub>O<sub>4</sub>-R, and Cu<sub>2</sub>Mn<sub>2</sub>O<sub>4</sub>-R displayed slight blue-shifts of +0.2/+0.3, +0.2/+0.2, and +0.1/+0.2 eV, respectively, due to reduction pre-treatment. The relative O<sub>A</sub> content of the catalysts decreased in the following order: CuMn<sub>2</sub>O<sub>4</sub>-O (47.2%) > CuMn<sub>2</sub>O<sub>4</sub>-R (44.9%) > Cu<sub>2</sub>Mn<sub>2</sub>O<sub>4</sub>-O (43.1%) > Cu<sub>0.5</sub>Mn<sub>2</sub>O<sub>4</sub>-O (42.4%) > Cu<sub>0.5</sub>Mn<sub>2</sub>O<sub>4</sub>-R (41.3%) > Cu<sub>2</sub>Mn<sub>2</sub>O<sub>4</sub>-R (40.4%). A higher amount of O<sub>A</sub> is usually preferable for oxidation reactions (Sun et al., 2019).

315

#### 316 **3.2.** H<sub>2</sub>-TPR analysis

317 Table S1 summarizes the concentration of available surface oxygen for reduction with H<sub>2</sub> in all the tested catalysts. For the A-series of catalysts, the order was  $Cu_{0.5}Mn_2O_4$ -O (4.98 ± 0.36 mol<sub>O\*</sub> kg<sub>cat</sub><sup>-1</sup>) < CuMn\_2O\_4-O (4.98 ± 0.36 mol<sub>O\*</sub> kg<sub>cat</sub><sup>-1</sup>) 318  $(7.44 \pm 0.40 \text{ mol}_{O^*} \text{ kg}_{cat}^{-1}) \approx Cu_2 Mn_2 O_4$ -O  $(7.76 \pm 0.33 \text{ mol}_{O^*} \text{ kg}_{cat}^{-1})$ . The available surface oxygen of 319 CuMn<sub>2</sub>O<sub>4</sub>-O seemed to increase by a factor 1.5 when compared to Cu<sub>0.5</sub>Mn<sub>2</sub>O<sub>4</sub>-O and Cu<sub>2</sub>Mn<sub>2</sub>O<sub>4</sub>-O. The above 320 results may be attributed to the fact that a higher amount of available oxygen in Cu-O as Cu<sub>1</sub>Mn<sub>2</sub>O<sub>4</sub>-A should 321 contain the highest Cu<sup>2+</sup>amount (see XPS results). On the other hand, a further increase in the Cu content 322 (compared to Cu<sub>0.5</sub>Mn<sub>2</sub>O<sub>4</sub>-O and CuMn<sub>2</sub>O<sub>4</sub>-O) does not seem to increase the available oxygen significantly. It 323 324 can be assumed that the bulk oxygen does not contribute significantly to the reduction reaction. For the R-series, the relative quantity of the available surface oxygen was in the ascending order of 325  $Cu_{0.5}Mn_{2}O_{4}-R~(2.89\pm0.02~mol_{O^{*}}~kg_{cat}^{-1}) < CuMn_{2}O_{4}-R~(3.56\pm0.18~mol_{O^{*}}~kg_{cat}^{-1}) < Cu_{2}Mn_{2}O_{4}-R~(5.50\pm0.18~mol_{O^{*}}~kg_{cat}^{-1}) < Cu_{2}$ 326  $0.15 \text{ mol}_{O^*} \text{ kg}_{cat}^{-1}$ ), which seems to correspond with the increasing Cu loading. Attention must be paid to the 327 fact that all reduction peaks occur at temperatures lower than the prereduction temperature of 573.2 K. The 328 above observation indicates that the oxygen consumed during H2-TPR comes from the oxidation pretreatment 329

prior to each H<sub>2</sub>-TPR experiment. Higher contents of Cu (x =  $0.5 \rightarrow 1 \rightarrow 2$  in the catalyst Cu<sub>x</sub>Mn<sub>2</sub>O<sub>4</sub>-R), 330 correspond to higher bulk oxygen. Nonetheless, the reported surface oxygen concentration was not 331 proportional to the molar Cu amounts. Hence, for the Cu<sub>0.5</sub>Mn<sub>2</sub>O<sub>4</sub>-R catalyst, a greater reduction can be 332 expected during the reduction pretreatment than those with higher Cu contents. The above result corresponds 333 to a higher oxygen vacancy (OV) concentration, which can be replenished during pretreatment. 334 Using Eq. (S5) for the TPR data modeling, 9 or 12 parameters were employed for modeling the experimental 335 data. The above corresponds to 3 or 4 peaks within each profile and three parameters are dedicated to each 336 peak. A negligible scaling factor was obtained in the Gaussian profile when employing four peaks for data 337 338 modeling. Therefore, three peaks were used to describe the data (Fig. S3-S5). The above statistically corresponds to the fact that the peak needs to be removed from the model as it does not significantly contribute 339 to describing the experimental data. The holistic modeling of TPR data with Eq. (S5) yielded a maximum 340 average error (e<sub>max</sub>) of 1.41 % (observed over Cu<sub>2</sub>Mn<sub>2</sub>O<sub>4</sub>-R at 20 K min<sup>-1</sup>) when comparing the average error 341 in relation to the maximum signal per TPR experiment (Eq. (4)). S was determined with Eq. (S6). With the 342 formula, n and  $y_{max}$  denote the data point number and the maximal output value (a.u.) for each experiment, 343 respectively. 344

345 
$$e_{\max} = \frac{1}{y_{\max}} \cdot \sqrt{\frac{S}{n}}$$
(4)

Table S2-4 lists the kinetic parameters derived for the  $Cu_{0.5}Mn_2O_4$ -O,  $CuMn_2O_4$ -O, and  $Cu_2Mn_2O_4$ -O reduction, respectively. In Table S2, peaks 1, 2, and 3 accounted for  $10.0 \pm 0.4$ ,  $78.2 \pm 0.1$ , and  $11.8 \pm 1.1\%$  of the overall signal, respectively. In Table S3, peaks 1, 2, 3, and 4 accounted for  $7.1 \pm 1.2$ ,  $59.4 \pm 3.6$ ,  $33.5 \pm 8$ , and  $18 \pm 4.3\%$  of the overall signal, respectively. In Table S4, peaks 1, 2, and 3 accounted for  $28.2 \pm 2.2$ ,  $41.4 \pm 0.5$ , and  $30.4 \pm 3.6\%$  of the total signal, respectively. Fig. S3 (a, b, c), Fig. S4 (a, b, c), and Fig. S5 (a, b, c) gives the experimental H<sub>2</sub>-TPR profiles and Gaussian model profiles for the Cu<sub>0.5</sub>Mn<sub>2</sub>O<sub>4</sub>-O, CuMn<sub>2</sub>O<sub>4</sub>-O, and Cu<sub>2</sub>Mn<sub>2</sub>O<sub>4</sub>-O catalysts at the heating rates of 5-20 K min<sup>-1</sup>, respectively. An effective fit was noticeable, and each individual peak Gaussian profile can be defined by parameters (a,  $\mu$ ,  $\sigma$ )<sub>i=1...4</sub>. (Note that these results are not displayed.) The regression analysis of the pairs (T<sub>max</sub>,  $\beta$ ), according to Eq. (S15), delivers the activation energy E<sub>i</sub> and pre-exponential factor A<sub>i</sub> for each reduction peak: see Tables S2 to S4. The results are presented in Figure S6.

The activation energy values (in kJ mol<sup>-1</sup>) over Cu<sub>0.5</sub>Mn<sub>2</sub>O<sub>4</sub>-O are estimated in the order of  $62.9 \pm 3.6$ 357 (peak 1) <  $76.7 \pm 4.7$  (peak 2) <  $110.1 \pm 24.1$  (peak 3): see Table S2. The initial peak, observed at lower 358 reduction temperatures, seems to exhibit the lowest activation energy. The activation energy values (in kJ mol 359 <sup>1</sup>) for the reduction of H<sub>2</sub> over CuMn<sub>2</sub>O<sub>4</sub>-O was  $87.1 \pm 0.2$  (peak 1)  $\approx 88.4 \pm 0.9$  (peak 4)  $< 135.9 \pm 4.6$  (peak 360 3) < 158.6 ± 2.3 (peak 4): see Table S3. The reduction coefficients (in s<sup>-1</sup>) at the corresponding  $T_{max}$  for  $\beta = 10$ 361 K min<sup>-1</sup> are in the order of 0.0863 (peak 1) > 0.0127 (peak 2) > 0.0097 (peak 3) > 0.0061 (peak 4). The 362 activation energy for the reduction of H<sub>2</sub> over Cu<sub>2</sub>Mn<sub>2</sub>O<sub>4</sub>-O can be in the order of  $48.3 \pm 6.8$  (peak 1) < 56.8 363  $\pm 1.8$  (peak 2) < 64.1  $\pm 11.2$  (peak 3) kJ mol<sup>-1</sup>, see Table S4. Table S5-S7 listed the obtained kinetic parameters 364 for the reduction of the Cu<sub>0.5</sub>Mn<sub>2</sub>O<sub>4</sub>-R, CuMn<sub>2</sub>O<sub>4</sub>-R, and Cu<sub>2</sub>Mn<sub>2</sub>O<sub>4</sub>-R, respectively. Peaks 1, 2, 3, and 4 365 accounted for 13.2  $\pm$  1.1, 9.1  $\pm$  1.5, 77.7  $\pm$  2.6, and 34.6  $\pm$  2.2% of the total signal for Cu<sub>0.5</sub>Mn<sub>2</sub>O<sub>4</sub>-R, 366 respectively (Table S5). Peaks 1, 2, and 3 accounted for  $14.0 \pm 0.5$ ,  $69.2 \pm 0.2$ , and  $16.8 \pm 2.3\%$  of the total 367 signal for CuMn<sub>2</sub>O<sub>4</sub>-R, respectively (Table S6). In Table S7, peaks 1, 2, 3, and 4 accounted for  $20.4 \pm 1.0$ , 18.8 368  $\pm$  5.7, 60.8  $\pm$  10.5, and 12.6  $\pm$  2.7% of the overall signal for Cu<sub>2</sub>Mn<sub>2</sub>O<sub>4</sub>-R, respectively. 369

