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SYNCHRONIZATION OF PRIMITIVE AUTOMATA

M.V. Volkov*

Abstract. We exhibit new conditions under which a primitive automaton is synchronizing. In partic-
ular, we show that the primitivity of an automaton forces its synchronizability whenever the automaton
has either a letter of defect 1 or a word of rank 2.
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1. Background and motivation

In this note, a complete deterministic finite automaton (DFA) is a pair A = ⟨Q,Σ⟩ of finite non-empty sets
equipped with a map Q×Σ → Q called the transition function of A . The elements of Q and Σ are called states
and, resp., letters. The image of a pair (q, a) ∈ Q× Σ under the transition function is denoted by q . a.

Words over Σ are finite sequences of letters (including the empty sequence denoted by ε). The set of all
words over Σ is denoted by Σ∗. The transition function of A extends to a function Q × Σ∗ → Q (denoted in
the same way) by recursion: for every q ∈ Q, we set q . ε := q and q . wa := (q . w) . a for all w ∈ Σ∗ and a ∈ Σ.
Every word w ∈ Σ∗ induces the transformation q 7→ q . w on the set Q. For any non-empty subset P ⊆ Q, let
P .w := {p . w | p ∈ P} stand for the image of P under this transformation.

A DFA A = ⟨Q,Σ⟩ is called synchronizing if it possesses a reset word, that is, a word w ∈ Σ∗ such that
q . w = q′ . w for all q, q′ ∈ Q. The minimum length of reset words of A is called the reset threshold. Synchronizing
automata serve as transparent and productive models of error-tolerant systems in many applications; besides,
they appear surprisingly in several branches of pure mathematics. We refer the reader to the chapter [1] of the
‘Handbook of Automata Theory’ and the author’s recent survey [2] for a quick introduction to the area and an
overview of its state-of-the art.

We aim to study the relationship between synchronizability and a property called primitivity. To define the
latter, recall that a congruence on a DFA A = ⟨Q,Σ⟩ is an equivalence ρ ⊆ Q×Q such that (q, q′) ∈ ρ implies
(q . a, q′ . a) ∈ ρ for all q, q′ ∈ Q and a ∈ Σ. A DFA A is said to be primitive1 if the equality and the universal
relation on its state set are the only congruences on A . Primitive DFAs naturally came into consideration in
algebraic automata theory; see, e.g., [3], and in studying automata via their linear representations; see, e.g.,
[4–6]. They also play a role in applications in which DFAs with some state designated as an initial state and
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some non-empty set of states designated as final states are used as language recognizers; see, e.g., [7], especially,
Proposition 1 therein, which the authors attribute to Zoltan Ésik, and [8].

In general, primitivity and synchronizability are independent properties: there exist primitive DFAs that are
not synchronizing and synchronizing DFAs that are not primitive. However, the conjunction of these properties
defines an affluent class that contains many exciting species of DFAs. Say, several series of synchronizing DFAs
with reset threshold close to the state number squared are observed to be primitive in [6]; these include the
famous series of DFAs with n states and reset threshold (n − 1)2 discovered by Jan Černý [9]. The literature
contains many results that give or can be interpreted as conditions under which primitive DFAs become syn-
chronizing; see, e.g., [10–15]. The present note provides two new such conditions that strengthen several known
results and allow us to confirm a conjecture proposed in [15].

To describe our contribution in more detail, we need some extra notions. Given a DFA A = ⟨Q,Σ⟩, the rank
of a word w ∈ Σ∗ is the cardinality of Q .w and the defect of w is the cardinality of the set difference Q \Q .w.
Denote by Σ0 the set of all letters of defect 0 in Σ. Assuming Σ0 ̸= ∅, one can consider the DFA A0 := ⟨Q,Σ0⟩;
observe that all letters in Σ0 act on Q as permutations. We call a DFA A permutation-primitive if the DFA A0

is primitive.
So far, most studies on the synchronizability of primitive DFAs have actually dealt with permutation-primitive

DFAs; see, e.g., the already cited papers [10–14]. Considering permutation-primitive DFAs is very natural from
the viewpoint of the theory of permutation groups, and work in this direction has revealed several deep ties with
the theory of classical combinatorial configurations (such as Latin squares, Steiner systems, Hadamard matrices,
and others); see the survey [16]. From the present note’s perspective, however, the permutation-primitivity may
look like an ad hoc condition since there are plenty of primitive DFAs that are not permutation-primitive (for
instance, the DFAs with a composite number of states from the Černý series [9] are such), and, moreover, there
exist primitive DFAs without letters of defect 0. Still, it is worthwhile to analyze which synchronizability results
established for permutation-primitive DFAs extend to general primitive DFAs.