Figure. S3 (d, e, f), Figures S4 (d, e, f), and S5 (d, e, f) give the experimental  $H_2$ -TPR profiles and Gaussian model profiles for the  $Cu_{0.5}Mn_2O_4$ -R,  $CuMn_2O_4$ -R, and  $Cu_2Mn_2O_4$ -R catalysts at the heating rates of 5-20 K min<sup>-1</sup>, respectively. An effective fit was noticeable, and each individual peak Gaussian profile can

be defined by parameters (a,  $\mu$ ,  $\sigma$ )<sub>i=1...4</sub>. (Note that these results are not displayed.) The regression analysis of 373 the pairs ( $T_{max}$ ,  $\beta$ ), according to Eq. (S15), delivers the activation energy  $E_i$  and pre-exponential factor  $A_i$  for 374 each reduction peak: see Tables S5 to S7. The results are presented in Figure S6. The activation energy values 375  $(\text{in kJ mol}^{-1})$  over  $\text{Cu}_{0.5}\text{Mn}_2\text{O}_4$ -R can be ordered according to  $61.3 \pm 7.4$  (peak 3) <  $81.6 \pm 5.0$  (peak 4) < 108.0 376  $\pm$  5.6 (peak 1) < 126.6  $\pm$  0.8 (peak 2): see Table S5. The initial peak, observed at lower reduction temperatures, 377 seems to exhibit the lowest activation energy. However, the corresponding pre-exponential factors of peaks 1 378 379 and 2 were six orders of magnitude more significant than those of peak 3 and 4 values, respectively. Furthermore, when evaluating the reduction coefficients (in s<sup>-1</sup>) at the corresponding  $T_{max}$  for  $\beta = 10$  K min<sup>-1</sup>, 380 the order was as follows: 0.0134 (peak 1) > 0.0118 (peak 2) > 0.0071 (peak 3)  $\approx 0.0083$  (peak 4). 381 The activation energy values (in kJ mol<sup>-1</sup>) for H<sub>2</sub> reduction over CuMn<sub>2</sub>O<sub>4</sub>-R are estimated in the order 382 of  $96.0 \pm 7.6$  (peak 3) <  $107.7 \pm 10.4$  (peak 2) <  $130.4 \pm 11.5$  (peak 1): see Table S6. The above order seems 383 to be the reverse order of the corresponding reduction temperature. The evaluation of the reduction 384 coefficients (in s<sup>-1</sup>) at the corresponding  $T_{max}$  for  $\beta = 10$  K min<sup>-1</sup> shows the order of 0.0166 (peak 1) > 0.0104 385 (peak 2) > 0.0091 (peak 3). The activation energy values (in kJ mol<sup>-1</sup>) for the reduction of H<sub>2</sub> over 386  $Cu_2Mn_2O_4$ -R can be placed in the order of 94.1 ± 9.1 (peak 4)  $\approx$  99.1 ± 6.8 (peak 3) < 124.7 ± 27.7 (peak 387 388 1)  $\approx$  127.5  $\pm$  31.1 (peak 2): see Table S7. The initial peak, observed at lower reduction temperatures, seems to exhibit the lowest activation energy. However, the corresponding pre-exponential factors of peaks 1 and 389 2 were 3 to 4 orders of magnitude more significant than those of the peaks 3 and 4 values, respectively. The 390 reduction coefficients (in s<sup>-1</sup>) at the corresponding  $T_{max}$  for  $\beta = 10$  K min<sup>-1</sup> are estimated in the order 0.0170 391  $(\text{peak 1}) \approx 0.0163 \text{ (peak 2)} > 0.0097 \text{ (peak 3)} \approx 0.0095 \text{ peak (4)}$ . The reduction coefficient was determined 392 through the application of the activated complex theory (Eyring, 1935), as depicted in Eq. (5). The 393 activation entropy ( $\Delta S^{\neq}$ ) can be computed based on the pre-exponential factor, A, as shown in Eq. (6). 394

395 
$$k = A \cdot \exp\left(-\frac{E}{RT}\right) = \exp\left(-\frac{\Delta G^{\neq}}{RT}\right) = \exp\left(\frac{\Delta S^{\neq}}{R}\right) \cdot \frac{kT}{h} \cdot \exp\left(-\frac{\Delta H^{\neq}}{RT}\right)$$
(5)

$$\Delta S^{\neq} = R \cdot \ln\left(\frac{hA}{kT}\right) \tag{6}$$

 $\Delta S^{\neq}$  signifies the disparity in entropy between the reactants (H<sub>2</sub> and O<sup>\*</sup>) and the activated complex 397 (yielding H<sub>2</sub>O and a reduced surface). According to thermodynamic equation ( $\Delta G^{\neq} = \Delta H^{\neq} - T \cdot \Delta S^{\neq}$ ), the 398 significance of  $\Delta S^{\neq}$  lies in its contribution to the equilibrium shift between the reactants and activated 399 complexes. The surface reduction reaction would likely shift the equilibrium to favorably form the activated 400 complex, as the elevation of  $\Delta S^{\neq}$  results in a reduction of  $\Delta G^{\neq}$  (Vyazovkin, 2021). In addition, the positive 401  $\Delta S^{\neq}$  values indicate increasing entropy as the system approaches the transition state. The above relationship 402 403 signifies a dissociative mechanism, with the activated complex loosely bound and ready for dissociation. Negative values suggest that the entropy decreases during the formation of the transition state. The decrease 404 405 in entropy often corresponds to an associative mechanism in which two reaction partners form a single 406 activated complex (Espenson, 1995).

407

396

Inspection of the  $\Delta S^{\neq}$  values shows that on the CuMn<sub>2</sub>O<sub>4</sub>-O catalyst, a positive value (34.8 ± 3.5 J mol<sup>-</sup> 408 <sup>1</sup> K<sup>-1</sup>) was obtained. The other values for the A-series were all negative. The above observation might be 409 the reason that the CuMn<sub>2</sub>O<sub>4</sub>-O catalyst is the most active, i.e., the activated complex for H<sub>2</sub>O formation 410 411 exhibits loose binding and is prone to leave the surface rather than stay in the case of an associative mechanism. For the R-series, positive  $\Delta S^{\neq}$  values were found for  $Cu_{0.5}Mn_2O_4$ -R (peak 2),  $CuMn_2O_4$ -R 412 (peak 1), and  $Cu_2Mn_2O_4$ -R (peak 1 and 2). The 33.3 ± 4.4 J mol<sup>-1</sup> K<sup>-1</sup> of the CuMn<sub>2</sub>O<sub>4</sub>-R catalyst was similar 413 to that for the CuMn<sub>2</sub>O<sub>4</sub>-O catalyst. However, the available surface oxygen of CuMn<sub>2</sub>O<sub>4</sub>-O was ~2.6 times 414 higher than that of CuMn<sub>2</sub>O<sub>4</sub>-R (Table S1), indicating its superior catalytic activity. 415

#### 417 **3.3. O<sub>2</sub>-TPD** analysis

The O<sub>2</sub>-TPD analysis for all tested catalysts is displayed in Figure S7. For all Cu<sub>0.5</sub>Mn<sub>2</sub>O<sub>4</sub> and CuMn<sub>2</sub>O<sub>4</sub> 418 419 catalysts, 4 peaks were utilized to describe the desorption process of O<sub>2</sub>. A satisfactory fitting of the calculated signal was observed with an  $e_{max}$  of less than 2.79% (Table S8 and S9). For the  $Cu_2Mn_2O_4$  catalysts, 5 peaks 420 (with all significant parameters) are used to describe the experimental data with a  $e_{max}$  of 4.93% (observed 421 over Cu<sub>2</sub>Mn<sub>2</sub>O<sub>4</sub>-O catalyst as listed in Table S8). The CuMn<sub>2</sub>O<sub>4</sub>-O catalyst displayed the highest O<sub>2</sub> adsorption 422 of  $120.5 \pm 3.4 \text{ mmol}_{O2} \text{ kg}_{cat}^{-1}$  of all A-series catalysts. The desorption coefficient values at 90°C (temperature 423 of 90%  $X_{FA}$ ) for the catalysts  $Cu_{x}Mn_{2}O_{4}-O$ , x = 0.5, 1, and 2 were derived as 0.0164, 0.0075, and 0.0062 s<sup>-1</sup>, 424 425 respectively. Because the O2 adsorbate concentration ratio between CuMn2O4-O and Cu0.5Mn2O4-O (or Cu<sub>2</sub>Mn<sub>2</sub>O<sub>4</sub>-O) was ~2.9, the superior activity of the CuMn<sub>2</sub>O<sub>4</sub>-O was once more demonstrated using the TPD 426 427 experiments.

Cu<sub>0.5</sub>Mn<sub>2</sub>O<sub>4</sub>-R and CuMn<sub>2</sub>O<sub>4</sub>-R catalysts exhibited similar results in signal contribution, activation 428 429 energy values, and pre-exponential factors for O<sub>2</sub> desorption (Table S9). For example, the four peak 430 contribution signal values for Cu<sub>0.5</sub>Mn<sub>2</sub>O<sub>4</sub>-R were 9.8, 10.4, 38.4, and 41.1%, respectively. For the CuMn<sub>2</sub>O<sub>4</sub>-R catalyst, the four peak contribution signal values were 7.9, 11.2, 40.4, and 40.5%, respectively. The primary 431 difference was in the  $O_2$  adsorbate concentrations with  $105.4 \pm 3.0$  and  $73.8 \pm 2.4$  mmol<sub>O2</sub> kg<sub>cat</sub><sup>-1</sup>, respectively. 432 Catalyst  $Cu_2Mn_2O_4$ -R shows a lower adsorbate concentration of  $48.7 \pm 1.6 \text{ mmol}_{O2} \text{ kg}_{cat}^{-1}$ , while peaks 4 and 433 434 5 amount to 59.4 % of the total signal. The peak with the highest temperature, representing the most 435 challenging adsorbates to remove through desorption, contributed to ~ 41% of the total signal for  $Cu_{0.5}Mn_2O_4$ -R and CuMn<sub>2</sub>O<sub>4</sub>-R catalysts. The above observation suggests that under the inert conditions of O<sub>2</sub>-TPD, bulk 436 oxygen (rather than O<sub>2</sub> surface adsorbates) escapes to corroborate the earlier conclusions. 437

#### 439 **3.4.** Catalytic FA removal performance

As shown in Fig. 3a, the catalytic efficiency of the studied catalysts against FA (per their light-off 440 curves) decreased in the following order:  $CuMn_2O_4-O > CuMn_2O_4-R > Cu_{0.5}Mn_2O_4-O > Cu_2Mn_2O_4-O >$ 441  $Cu_{0.5}Mn_2O_4$ -R >  $Cu_2Mn_2O_4$ -R. The T<sub>90</sub> (temperature at 90% X<sub>FA</sub>) values for 50 ppm FA increased as follows: 442  $CuMn_2O_4-O$  (85°C) <  $CuMn_2O_4-R$  (93°C) <  $Cu_{0.5}Mn_2O_4-O$  (100°C) <  $Cu_2Mn_2O_4-O$  (102°C) < 443  $Cu_{0.5}Mn_2O_4$ -R (103°C) <  $Cu_2Mn_2O_4$ -R (108°C) (Table 3). The above findings indicate consistently that the 444 FA removal performance should increase with the corresponding rise in the Cu content (Cu/Mn ratio from 445 0.5/2 to 1/2). However, a further increase in the Cu content (Cu/Mn ratio: 2/2) lowered the FA removal 446 performance due to the agglomeration of catalyst particles. Also, the oxidized catalysts outperformed their 447 reduced counterparts. These observations might be attributed to the high content of oxidized metal species 448 (e.g.,  $Cu^{2+}$ ) and  $O_A$  (see Section 3.1). As such, the highest catalytic performance for the CuMn<sub>2</sub>O<sub>4</sub>-O, 449 450 followed by CuMn<sub>2</sub>O<sub>4</sub>-R, was observed for FA oxidative removal. Furthermore, the r value at the maximal removal efficiency of prepared catalysts were compared to assess the catalytic performance of CuMn<sub>2</sub>O<sub>4</sub>-451 A in relation to other catalyst forms (Table 3). Accordingly, their performances are found in the order of 452 CuMn<sub>2</sub>O<sub>4</sub>-O (4.19E-02 mmol g<sup>-1</sup> h<sup>-1</sup> (X<sub>FA</sub>= 100%)) > CuMn<sub>2</sub>O<sub>4</sub>-R (3.65E-02 mmol g<sup>-1</sup> h<sup>-1</sup> (X<sub>FA</sub>= 87%)) > 453  $Cu_{0.5}Mn_2O_4-O(2.77E-02 \text{ mmol } g^{-1} h^{-1}(X_{FA}=66\%)) > Cu_2Mn_2O_4-O(2.43E-02 \text{ mmol } g^{-1} h^{-1}(X_{FA}=58\%)) > Cu_2Mn_2O_4-O(2.43E-02 \text{ mmol } g^{-1} h^{-1}(X_{FA}=58$ 454  $Cu_{0.5}Mn_2O_4-R$  (2.39E-02 mmol g<sup>-1</sup> h<sup>-1</sup> (X<sub>FA</sub>= 57%)) >  $Cu_2Mn_2O_4-R$  (1.93E-02 mmol g<sup>-1</sup> h<sup>-1</sup> (X<sub>FA</sub>= 46%)). 455 456 The best-performing catalyst, CuMn<sub>2</sub>O<sub>4</sub>-O, was thus chosen to study the impact of process variables on FA catalytic removal efficiency in subsequent experiments. 457

458 Firstly, the effects of the catalyst mass on the FA removal performance were studied using CuMn<sub>2</sub>O<sub>4</sub>-

459 O at 90°C. Accordingly, the X<sub>FA</sub> decreased with reduced  $m_{cat}$  in the order of 120 mg (100%) > 60 mg (32%) >

460 30 mg (15%) (Fig. 3b). The FA removal performance is reduced at low  $m_{cat}$  due to a decrease in the number

461 of active surface sites (Vikrant et al., 2022b; Vikrant et al., 2023). As displayed in Fig. 3c, the X<sub>FA</sub> 462 performance of CuMn<sub>2</sub>O<sub>4</sub>-O at 90°C, when measured across increasing FA concentrations (50 to 500 ppm), 463 exhibited a declining trend: 100% (50 ppm) > 43% (250 ppm) > 29% (500 ppm). The active surface sites 464 might likely be saturated at increased FA concentration to decrease the X<sub>FA</sub> (Etim et al., 2019).

Moreover, when the feed flow rate increased from 50 ml min<sup>-1</sup> (gas hourly space velocity (GHSV): 465 3,979 h<sup>-1</sup>) to 250 ml min<sup>-1</sup> (GHSV: 19,895 h<sup>-1</sup>), the efficiency of FA removal exhibited a decrease for 466 CuMn<sub>2</sub>O<sub>4</sub>-A catalyst. The X<sub>FA</sub> at 90°C decreased in the following order: 50 ml min<sup>-1</sup> (100%) > 100 ml min<sup>-1</sup> 467  $^{1}$  (61%) > 250 ml min<sup>-1</sup> (32%) (Fig. 3d). Decreasing the contact time between FA molecules and catalyst in 468 469 the reactor at elevated flow rates should have lowered X<sub>FA</sub> (Etim et al., 2019). The increase in RH level caused the catalytic efficiency ( $X_{FA}$  (at 90°C)) of CuMn<sub>2</sub>O<sub>4</sub>-O to decrease in the order of 100% (RH0%) > 470 65% (RH 30%) () > 61% (RH60%) > 51% (RH90%) (Fig. 3e). The anticipated decrease in FA removal 471 performance in the presence of moisture was due to the competition between FA and H<sub>2</sub>O molecules for 472 the same active surface sites (Etim et al., 2019; Vikrant et al., 2022b). The durability of the catalyst was 473 studied by a conducting time-on-stream (TOS) test at optimal temperature (90°C) and RT, respectively (Fig. 474 3f and Fig. S8). The steady-state RT  $X_{FA}$  for CuMn<sub>2</sub>O<sub>4</sub>-O was maintained at ~ 25% with  $Y_{CO2}$  of ~ 10% for 475 476 at least 240 min (4 h) (Fig. S8). In contrast, stable maintenance of 100% X<sub>FA</sub> to CO<sub>2</sub> was obtained for at least 12 h TOS at 90°C (Fig. 3f). Such observations indicate that higher temperatures were favorable for 477 the catalytic oxidation of FA. Moreover, no significant deactivation was observed in the TOS experiments 478 479 (Fig. 3f and Fig. S8). These findings may thus indicate the high durability of CuMn<sub>2</sub>O<sub>4</sub>-O for the practical air purification applications. 480

#### 482 **3.5. FA oxidation pathway and mechanism**

#### 483 3.5.1. In-situ DRIFTS

In-situ DRIFTS analysis was conducted in the presence (Fig. 4) and absence (Fig. S9) of O<sub>2</sub> to assess 484 the FA oxidation pathway for CuMn<sub>2</sub>O<sub>4</sub>-O, the best-performing catalyst. In the presence of O<sub>2</sub>, the 485 following species were identified on the CuMn<sub>2</sub>O<sub>4</sub>-O surface through the FA oxidation reaction (Fig. 4): (i) 486 molecularly adsorbed FA (954 cm<sup>-1</sup>), (ii) dioxymethylene (DOM:  $\delta$ (CH<sub>2</sub>)/ $\nu$ (CO) (1126 cm<sup>-1</sup>/ 1442 cm<sup>-1</sup>) 487 (Fig. S10a)), (iii) formate (HCOO<sup>-</sup>:  $v_s(OCO)/v_{as}(OCO)$  (1354 and 1582 cm<sup>-1</sup>) and v(CH) (2867 and 2933 488 cm<sup>-1</sup>) (Fig. S10b)), (iv) CO (1879-2028 cm<sup>-1</sup>), (v) surface hydroxyl (OH) and H<sub>2</sub>O (3493-3973 cm<sup>-1</sup>), and 489 (vi) CO<sub>2</sub> (2336 cm<sup>-1</sup>) (Chen et al., 2020; Liu et al., 2018; Vikrant et al., 2022a). Accordingly, the initial 490 adsorption of FA molecules occurred on the active surface sites and then reacted with activated surface 491 oxygen molecules ( $O^*$ ) to produce  $CO_2$  and  $H_2O$  as the final product through DOM,  $HCOO^-$ , and CO492 intermediates. The intensity of the CO<sub>2</sub> band at 2336 cm<sup>-1</sup> decreased slightly with time, likely due to its 493 desorption from the catalyst surface. Interestingly, identical reaction intermediates mentioned earlier were 494 also recorded in the *in-situ* DRIFTS spectrum obtained under the O<sub>2</sub> deficient condition (N<sub>2</sub> environment) 495 (Fig. S8). These observations suggest that surface O\* should be the primary oxidant in the FA catalytic 496 oxidation process on the surface of CuMn<sub>2</sub>O<sub>4</sub>-O (Vikrant et al., 2023). 497

The adsorbed FA molecules react with O\* on the catalyst surface to form DOM species (Sun et al., 2018). The DOM species combine with O\* for the formation of HCOO<sup>-</sup> (Chen et al., 2020). Then, HCOO<sup>-</sup> species decompose into H<sub>2</sub>O and CO molecules. Subsequently, the CO species react with O\* to form CO<sub>2</sub> (Vikrant et al., 2022a; Zhang et al., 2006). In addition, HCOO<sup>-</sup> could also be converted directly into CO<sub>2</sub> and H<sub>2</sub>O by reacting with the surface OH groups (Bai and Li, 2014; Li et al., 2018). The negative absorbance bands for the surface OH species indicate consumption during the catalytic oxidation of FA to support the

direct dissociation of the HCOO<sup>-</sup> species. The H<sub>2</sub>O produced from FA oxidation could also supply the 504 surface OH groups to sustain the HCOO<sup>-</sup> dissociation pathway. The absence of adsorbed H<sub>2</sub>O peak was 505 506 attributed to its rapid conversion into surface OH (Fig. 4 and Fig. S9) (Vikrant et al., 2022b). In contrast, the H<sub>2</sub>O supplied by the moisture can lower the overall FA removal performance of CuMn<sub>2</sub>O<sub>4</sub>-O (see 507 Section 3.4) by competing for the active surface sites. The O\* consumed for FA oxidation may form OVs, 508 while being replenished through  $O_2$  dissociation (Liu et al., 2016). It can also be inferred that  $O_L$  and  $O_A$ 509 species in the CuMn<sub>2</sub>O<sub>4</sub>-O could exist in the active state (O\*) to induce the FA oxidation process as FA 510 oxidation can proceed in the absence of O<sub>2</sub>. Interestingly, the peaks of molecularly adsorbed FA and HCOO<sup>-</sup> 511 at band of 954 and 1354 or 1582 cm<sup>-1</sup> in the air atmosphere were weaker than that of in the N<sub>2</sub> environment 512 (Fig. 4 and Fig. S9). This observation may imply the less accumulation of FA and HCOO<sup>-</sup> species over the 513 surface catalysts in the air environment compared to that in the N<sub>2</sub> environment (Zhu et al., 2017). Also, 514 this indicated these species may transform or desorb faster at the former condition (e.g., air environment) 515 (Zhu et al., 2017). FA oxidation without air (e.g., N<sub>2</sub> environment) cannot be maintained for extended 516 periods as the replenishment of OVs through O\* consumption is confined (Vikrant et al., 2022a). 517