For instance, Peter Neumann [11], Lemma 2.4, observed that a permutation-primitive DFA with at least three
states is synchronizing whenever it has a letter of rank 2. In Section 4, we show that so is any primitive DFA
with at least three states and a letter of rank 2. It is also known that permutation-primitive DFAs possessing
a letter of defect 1 are synchronizing; see, e.g., [13], Theorem 12. In Section 2, we prove that the presence of a
letter of defect 1 ensures synchronizability for an arbitrary primitive DFA as was conjectured in [15]. The latter
fact is a consequence of a general result (Thm. 2.1) having several other applications.

We have made a fair effort to make this note self-contained to a reasonable extent. In particular, it should
be understandable without any familiarity with the theory of permutation groups.

2. Primitive automata with a unimodal letter

The graph of a DFA A = ⟨Q,Σ⟩ is the labeled directed graph that has Q as the vertex set and the edge
from q to q′ labeled a for every q, q′ ∈ Q and a ∈ Σ such that q . a = q′. Fix a letter a ∈ Σ and remove all edges
of the graph of A except for those labeled a. The remaining graph is denoted Γa, and its weakly connected
components are called the a-clusters.

Observe that Γa has exactly one outgoing edge for every state in Q. Take a state q ∈ Q and consider the
path in Γa starting at q:

q
a−→ q . a

a−→ q . a2
a−→ · · · a−→ q . ak · · · .

Since Q is finite, states in this path eventually begin repeating, that is, for some non-negative integer ℓ and
some integer m > ℓ, we have q . aℓ = q . am. (Here and below, we adopt the convention that a0 = ε.) In other
words, each path in Γa eventually arrives at a cycle. Hence, each a-cluster contains a unique cycle (that can
degenerate into a loop) and, perhaps, some trees attached to this cycle at their roots. The least non-negative

2In the literature, it is common to attribute this result to Igor Rystsov with references to either [17] or [18]. These valuable
papers study some kinds of synchronizing DFAs but do not seem to deal with any form of primitivity.
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Figure 1. A sample a-cluster. Marks are the a-heights of states; dashed lines show the equiv-
alence ker a.

ℓ such that q . aℓ = q . am for some m > ℓ is called the a-height of q. If the a-height ℓ of q is positive, then the
state q . aℓ is the root of the tree of Γa containing q and is called the root of q. The illustration in Figure 1
shows an a-cluster whose states are marked with their a-heights. States connected with dashed lines belong to
the same class of the equivalence

ker a := {(q, q′) ∈ Q×Q | q . a = q′ . a}.

We say that a is a unimodal letter if the defect of a is positive and all states with maximal a-height have
the same root. In the a-cluster shown in Figure 1, the maximal a-height of a state is 3, and all states of this
a-height have the same root. If we assume that the a-heights of states in other a-clusters of Γa are all less than
3, then the letter a is unimodal.

Our first main result is the following.

Theorem 2.1. Every primitive DFA possessing a unimodal letter is synchronizing.

We prove Theorem 2.1 in Section 3. Here we demonstrate some of its applications.
Given a DFA A = ⟨Q,Σ⟩, the kernel type of a letter a ∈ Σ is the non-increasing sequence of the class sizes

of the equivalence ker a. For an example, look again at the a-cluster shown in Figure 1. If we assume that all
other a-clusters of Γa are cycles, then the letter a has the kernel type (3, 2, 2, 2, 2, 2, 1, 1, . . . ).

Lemma 2.2. In an arbitrary DFA, every letter of kernel type (k, 1, 1, . . . ), where k > 1, is unimodal.