518

# 519 **3.5.2. DFT simulation**

The FA oxidation pathways over the CuMn<sub>2</sub>O<sub>4</sub> substrate were studied with the aid of a series of first principle calculations. A slab of 224 atoms constructed from the  $2\times2\times2$  supercell was used to assess the FA oxidation pathway over the CuMn<sub>2</sub>O<sub>4</sub> substrate (Fig. S11). At the first step of the simulation, three initial configurations of FA and O<sub>2</sub> on the surface of the substrate were checked. The first configuration corresponded with the physical adsorption of FA and O<sub>2</sub> on manganese and Cu, respectively (Fig. 5 (a)). The second configuration involved the adsorption of both molecules on the nearest manganese atoms on the substrate surface (Fig. 5 (f)). The third configuration corresponded with the physical adsorption of FA and O<sub>2</sub> on Cu and manganese, respectively (Fig. 5). The third configuration was less favorable (about 20 kJ mol<sup>-1</sup>) than the former. The calculated free energies of adsorption indicated stable adsorption at RT. Further, temperature increases turned adsorption from stable to metastable due to increasing contribution from the entropy. In the case of the third configuration, adsorption turned from metastable to unstable even at 50°C.

The subsequent stage of the catalytic oxidation process for FA involved the transition of a hydrogen 532 atom from FA to O<sub>2</sub> with the formation of —OCH and —OOH groups on the surface (Fig. 5 (b) and (g)). 533 Note that transforming O<sub>2</sub> to —OOH groups excludes energetically unfavorable activation of O<sub>2</sub>. The above 534 step was endothermic for both the studied pathways (+200.1 and +128.0 kJ mol<sup>-1</sup> for the first and second 535 configurations, respectively). However, the above-described second pathway required almost two times 536 less energy than the first pathway (128 versus 200 kJ mol<sup>-1</sup>). The second step of the catalytic reaction was 537 OH group migration from —OOH to the —OCH group with the formation of the —OCHOH group on the 538 surface (Fig. 5 (c) and (h)). The third step was hydrogen migration from the --OCHOH group with the 539 formation of OH and —OCHO groups on the surface (Fig. 5 (d) and (i)). The final step of the reaction was 540 541 the hydrogen transfer from —OCHO to the OH group, with the formation of H<sub>2</sub>O and CO<sub>2</sub> molecules physically adsorbed on the surface (Fig. 5 (e) and (j)). For both pathways, the second and subsequent steps 542 were exothermic. Note that the energy magnitudes of some steps in each pathway overcome the energy 543 544 expenditure magnitude for the first step. Therefore, the conversion of the first FA molecule will supply the energy needed to convert an increasing number of the following FA molecules. 545

546 The last step of the modeling was the calculation of the energies required for desorption. For the 547 configuration shown in Fig. 5 (e), the Gibbs free energy of desorption was -2.9 kJ mol<sup>-1</sup> at RT. For another 548 configuration (Fig. 5 (i)), desorption of the molecules from the surface at RT was an endothermic process with an energy cost of 23.1 kJ mol<sup>-1</sup>. Increasing the temperature enhanced the contribution from the entropy, 549 leading to a decrease in the energy cost of the desorption. Note that the energy cost of removing the reaction 550 products, including H<sub>2</sub>O, agrees with the experimentally observed activity decay at lower temperatures with 551 increasing moisture. Thus, the calculations demonstrate two possible pathways for the oxidation of FA to 552 CO<sub>2</sub>. The most efficient pathway shown in Figs. 5 (f)-(i) involves only the manganese atoms on the surface. 553 The above result explains the experimental data wherein the FA oxidation activity insignificantly depends 554 on the Cu content. The calculated energy cost of the first step of the reaction agreed with the significant 555 increment in the FA oxidation activity with rising temperature, as observed experimentally. 556

557

#### 558 **3.6. FA oxidation performance comparison**

To gain more insights into the viability of our catalytic system, the catalytic oxidation performance of 559 the CuMn<sub>2</sub>O<sub>4</sub> catalysts against FA was assessed in comparison to other catalysts reported in the literature 560 in terms of the r value at 10% X<sub>FA</sub> and 90°C (Table 4). The use of r for such evaluation has been 561 recommended as its derivation involves the incorporation of the key process variables and parameters (e.g., 562 V<sub>FA</sub>, m<sub>cat</sub>, and FA concentration) into a single quantitative value (Guo et al., 2021; Vikrant et al., 2021). As 563 564 summarized in Table 4, the Ag-cerium(IV) oxide (CeO<sub>2</sub>) was found as the best performer when assessed in terms of the reaction kinetic rate (r (at 10%  $X_{FA}$ ) = 3.66E-01 mmol g<sup>-1</sup> h<sup>-1</sup> at 50°C) followed by the three-565 dimensional (3D)-manganese oxide (MnO<sub>2</sub>) (4.39E-02 mmol g<sup>-1</sup> h<sup>-1</sup> at 60°C), two-dimensional (2D)-566 cobalt(II,III) oxide (Co<sub>3</sub>O<sub>4</sub>) (3.92E-02 mmol g<sup>-1</sup> h<sup>-1</sup> at 100°C), β-MnO<sub>2</sub> (3.67E-02 mmol g<sup>-1</sup> h<sup>-1</sup> at 125°C), 567 and nano-cobalt(II,III) oxide (Co<sub>3</sub>O<sub>4</sub>) (3.19E-02 mmol g<sup>-1</sup> h<sup>-1</sup> at 185°C) (Bai et al., 2013; Bai et al., 2016b; 568 Ma et al., 2014). The superior performance of Ag-CeO<sub>2</sub> should be attributed to the abundance of surface 569

570 O<sub>A</sub> species and the interaction between Ag and CeO<sub>2</sub> (Ma et al., 2014).

The performance comparison was further conducted in terms of their r value at 100% X<sub>FA</sub> at 90°C as 571 it is difficult to estimate the r value at 10% X<sub>FA</sub> from most of the reported catalytic systems. (Note that the 572 r values derived at  $X_{FA} > 20\%$  may overestimate the actual performance (Onrubia-Calvo et al., 2022).) 573 According to this expanded performance comparison, the top five thermocatalysts (i.e., in terms of the r 574 value at 100% X<sub>FA</sub> at 90°C) for the FA oxidative removal are recognized as Ag-cerium(IV) oxide (CeO<sub>2</sub>) 575  $(1.50 \text{ mmol } g^{-1} h^{-1}) > \text{Ag-0.9\%-potassium (K)/MnO}_2 (3.62\text{E-01 mmol } g^{-1} h^{-1}) > \text{three-dimensional (3D)-}$ 576 manganese oxide (MnO<sub>2</sub>) (1.53E-01 mmol  $g^{-1} h^{-1}$ ) > Ag-1.5%-MnO<sub>2</sub>-Eggshell (8.05E-02 mmol  $g^{-1} h^{-1}$ ) > 577 CuMn<sub>2</sub>O<sub>4</sub>-O (4.19E-02 mmol g<sup>-1</sup> h<sup>-1</sup>)(Bai et al., 2016b; Lu et al., 2018; Ma et al., 2014; Vikrant et al., 578 2022b). 579

The superior performance of Ag-CeO<sub>2</sub> was attributed to the abundance of surface O<sub>A</sub> species and the 580 Ag-CeO<sub>2</sub> synergy (Ma et al., 2014). Despite the excellent FA oxidation performance of all the supported 581 Ag catalysts, their practical application is largely restricted due to the high cost of the noble metal used (Lu 582 et al., 2018; Ma et al., 2014; Vikrant et al., 2022b). Moreover, according to a survey of data provided in 583 Table 4, other catalysts (such as  $Mn_{0.5}Ce_{0.5}O_2$  (r: 1.33E-02 mmol g<sup>-1</sup> h<sup>-1</sup>), CeO<sub>2</sub> (r: 4.02E-03 mmol g<sup>-1</sup> h<sup>-1</sup>), 584 and  $\beta$ -MnO<sub>2</sub> (r: 4.02E-03 mmol g<sup>-1</sup> h<sup>-1</sup>)) show relatively inferior FA oxidation performances than CuMn<sub>2</sub>O<sub>4</sub>-585 O (r: 4.19E-02 mmol g<sup>-1</sup> h<sup>-1</sup>) (Bai et al., 2016b; Huang et al., 2016; Li et al., 2014). As such, the CuMn<sub>2</sub>O<sub>4</sub>-586 A catalyst used in the present work is found as a better alternative in terms of cost economics and good 587 588 catalytic performance for practical low-temperature FA oxidation applications.

589

#### 590 4. Conclusions

591 In the present research, the oxidative removal of FA at low temperatures in the air was studied by

| 592 | CuMn <sub>2</sub> O <sub>4</sub> catalysts. $X_{FA}$ at 90°C at a GHSV of 3,979 $h^{-1}$ (50 ppm FA) for the tested catalysts decreased in                                                                                    |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 593 | the following order: CuMn <sub>2</sub> O <sub>4</sub> -O (100%) > CuMn <sub>2</sub> O <sub>4</sub> -R (87%) > Cu <sub>0.5</sub> Mn <sub>2</sub> O <sub>4</sub> -O (66%) > Cu <sub>0.5</sub> Mn <sub>2</sub> O <sub>4</sub> -R |
| 594 | $(57\%) > Cu_2Mn_2O_4-O$ $(53\%) > Cu_2Mn_2O_4-R$ (46%). A moderate Cu/Mn ratio (1/2) and air pretreatment                                                                                                                    |
| 595 | significantly enhanced the catalytic performance of the catalysts. As such, CuMn <sub>2</sub> O <sub>4</sub> -O was identified as                                                                                             |
| 596 | the best-performing catalyst due to large amounts of $O_A$ and oxidized metal species (e.g., $Cu^{2+}$ and $Mn^{4+}$ )                                                                                                        |
| 597 | on its surface. CuMn <sub>2</sub> O <sub>4</sub> -O was also used to assess its FA oxidation performance as a function of various                                                                                             |
| 598 | process variables, such as FA concentration, m <sub>cat</sub> , flow rate, and RH level. <i>In-situ</i> DRIFTS indicated DOM,                                                                                                 |
| 599 | HCOO <sup>-</sup> , and CO as the primary FA oxidation reaction intermediates. DFT simulations and calculations were                                                                                                          |
| 600 | in line with experimental observations. According to the performance comparison, the CuMn <sub>2</sub> O <sub>4</sub> -O can be                                                                                               |
| 601 | regarded as a good alternative for low-temperature oxidative removal of FA due to its cost economics (no                                                                                                                      |
| 602 | noble metals) and good catalytic activity (r=4.19E-02 mmol g <sup>-1</sup> h <sup>-1</sup> ). The present work is expected to provide                                                                                         |
| 603 | the necessary insight into applying CuMn <sub>2</sub> O <sub>4</sub> transition metal oxide catalysts for the low-temperature                                                                                                 |
| 604 | oxidative removal of FA in the air. Future studies should focus upon the design of high-performance                                                                                                                           |
| 605 | transition metal oxide catalysts (e.g., doping ultra-low noble metal content) for the RT oxidative removal                                                                                                                    |
| 606 | of FA without the requirement of external energy (e.g., heat).                                                                                                                                                                |

# 613 Acknowledgments

614 This work was supported by a grant from the National Research Foundation of Korea (NRF) funded

| 615 | by the Ministry of Science and ICT (MSIT) of the Korean government (Grant No: 2021R1A3B1068304).    |
|-----|-----------------------------------------------------------------------------------------------------|
| 616 | P.M.H. would like to thank the Research and Development Program of Ghent University Global Campus   |
| 617 | (GUGC), Korea. This research was also supported by Korea Basic Science Institute (National Research |
| 618 | Facilities and Equipment Center) grant funded by the Ministry of Education (2022R1A6C101A779).      |
| 619 |                                                                                                     |
| 620 |                                                                                                     |

#### 623 References

- Bai, B., et al., 2013. Comparison of the performance for oxidation of formaldehyde on nano-Co3O4, 2D-Co3O4, and 3D-
- 625 Co3O4 catalysts. Applied Catalysis B: Environmental. 142, 677-683.
- Bai, B., Li, J., 2014. Positive effects of K<sup>+</sup> ions on three-dimensional mesoporous Ag/Co<sub>3</sub>O<sub>4</sub> catalyst for HCHO oxidation.
- 627 Acs Catalysis. 4, 2753-2762.
- Bai, B., et al., 2016a. Progress in research on catalysts for catalytic oxidation of formaldehyde. Chinese Journal of
  Catalysis. 37, 102-122.
- Bai, B., et al., 2016b. Synthesis of three-dimensional ordered mesoporous MnO2 and its catalytic performance in
- 631 formaldehyde oxidation. Chinese Journal of Catalysis. 37, 27-31.
- Ban, J., et al., 2022. Ambient formaldehyde and mortality: A time series analysis in China. Science Advances. 8,
  eabm4097.
- 634 Chen, X., et al., 2020. Identification of a facile pathway for dioxymethylene conversion to formate catalyzed by surface
- hydroxyl on TiO<sub>2</sub>-based catalyst. ACS Catalysis. 10, 9706-9715.
- 636 Cheng, Q., et al., 2022. A novel Cu<sub>1.5</sub>Mn<sub>1.5</sub>O<sub>4</sub> photothermal catalyst with boosted surface lattice oxygen activation for
- 637 efficiently photothermal mineralization of toluene. Nano Research. 1-9.
- Dion, M., et al., 2004. Van der Waals density functional for general geometries. Physical review letters. 92, 246401.
- 639 Espenson, J. H., 1995. Chemical kinetics and reaction mechanisms. Citeseer.
- Etim, U. J., et al., 2019. 3. Functional catalysts for catalytic removal of formaldehyde from air. Environmental Functional
- 641 Nanomaterials, De Gruyter2020. 89-126.
- 642 Eyring, H., 1935. The activated complex in chemical reactions. The Journal of Chemical Physics. 3, 107-115.
- 643 Gao, Y., et al., 2021. CuMn2O4 spinel nanoflakes for amperometric detection of hydrogen peroxide. ACS Applied Nano
- 644 Materials. 4, 6832-6843.

- Guo, J., et al., 2019. Review on noble metal-based catalysts for formaldehyde oxidation at room temperature. Applied
  Surface Science. 475, 237-255.
- 647 Guo, Y., et al., 2021. Recent advances in VOC elimination by catalytic oxidation technology onto various nanoparticles 648 catalysts: a critical review. Applied Catalysis B: Environmental. 281, 119447.
- Huang, Y., et al., 2016. Bifunctional catalytic material: an ultrastable and high-performance surface defect CeO<sub>2</sub>
- 650 nanosheets for formaldehyde thermal oxidation and photocatalytic oxidation. Applied Catalysis B: Environmental.
  651 181, 779-787.
- Jiménez-Gómez, C., et al., 2021. Gas phase hydrogenation of furfural to obtain valuable products using commercial Cr-
- 653 free catalysts as an environmentally sustainable alternative to copper chromite. Journal of Environmental
  654 Chemical Engineering. 9, 105468.
- Lee, Y.-J., et al., 2021. Thermocatalytic oxidation of a three-component mixture of volatile organic compounds by a
- titanium dioxide-supported platinum catalyst. Journal of Cleaner Production. 325, 129279.
- Li, J. W., et al., 2014. Removal of formaldehyde over Mn<sub>x</sub>Ce<sub>1- x</sub>O<sub>2</sub> catalysts: Thermal catalytic oxidation versus ozone
- 658 catalytic oxidation. Journal of Environmental Sciences. 26, 2546-2553.
- Li, L., et al., 2015a. Supercapacitor electrodes based on hierarchical mesoporous MnOx/nitrided TiO2 nanorod arrays
  on carbon fiber paper. Advanced Materials Interfaces. 2, 1400446.
- Li, R., et al., 2020. A Review of Co3O4-based Catalysts for Formaldehyde Oxidation at Low Temperature: Effect
   Parameters and Reaction Mechanism. Aerosol Science and Engineering. 4, 147-168.
- Li, W., et al., 2015b. Facile synthesis of porous Mn<sub>2</sub>O<sub>3</sub> nanocubics for high-rate supercapacitors. Electrochimica Acta.
  157, 108-114.
- 665 Li, Y., et al., 2018. Sodium enhances Ir/TiO<sub>2</sub> activity for catalytic oxidation of formaldehyde at ambient temperature. ACS
- 666 Catalysis. 8, 11377-11385.

- 667 Liu, L., et al., 2020. Enhanced catalytic oxidation of chlorobenzene over MnO<sub>2</sub> grafted in situ by rare earth oxide: surface
- doping induces lattice oxygen activation. Inorganic Chemistry. 59, 14407-14414.
- 669 Liu, P., et al., 2016. Effect of Mn substitution on the promoted formaldehyde oxidation over spinel ferrite: Catalyst
- 670 characterization, performance and reaction mechanism. Applied Catalysis B: Environmental. 182, 476-484.
- Liu, P., et al., 2019. The catalytic oxidation of formaldehyde over palygorskite-supported copper and manganese oxides:
- 672 Catalytic deactivation and regeneration. Applied Surface Science. 464, 287-293.
- 673 Liu, P., et al., 2018. Synergetic effect of Cu and Mn oxides supported on palygorskite for the catalytic oxidation of
- 674 formaldehyde: Dispersion, microstructure, and catalytic performance. Applied Clay Science. 161, 265-273.
- 675 Lu, S., et al., 2018. Ag–K/MnO<sub>2</sub> nanorods as highly efficient catalysts for formaldehyde oxidation at low temperature.
- 676 RSC advances. 8, 14221-14228.
- Luengas, A., et al., 2015. A review of indoor air treatment technologies. Reviews in Environmental Science and
  Bio/Technology. 14, 499-522.
- 679 Ma, L., et al., 2014. Ag/CeO<sub>2</sub> nanospheres: Efficient catalysts for formaldehyde oxidation. Applied Catalysis B:
- 680 Environmental. 148, 36-43.
- Nielsen, G. D., et al., 2017. Re-evaluation of the WHO (2010) formaldehyde indoor air quality guideline for cancer risk
  assessment. Archives of toxicology. 91, 35-61.
- Nishikawa, A., et al., 2021. A comprehensive review of mechanistic insights into formaldehyde-induced nasal cavity
- 684 carcinogenicity. Regulatory Toxicology and Pharmacology. 123, 104937.
- 685 Onrubia-Calvo, J. A., et al., 2022. Kinetics, Model Discrimination, and Parameters Estimation of CO<sub>2</sub> Methanation on
- 686 Highly Active Ni/CeO<sub>2</sub> Catalyst. Industrial & Engineering Chemistry Research. 61, 10419-10435.
- 687 Perdew, J. P., et al., 1996. Generalized gradient approximation made simple. Physical review letters. 77, 3865.
- 688 Robert, B., Nallathambi, G., 2021. Indoor formaldehyde removal by catalytic oxidation, adsorption and nanofibrous