Proof. Consider a DFA ⟨Q,Σ⟩ and fix a letter a ∈ Σ. For each state p ∈ Q . a, the set p . a−1 := {q ∈ Q | q . a = p}
constitutes a class of the equivalence ker a. Now suppose that the defect of a is positive and a state r ∈ Q is
the root of some state s ∈ Q in the graph Γa. Then r = q . a = q′ . a where q is the predecessor of r in the path
that leads from s to r in Γa and q′ is the predecessor of r in the cycle of Γa on which r lies (q′ = r if the cycle
degenerates into a loop). Since q ̸= q′, the class r . a−1 is non-singleton. We see that each root contributes an
entry different from 1 to the kernel type of the letter a.

Thus, if the kernel type of a has a unique entry different from 1, then the graph Γa has only one root whence
all states with positive a-heights have the same root. In particular, the unimodality condition holds.

Combining Lemma 2.2 and Theorem 2.1 immediately yields the following.

Corollary 2.3. Every primitive DFA possessing a letter of kernel type (k, 1, 1, . . . ), where k > 1, is
synchronizing.

For permutation-primitive DFAs, synchronizability under the presence of a letter of kernel type (k, 1, 1, . . . ),
k > 1, was established by João Araújo and Peter Cameron [13]; see Theorem 2 therein. Corollary 2.3 generalizes
this result.
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Figure 2. Two non-synchronizing primitive DFAs with a letter of defect 2 from [15], Example 7.

In [15], Igor Rystsov and Marek Szyku la came up with two conjectures on the synchronizability of primitive
DFAs. The first of them, restated in the terminology of the present note, is the following.

Conjecture RS. Every primitive DFA with all letters of defect at most 1 is synchronizing unless all letters
have defect 0.

In [15], Section 3.3, Conjecture RS was supported by some experimental data; in particular, it was reported
to hold for all DFAs with two letters and at most 11 states. Besides, it was shown in [15], Section 3.1, that
several known results implied the validity of Conjecture RS in certain classes of DFAs.

Since the kernel type of a letter of defect 1 is (2, 1, 1, . . . ), the following result (validating Conjecture RS) is
a special case of Corollary 2.3.

Corollary 2.4. Every primitive DFA possessing a letter of defect 1 is synchronizing.

One may ask whether primitivity implies synchronizability also in the presence of a letter of defect 2. The
answer is negative as shown in [15], Example 7, by exhibiting two non-synchronizing primitive DFAs each of
which has five states and a letter of defect 2. The graphs of these DFAs are shown in Figure 2 borrowed from [15]
with the authors’ permission.

On the other hand, every permutation-primitive DFA with a letter of defect 2 is synchronizing [13],
Theorem 3(a).

Given a DFA ⟨Q,Σ⟩, a letter a ∈ Σ of positive defect is called a semiconstant if q . a = q′ . a for all q, q′ /∈ Q . a
and p . a = p for all p ∈ Q . a. In other words, a semiconstant fixes every state in its image and sends all states
outside the image to one particular state. By [15], Theorem 25, every primitive DFA whose letters are either
of defect 0 or semiconstants is synchronizing unless all letters have defect 0. Obviously, the kernel type of a
semiconstant of defect d is (d + 1, 1, 1, . . . ). Thus, Corollary 2.3 readily leads to a stronger fact.

Corollary 2.5. Every primitive DFA possessing a semiconstant is synchronizing.
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3. Proof of Theorem 2.1

We start with a reduction which was deduced in [15], Section 3.1, from a known property of primitive DFAs;
see [3], Proposition 8, or [4], Proposition 5.1. Here, we provide a direct proof for the sake of self-containedness.

A DFA ⟨Q,Σ⟩ is called strongly connected if for all q, q′ ∈ Q there exists a word w ∈ Σ∗ such that q . w = q′.

Proposition 3.1. Every primitive DFA with more than two states is either strongly connected or synchronizing.

Proof. Let A = ⟨Q,Σ⟩ be a DFA. A non-empty subset S ⊆ Q is said to be invariant if s . a ∈ S for all s ∈ S
and a ∈ Σ. Given an invariant subset S, consider the relation

ρS := {(q, q′) ∈ Q×Q | q, q′ ∈ S or q = q′}.

It is known (and easy to verify) that ρS is a congruence on A for which S is a class. Hence, in a primitive DFA,
every invariant subset either is a singleton or coincides with the set of all states.