- 689 membranes: a review. Environmental Chemistry Letters. 19, 2551-2579.
- Rudd, S., et al., 2022. Surface Doping in Poly (3, 4-ethylenedioxythiophene)-Based Nanoscale Films: Insights for
  Polymer Electronics. ACS Applied Nano Materials. 5, 12143-12153.
- 692 Saravanakumar, B., et al., 2017. Electrochemical properties of rice-like copper manganese oxide (CuMn<sub>2</sub>O<sub>4</sub>)
- 693 nanoparticles for pseudocapacitor applications. Journal of Alloys and Compounds. 723, 115-122.
- 694 Sing, K. S., 1985. Reporting physisorption data for gas/solid systems with special reference to the determination of
- 695 surface area and porosity (Recommendations 1984). Pure and applied chemistry. 57, 603-619.
- 696 Soler, J. M., et al., 2002. The SIESTA method for ab initio order-N materials simulation. Journal of Physics: Condensed
- 697 Matter. 14, 2745.
- Sun, D., et al., 2018. Ultrathin Bi<sub>2</sub>WO<sub>6</sub> nanosheet decorated with Pt nanoparticles for efficient formaldehyde removal at
   room temperature. Applied Surface Science. 441, 429-437.
- 500 Sun, D., et al., 2019. Pt/C@MnO2 composite hierarchical hollow microspheres for catalytic formaldehyde decomposition
- 701 at room temperature. Applied Surface Science. 466, 301-308.
- Thommes, M., et al., 2015. Physisorption of gases, with special reference to the evaluation of surface area and pore
- 503 size distribution (IUPAC Technical Report). Pure and applied chemistry. 87, 1051-1069.
- Troullier, N., Martins, J. L., 1991. Efficient pseudopotentials for plane-wave calculations. Physical review B. 43, 1993.
- Tseng, L.-T., et al., 2015. Magnetic properties in α-MnO<sub>2</sub> doped with alkaline elements. Scientific reports. 5, 1-8.
- Tu, S., et al., 2021. Complete catalytic oxidation of formaldehyde at room temperature on Mn<sub>x</sub>Co<sub>3-x</sub>O<sub>4</sub> catalysts derived
- from metal-organic frameworks. Applied Catalysis A: General. 611, 117975.
- 708 Vellingiri, K., et al., 2020. Advances in thermocatalytic and photocatalytic techniques for the room/low temperature
- 709 oxidative removal of formaldehyde in air. Chemical Engineering Journal. 399, 125759.
- 710 Vetrimani, A., et al., 2022. Effect of green synthesized CuO plate-like nanoparticles in photodegradation and antibacterial

- 711 activities. Physical Chemistry Chemical Physics.
- Vikrant, K., et al., 2019. Adsorption properties of advanced functional materials against gaseous formaldehyde.
  Environmental research. 178, 108672.
- 714 Vikrant, K., et al., 2022a. Deep oxidation of gaseous formaldehyde at room-temperature by a durable catalyst formed
- through the controlled addition of potassium to platinum supported on waste eggshell. Chemical Engineering
  Journal. 428, 131177.
- 717 Vikrant, K., et al., 2022b. Low-temperature oxidative removal of gaseous formaldehyde by an eggshell waste supported
- 718 silver-manganese dioxide bimetallic catalyst with ultralow noble metal content. Journal of Hazardous Materials.
- **434, 128857**.
- Vikrant, K., et al., 2022c. Harnessing Adsorption–Catalysis Synergy: Efficient Oxidative Removal of Gaseous
   Formaldehyde by a Manganese Dioxide/Metal–Organic Framework Nanocomposite at Room Temperature.
   Advanced Functional Materials. 2107922.
- 723 Vikrant, K., et al., 2021. Platinized titanium dioxide (Pt/TiO<sub>2</sub>) as a multi-functional catalyst for thermocatalysis,
- photocatalysis, and photothermal catalysis for removing air pollutants. Applied Materials Today. 23, 100993.
- 725 Vikrant, K., et al., 2023. Two-dimensional titanium carbide (MXene)-supported Pt<sub>3</sub>Ti intermetallic compound catalysts
- for efficient room-temperature oxidative removal of gaseous formaldehyde. Materials Today Nano. 21, 100283.
- 727 Vyazovkin, S., 2021. Determining preexponential factor in model-free kinetic methods: how and why? Molecules. 26,
- 728 3077.
- Wan, C., et al., 2017. A cellulose fibers-supported hierarchical forest-like cuprous oxide/copper array architecture as a
   flexible and free-standing electrode for symmetric supercapacitors. Journal of Materials Chemistry A. 5, 17267 17278.
- Wang, C., et al., 2018a. Synthesis of palygorskite-supported Mn<sub>1-x</sub>Ce<sub>x</sub>O<sub>2</sub> clusters and their performance in catalytic

- 733 oxidation of formaldehyde. Applied Clay Science. 159, 50-59.
- Wang, F., et al., 2022. Copper-manganese oxide for highly selective oxidation of 5-hydroxymethylfurfural to bio monomer 2, 5-furandicarboxylic acid. Biomass Conversion and Biorefinery. 1-12.
- Wang, J., et al., 2018b. Preparation of nanostructured Cu (OH)<sub>2</sub> and CuO electrocatalysts for water oxidation by
- 737 electrophoresis deposition. Journal of Materials Research. 33, 581-589.
- 738 Wang, X., et al., 2017. Structure-Activity Relationships of AMn<sub>2</sub>O<sub>4</sub> (A = Cu and Co) Spinels in Selective Catalytic
- 739 Reduction of NO<sub>x</sub>: Experimental and Theoretical Study. The Journal of Physical Chemistry C. 121, 3339-3349.
- 740 Wang, Y., et al., 2019. Layered copper manganese oxide for the efficient catalytic CO and VOCs oxidation. Chemical
- 741 Engineering Journal. 357, 258-268.
- Wang, Z., et al., 2020. Experimental and DFT studies of the role of H<sub>2</sub>S in Hg<sub>0</sub> removal from syngas over CuMn<sub>2</sub>O<sub>4</sub>
  sorbent. Chemical Engineering Journal. 391, 123616.
- Weina, X., et al., 2017. A novel β-MnO<sub>2</sub> micro/nanorod arrays directly grown on flexible carbon fiber fabric for high-
- 745 performance enzymeless glucose sensing. Electrochimica Acta. 225, 121-128.
- 746 Wu, P., et al., 2021. Recent Progress of Thermocatalytic and Photo/Thermocatalytic Oxidation for VOCs Purification
- 747 over Manganese-based Oxide Catalysts. Environmental Science & Technology. 55, 4268-4286.
- 748 Xu, L., et al., 2019. In situ growth of Cu<sub>2</sub>O/CuO nanosheets on Cu coating carbon cloths as a binder-free electrode for
- asymmetric supercapacitors. Frontiers in chemistry. 7, 420.
- Yang, Y., et al., 2019. Reaction mechanism for NH<sub>3</sub>-SCR of NO<sub>x</sub> over CuMn<sub>2</sub>O<sub>4</sub> catalyst. Chemical Engineering Journal.
  361, 578-587.
- 752 Yi, Y., et al., 2018. The synthetic evaluation of CuO-MnO<sub>x</sub>-modified pinecone biochar for simultaneous removal
- formaldehyde and elemental mercury from simulated flue gas. Environmental Science and Pollution Research.
- 754 25, 4761-4775.

- 755 Yoo, M.-J., et al., 2019. An advanced technique for rapid and accurate monitoring of gaseous formaldehyde using large-
- 756 volume injection interfaced with gas chromatograph/barrier discharge ionization detector (LVI/GC/BID).
- 757 Microchemical Journal. 147, 806-812.
- 758 Zhang, C., et al., 2006. Catalytic performance and mechanism of a Pt/TiO<sub>2</sub> catalyst for the oxidation of formaldehyde at
- room temperature. Applied Catalysis B: Environmental. 65, 37-43.
- Zhang, C., et al., 2021. CuMn<sub>2</sub>O<sub>4</sub> spinel anchored on graphene nanosheets as a novel electrode material for
   supercapacitor. Journal of Energy Storage. 34, 102181.
- 762 Zhang, Y., et al., 2022. Synergically engineering Cu+ and oxygen vacancies in CuMn2O4 catalysts for enhanced toluene
- 763 oxidation performance. Molecular Catalysis. 517, 112043.
- Zhao, L., et al., 2022. Mechanistic insights into benzene oxidation over CuMn2O4 catalyst. Journal of Hazardous
  Materials. 431, 128640.
- 766 Zhao, Q., et al., 2017. Spinels: Controlled Preparation, Oxygen Reduction/Evolution Reaction Application, and Beyond.
- 767 Chemical Reviews. 117, 10121-10211.
- 768 Zhu, L., et al., 2017. Cerium modified birnessite-type MnO2 for gaseous formaldehyde oxidation at low temperature.
- 769 Applied Catalysis B: Environmental. 211, 212-221.
- 770 Zhu, S., et al., 2019. Progress of catalytic oxidation of formaldehyde over manganese oxides. ChemistrySelect. 4, 12085-
- 771 12098.
- 772
- 773
- 774
- 775

#### **Tables and Figures**

| Order | Materials                                      | <b>BET surface area</b> | Actual content (wt. %) <sup>a</sup> |       |       |       |  |
|-------|------------------------------------------------|-------------------------|-------------------------------------|-------|-------|-------|--|
|       |                                                | $(m^2 g^{-1})$          | (cm <sup>3</sup> g <sup>-1</sup> )  | (Å)   | Cu    | Mn    |  |
| 1     | $Cu_{0.5}Mn_2O_4$                              | 16.23                   | 0.026                               | 48.21 | 18.89 | 63.74 |  |
| 2     | CuMn <sub>2</sub> O <sub>4</sub>               | 21.66                   | 0.036                               | 47.11 | 31.42 | 51.50 |  |
| 3     | Cu <sub>2</sub> Mn <sub>2</sub> O <sub>4</sub> | 8.11                    | 0.011                               | 41.97 | 46.12 | 43.58 |  |

 Table 1. Physical characteristics of the analyzed catalysts.

<sup>a</sup> Determined by ICP-OES. 

|   |       |                                                     |                                              | Cu 2 <i>p</i>    |                                       |                                | Mn 2 <i>p</i>    |                                       | O 1s           |                  |                                     |  |
|---|-------|-----------------------------------------------------|----------------------------------------------|------------------|---------------------------------------|--------------------------------|------------------|---------------------------------------|----------------|------------------|-------------------------------------|--|
|   | Order | Material                                            | Species                                      | Peak<br>Position | Cu <sup>2+</sup> content <sup>a</sup> | Species                        | Peak<br>Position | Mn <sup>4+</sup> content <sup>b</sup> | Species        | Peak<br>Position | O <sub>A</sub> content <sup>c</sup> |  |
|   |       |                                                     | (eV)                                         | (%)              | -                                     | (eV)                           | (%)              | -                                     | (eV)           | (%)              |                                     |  |
|   |       |                                                     | $2p_{3/2}{ m Cu^+}$                          | 931.1            |                                       | $2n_{\rm Mn}$ Mn <sup>3+</sup> | 641.7            |                                       | 0.             | 529.8            |                                     |  |
|   | 1     |                                                     | $2p_{3/2} \operatorname{Cu}^{2+}$            | 933.9            | 66.8                                  | <i>2p</i> <sub>3/2</sub> with  | 041.7            | 40.0                                  | OL             | 527.8            | 42.4                                |  |
|   | 1     | Cu <sub>0.51</sub> , 111204-0                       | $2p_{1/2} \mathrm{Cu}^+$                     | 950.9            | 00.0                                  | $2n_{22}$ Mn <sup>4+</sup>     | 643.6            | 10.0                                  | 0.             | 531.0            | 12.1                                |  |
|   |       |                                                     | $2p_{1/2} \operatorname{Cu}^{2+}$            | 953.7            |                                       | 2p3/2 Will                     | 015.0            |                                       | U <sub>A</sub> | 551.0            |                                     |  |
|   |       |                                                     | $2p_{3/2} C^0 \& Cu^+$                       | 932.9            | -                                     | $2n_{2/2}$ Mn <sup>3+</sup>    | 641.4            |                                       | Or             | 530.0            |                                     |  |
|   | 2     | Cu <sub>0.5</sub> Mn <sub>2</sub> O <sub>4</sub> -R | $2p_{3/2} \operatorname{Cu}^{2+}$            | 933.7            | 50.5                                  | -r 5/2                         | • • • • • •      | 31.2                                  | - L            |                  | 41.3                                |  |
|   | _     | • • • • • • • • • • • • • • • • • • •               | $2p_{1/2} C^0 \& Cu^+$                       | 952.7            |                                       | $2p_{3/2}$ Mn <sup>4+</sup>    | 643.8            | -                                     | O <sub>4</sub> | 531.3            |                                     |  |
| _ |       |                                                     | $2p_{1/2} \operatorname{Cu}^{2+}$            | 953.6            |                                       | T 5/2                          |                  |                                       | А              |                  |                                     |  |
|   |       | CuMn <sub>2</sub> O <sub>4</sub> -O                 | $2p_{3/2}$ Cu <sup>+</sup>                   | 931.0            | 72.2                                  | $2p_{3/2}{ m Mn}^{3+}$         | 641.5            |                                       | OL             | 529.8            | 47.2                                |  |
|   | 3     |                                                     | $2p_{3/2}$ Cu <sup>2+</sup>                  | 933.7            |                                       | $2p_{3/2} \mathrm{Mn}^{4+}$    |                  | 52.7                                  |                |                  |                                     |  |
|   |       |                                                     | $2p_{1/2}$ Cu <sup>+</sup>                   | 950.8            |                                       |                                | 643.9            |                                       | O <sub>A</sub> | 531.0            |                                     |  |
|   |       |                                                     | $2p_{1/2}$ Cu <sup>2+</sup>                  | 953.5            |                                       |                                |                  |                                       |                |                  |                                     |  |
|   |       | CuMn <sub>2</sub> O <sub>4</sub> -R                 | $2p_{3/2} C^{*} \& Cu^{*}$                   | 932.7            | 42.8                                  | $2p_{3/2}{ m Mn}^{3+}$         | 641.4            |                                       | OL             | 530.0            |                                     |  |
|   | 4     |                                                     | $2p_{3/2}$ Cu <sup>-</sup>                   | 955.8            |                                       | $2p_{3/2}$ Mn <sup>4+</sup>    |                  | 45.1                                  |                |                  | 44.9                                |  |
|   |       |                                                     | $2p_{1/2} C aCu$                             | 952.0            |                                       |                                | 643.6            |                                       | OA             | 531.2            |                                     |  |
| _ |       |                                                     | $2p_{1/2}$ Cu<br>$2n_{1/2}$ Cu <sup>+</sup>  | 933.7            |                                       |                                |                  |                                       |                |                  |                                     |  |
|   |       |                                                     | $2p_{3/2}$ Cu<br>$2p_{3/2}$ Cu <sup>2+</sup> | 930.9            | 64.2                                  | $2p_{3/2}{ m Mn}^{3+}$         | 641.6            |                                       | OL             | 529.8            |                                     |  |
|   | 5     | Cu <sub>2</sub> Mn <sub>2</sub> O <sub>4</sub> -O   | $2p_{3/2}$ Cu<br>$2n_{1/2}$ Cu <sup>+</sup>  | 950.8            |                                       |                                |                  | 38.1                                  |                |                  | 43.1                                |  |
|   |       |                                                     | $2p_{1/2}$ Cu <sup>2+</sup>                  | 953.4            |                                       | $2p_{3/2}{ m Mn}^{4+}$         | 643.9            |                                       | O <sub>A</sub> | 531.0            |                                     |  |
| _ |       |                                                     | $2p_{1/2} C^0 \& Cu^+$                       | 932.6            |                                       |                                |                  |                                       |                |                  |                                     |  |
|   |       |                                                     | $2p_{3/2} Cu^{2+}$                           | 933.6            | -                                     | $2p_{3/2}{ m Mn}^{3+}$         | 641.4            |                                       | $O_L$          | 529.9            |                                     |  |
|   | 6     | Cu <sub>2</sub> Mn <sub>2</sub> O <sub>4</sub> -R   | $2p_{1/2} C^0 \& Cu^+$                       | 952.5            | 47.9                                  | 4                              |                  | 31.2                                  |                |                  | 40.4                                |  |
|   |       |                                                     | $2p_{1/2} \operatorname{Cu}^{2+}$            | 953.4            | 1                                     | $2p_{3/2}{\rm Mn}^{4+}$        | 643.8            |                                       | O <sub>A</sub> | 531.2            |                                     |  |

**Table 2.** Surface composition of the studied catalysts based on XPS analysis.

804 <sup>a</sup>  $Cu^{2+}$  content was estimated as  $Cu^{2+}/[Cu^{2+}+(Cu^{+} \text{ or } Cu^{0}+Cu^{+})]\times 100\%$ .

805 <sup>b</sup>  $Mn^{4+}$  content was estimated as  $Mn^{4+}/[Mn^{4+} + Mn^{3+}] \times 100\%$ .

806 <sup>c</sup>  $O_A$  content was estimated as  $O_A/[O_A + O_L] \times 100\%$ .

\_

| Order | Catalysts                                                        | T <sub>50</sub> <sup>d</sup> | T90 <sup>d</sup> | Maximum<br>X <sub>FA</sub> (%) at<br>90°C | r (mmol g <sub>cat</sub> <sup>-1</sup><br>h <sup>-1</sup> ) at<br>maximum<br>X <sub>FA</sub> at 90°C |
|-------|------------------------------------------------------------------|------------------------------|------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------|
| 1     | $Cu_{0.5}Mn_2O_4-O^b$                                            | 73                           | 100              | 66                                        | 2.77E-02                                                                                             |
| 2     | Cu <sub>0.5</sub> Mn <sub>2</sub> O <sub>4</sub> -R <sup>c</sup> | 84                           | 103              | 57                                        | 2.39E-02                                                                                             |
| 3     | CuMn <sub>2</sub> O <sub>4</sub> -O                              | 51                           | 85               | 100                                       | 4.19E-02                                                                                             |
| 4     | CuMn <sub>2</sub> O <sub>4</sub> -R                              | 72                           | 93               | 87                                        | 3.65E-02                                                                                             |
| 5     | Cu <sub>2</sub> Mn <sub>2</sub> O <sub>4</sub> -O                | 86                           | 102              | 58                                        | 2.43E-02                                                                                             |
| 6     | Cu <sub>2</sub> Mn <sub>2</sub> O <sub>4</sub> -R                | 91                           | 108              | 46                                        | 1.93E-02                                                                                             |

# **Table 3.** FA oxidation performance of the tested catalysts<sup>a</sup>

822 <sup>a</sup> Reactant composition: FA (50 ppm) + air (balance), flow rate: 50 mL min<sup>-1</sup> (1.40E-09 mol s<sup>-1</sup>), catalyst 823 mass (120 mg), and GHSV (3,979 h<sup>-1</sup>).

- <sup>b</sup> 'O' indicates oxidative pre-treatment using air gas at 300°C for 3 h (50 mL min<sup>-1</sup>).
- 825 ° 'R' indicates reduction pre-treatment using H<sub>2</sub> (10%) + N<sub>2</sub> at 300°C for 3 h (50 mL min<sup>-1</sup>).
- $^{d}$  T<sub>50</sub> and T<sub>90</sub> are the reaction temperatures corresponding to 50% and 90% X<sub>FA</sub>, respectively.

- - -

# **Table 4.** Performance comparison between analyzed CuMn<sub>2</sub>O<sub>4</sub> catalysts and other common catalysts for FA catalytic oxidation.

| Ord<br>er | Catalyst                                                              | Catalyst<br>activatio<br>n | m <sub>ca</sub><br>t<br>(m<br>g) | Reactant<br>mixture                                                                          | FA<br>concentra<br>tion<br>(ppm) | Flo<br>w<br>rat<br>e<br>(m<br>L<br>mi<br>n <sup>-1</sup> ) | Flo<br>w<br>rate<br>(mol<br>s <sup>-1</sup> )<br>at<br>T <sub>10</sub> | Flow rate<br>(mol s <sup>-1</sup> ) at<br>maximum<br>X <sub>FA</sub> at<br>90 °C | Spac<br>e<br>veloci<br>ty                                                           | T50 <sup>c</sup> (°C) | T90<br>c<br>(°<br>C) | r<br>(mm<br>ol<br>g <sub>cat<sup>-1</sup></sub><br>h <sup>-1</sup> ) <sup>a</sup><br>at<br>10%<br>XFA | T10<br>(℃<br>) | Maxim<br>um<br>X <sub>FA</sub><br>(%) at<br>90°C | r<br>(mmol<br>g <sub>cat</sub> <sup>-1</sup> h <sup>-</sup><br><sup>1</sup> ) <sup>a</sup> at<br>maxim<br>um X <sub>FA</sub><br>at 90°C | Reference               |
|-----------|-----------------------------------------------------------------------|----------------------------|----------------------------------|----------------------------------------------------------------------------------------------|----------------------------------|------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------|----------------------|-------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
|           |                                                                       |                            |                                  | 400 ppm                                                                                      |                                  |                                                            | 2.04                                                                   |                                                                                  | 30,00                                                                               |                       | 16                   | 2 (7                                                                                                  |                |                                                  | 4.025                                                                                                                                   |                         |
| 1         | β-MnO <sub>2</sub>                                                    | NA                         | 200                              | PA+20%<br>$O_2+N_2$                                                                          | 400                              | 100                                                        | 2.04<br>E-08                                                           | 2.24E-08                                                                         | 0  mL.<br>g <sup>-1</sup> h <sup>-1</sup>                                           | 146                   | 16<br>5              | 3.67<br>E-02                                                                                          | 125            | 1                                                | 4.02E-<br>03                                                                                                                            | (Bai et al., 2016b)     |
|           | F 2                                                                   |                            |                                  | 400 ppm                                                                                      |                                  |                                                            | - • •                                                                  |                                                                                  | 30,00                                                                               |                       | -                    |                                                                                                       |                | _                                                |                                                                                                                                         |                         |
|           |                                                                       |                            |                                  | FA +                                                                                         |                                  |                                                            | 1.77                                                                   |                                                                                  | 0 mL.                                                                               |                       | 22                   | 3.19                                                                                                  |                |                                                  | 4.02E-                                                                                                                                  | (Bai et al.,            |
| 2         | Nano Co <sub>3</sub> O <sub>4</sub>                                   | NA                         | 200                              | 20%O <sub>2</sub> +N <sub>2</sub>                                                            | 400                              | 100                                                        | E-08                                                                   | 2.24E-08                                                                         | g <sup>-1</sup> h <sup>-1</sup>                                                     | 210                   | 5                    | E-02                                                                                                  | 185            | 1                                                | 03                                                                                                                                      | 2013)                   |
| 3         | CeO <sub>2</sub>                                                      | NA                         | 200                              | 50 ppm FA<br>+ 25%O <sub>2</sub> +<br>N <sub>2</sub>                                         | 50                               | 100                                                        | 2.72<br>E-09                                                           | 2.80E-09                                                                         | 30,00<br>0 mL.<br>g <sup>-1</sup> h <sup>-1</sup>                                   | 170                   | 25<br>0              | 4.90<br>E-03                                                                                          | 100            | 8                                                | 4.02E-<br>03                                                                                                                            | (Huang et al.,<br>2016) |
|           |                                                                       |                            |                                  | 400 ppm                                                                                      |                                  |                                                            |                                                                        |                                                                                  | 30,00                                                                               |                       |                      |                                                                                                       |                |                                                  |                                                                                                                                         |                         |
|           |                                                                       |                            | 200                              | FA+20%                                                                                       | 100                              | 100                                                        | 2.44                                                                   | 2.245.00                                                                         | 0 mL.                                                                               | 0.4                   | 11                   | 4.39                                                                                                  | 60             | 20                                               | 1.53E-                                                                                                                                  | (Bai et al.,            |
| 4         | 3D-MnO <sub>2</sub>                                                   | NA                         | 200                              | $O_2 + N_2$                                                                                  | 400                              | 100                                                        | E-08                                                                   | 2.24E-08                                                                         | $g^{-1} h^{-1}$                                                                     | 94                    | 0                    | E-02                                                                                                  | 60             | 38                                               | 01                                                                                                                                      | 2016b)                  |
| 5         | 2D-Co <sub>3</sub> O <sub>4</sub>                                     | NA                         | 200                              | $\begin{array}{r} 400 \text{ ppm} \\ \text{FA} + \\ 20\%\text{O}_2 + \text{N}_2 \end{array}$ | 400                              | 100                                                        | 2.18<br>E-08                                                           | 2.24E-08                                                                         | $\begin{array}{c} 30,00\\ 0 \text{ mL.}\\ \text{g}^{-1} \text{ h}^{-1} \end{array}$ | 122                   | 14<br>0              | 3.92<br>E-02                                                                                          | 100            | 8                                                | 3.22E-<br>02                                                                                                                            | (Bai et al.,<br>2013)   |
| 6         | Mn0.5Ce0.5O2                                                          | NA                         | 300                              | 33 ppm<br>FA+21%O <sub>2</sub><br>+Air                                                       | 33                               | 600                                                        | 1.05<br>E-08                                                           | 1.11E-08                                                                         | 10,00<br>0 h <sup>-1</sup>                                                          | 160                   | 25<br>0              | 1.26<br>E-02                                                                                          | 110            | 10                                               | 1.33E-<br>02                                                                                                                            | (Li et al.,<br>2014)    |
| 7         | Mn <sub>1-</sub><br>xCe <sub>x</sub> O <sub>2</sub> /palygo<br>rskite | NA                         | 100                              | 300 ppm<br>FA+Air                                                                            | 300                              | 100                                                        | NA                                                                     | 1.68E-08                                                                         | 20,00<br>0 h <sup>-1</sup>                                                          | 140                   | 15<br>6              | NA                                                                                                    | NA             | NA                                               | NA                                                                                                                                      | (Wang et al., 2018a)    |

| 8                 | Ag-1.5%-<br>MnO2-<br>Eggshell   | Reductio<br>n at<br>300 °C<br>using<br>H <sub>2</sub> (10%<br>) +<br>N <sub>2</sub> mixtu<br>re for 3 h<br>(50 mL<br>min <sup>-1</sup> ) | 120           | FA + Air<br>(balance)                                | 100                   | 50            | NA               | 2.80E-09                  | 5308<br>h <sup>-1</sup>                         | < 30 (62%<br>XFA at<br>30 °C) | 77            | NA                | NA      | 96           | 8.05E-<br>02     | (Vikrant et al.,<br>2022b) |
|-------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------------------------------------------|-----------------------|---------------|------------------|---------------------------|-------------------------------------------------|-------------------------------|---------------|-------------------|---------|--------------|------------------|----------------------------|
| 9                 | Ag-0.9%-K-<br>MnO2              | Reductio<br>n at<br>200 °C<br>using<br>$H_2 (10\%)$<br>) +<br>$N_2$ mixtu<br>re for 1 h                                                  | 50            | FA<br>+ $O_2$ (21 vol<br>%) +<br>$N_2$ (balance<br>) | 300                   | 30            | NA               | 5.03E-09                  | 3600<br>0 mL<br>h <sup>-1</sup> g <sup>-1</sup> | <20 (70%<br>XFA at<br>20 °C)  | 35            | NA                | NA      | 100          | 3.62E-<br>01     | (Lu et al.,<br>2018)       |
| 10                | Ag-CeO <sub>2</sub>             | NA                                                                                                                                       | 50            | $FA + O_2 (20 \text{ vol}\%) + N_2 (balance)$        | 810                   | 100           | 5.09<br>E-08     | 4.53E-08                  | 8400<br>0 h <sup>-1</sup>                       | 90                            | 10<br>8       | 3.66<br>E-01      | 50      | 46           | 1.50E+<br>00     | (Ma et al., 2014)          |
| 11                |                                 | Oxidatio<br>n at<br>300 °C<br>using<br>Air for<br>3 h<br>(50 mL<br>min <sup>-1</sup> )                                                   | 50            | FA + Air<br>(balance)                                | 50                    | 50            | 1.67             | 1 405 00                  | 3,979                                           | 51                            | 05            | 5.02              | 204     | 100          | 4.19E-           | This are also              |
| <sup>a</sup> Calc | CuMn2O4-O<br>ulated using Equat | tion 3. The c                                                                                                                            | 50<br>alculat | ed values are or                                     | 50<br>hly used for FA | 50<br>A oxida | E-09<br>tion per | 1.40E-09<br>formance comp | h <sup>-1</sup><br>arison (S                    | 51<br>ection 3.6). Wł         | 85<br>nen the | E-03<br>e reactor | s opera | te in the in | 02<br>tegral mod | e ( $X_{FA} > 20\%$ ),     |

the values calculated using Equation 3 may overestimate the true r. As the governing rate expression, kinetic parameters, and other details for the reported catalysts may not be available, a simplified r calculation using Equation 3 was favored for catalytic FA oxidation performance comparison purposes. Note that the calculated r values should not be treated as the real r under the specified conditions when the reactors operated in the integral mode ( $X_{FA} > 20\%$ ). <sup>b</sup> the temperature for obtaining r value at  $X_{FA}=10\%$  is estimated at 20°C. <sup>c</sup>T<sub>50</sub> and T<sub>90</sub> are the reaction temperatures corresponding to 50% and 90%  $X_{FA}$ , respectively.



Figure 1. TEM images of the tested catalysts. (a-b) Cu<sub>0.5</sub>Mn<sub>2</sub>O<sub>4</sub>, (c-d) CuMn<sub>2</sub>O<sub>4</sub>, and (e-f) Cu<sub>2</sub>Mn<sub>2</sub>O<sub>4</sub>.



**Figure 2.** Characterization results of the tested materials: (a) PXRD patterns, (b) TGA analysis, (c) N<sub>2</sub> adsorption-desorption isotherms, and (d) Pore size distributions.



**Figure 3.** FA removal performance of the analyzed catalysts. (a) Light-off curves (FA: 50 ppm in air,  $m_{cat}$ : 120 mg, flow rate: 50 ml min<sup>-1</sup>, and RH: 0%), (b) Effect of  $m_{cat}$  (catalyst: CuMn<sub>2</sub>O<sub>4</sub>-O, FA: 50 ppm in air, flow rate: 50 ml min<sup>-1</sup>, and RH: 0%), (c) Effect of FA concentration (catalyst: CuMn<sub>2</sub>O<sub>4</sub>-O,  $m_{cat}$ : 120 mg, flow rate: 50 ml min<sup>-1</sup>, and RH: 0%), (d) Effect of flow rate (catalyst: CuMn<sub>2</sub>O<sub>4</sub>-O, FA: 50 ppm in air,  $m_{cat}$ : 120 mg, and RH: 0%), (e) Effect of RH (catalyst: CuMn<sub>2</sub>O<sub>4</sub>-O, FA: 50 ppm in air,  $m_{cat}$ : 120 mg, and flow rate: 50 ml min<sup>-1</sup>), and (f) TOS performance of CuMn<sub>2</sub>O<sub>4</sub>-O at 90  $\Box$  (FA: 50 ppm in air, flow rate: 50 ml min<sup>-1</sup>). Error bars represent standard deviation of two runs.



Figure 4. In-situ DRIFTS spectrum (acquired at 90°C in the dark) for CuMn<sub>2</sub>O<sub>4</sub>-O (FA + air mixture).



**Figure 5.** Optimized atomic structures and corresponding free energies for  $X_{FA}$  over the CuMn<sub>2</sub>O<sub>4</sub> substrate: (a, f) initial, (b-d, g-i)intermediate, and (e, j) final steps of two simulated pathways (both manganese and copper and only manganese on the surface of catalyst substrate).