Assume that A = ⟨Q,Σ⟩ is a primitive DFA with more than two states. For each q ∈ Q, consider the set
q := {q . w | w ∈ Σ∗}. Clearly, q is an invariant subset whence either q = {q} or q = Q. If q = Q for all q ∈ Q,
then A is strongly connected. Suppose that there is a state q0 such that q0 = {q0}. If q1 is another state with
q1 = {q1}, then {q0, q1} is a 2-element invariant subset. We then must have {q0, q1} = Q, a contradiction. Hence,
q = Q for all q ∈ Q \ {q0}; in particular, for each q ∈ Q \ {q0}, there exists a word wq ∈ Σ∗ such that q . wq = q0.

We inductively construct a reset word for A , starting with w0 := ε. If a word wi has already been constructed
and Q .wi = {q0}, then wi is a reset word. Otherwise, take any q ∈ Q .wi \ {q0} and let wi+1 := wiwq. Since
q . wq = q0 . wq = q0, the cardinality of Q .wi+1 is strictly less than that of Q .wi. Hence, the described process
eventually produces a reset word, and A is synchronizing.

We need a notion which is due to Karel Culik II, Juhani Karhumäki, and Jarkko Kari [19]. They defined the
stability relation σ on a DFA ⟨Q,Σ⟩ as follows:

σ := {(q, q′) ∈ Q×Q | ∀v ∈ Σ∗ ∃w ∈ Σ∗ q . vw = q′ . vw}.

The following properties were observed in [19].

Lemma 3.2. 1. On each DFA, the stability relation is a congruence.
2. A DFA is synchronizing if and only if its stability relation is universal.

The final ingredient we need stems from Avraham Trahtman’s proof of the Road Coloring Conjecture in [20].
We use the presentation of Trahtman’s argument given in [1]; the following is Lemma 4.4 from [1] restated in
the terminology adopted in the present note.

Lemma 3.3. In a strongly connected DFA possessing a unimodal letter, the stability relation is not the equality.

Proof of Theorem 2.1. Let A be a primitive DFA possessing a unimodal letter; we aim to show that A is
synchronizing. If A has at most two states, then the unimodal letter is easily seen to be a reset word for A .
Otherwise, in view of Proposition 3.1, we may assume that A is strongly connected. Then Lemma 3.3 ensures
that the stability relation σ on A is not the equality. Since A is primitive, Lemma 3.2(1) implies that σ is
universal whence A is synchronizing by Lemma 3.2(2).

4. Primitive automata with a word of rank 2

Our second main result generalizes Peter Neumann’s lemma on permutation-primitive DFAs [11], Lemma 2.4,
that has already been mentioned in Section 1.

Theorem 4.1. A primitive DFA A = ⟨Q,Σ⟩ with at least three states is synchronizing whenever some word
w ∈ Σ∗ has rank 2.
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Figure 3. A non-synchronizing permutation-primitive DFA from [13] with a letter of rank 3.
If the action of a letter x ∈ {a, b, c, e} at some state is not shown, then the loop labeled x is
assumed.

Proof. Arguing by contradiction, assume that A is not synchronizing. Then A is strongly connected by
Proposition 3.1.

The set S := Q .w consists of two states since w has rank 2. Moreover, |S . u| = 2 for every word u ∈ Σ∗

because if |S . u| = 1 for some u ∈ Σ∗, then wu would be a reset word for A in a contradiction to the assumption
that A is not synchronizing. Let S = {s, s′}. Since A is strongly connected, for every state q ∈ Q, there exists a
word u ∈ Σ∗ such that s . u = q, that is, q ∈ S . u. Thus, Q is a union of 2-element sets of the form S . u, u ∈ Σ∗.
If different sets of this form are pairwise disjoint, then the relation

ρ := {(q, q′) ∈ Q×Q | ∃u ∈ Σ∗ q, q′ ∈ S . u}

is easily seen to be a congruence on A . Since each ρ-class consists of two states and A has at least three states,
ρ is not the universal relation, nor is ρ the equality. This contradicts the primitivity of A .

Thus, there exist two words u1, u2 ∈ Σ∗ such that the subsets S1 := S . u1 and S2 := S . u2 are different but
have a common state, say, p. If pi is the other state in Si, i = 1, 2, we have p1 ̸= p2. Take an arbitrary word
v ∈ Σ∗ and consider the set {p, p1, p2} . vw. It is contained in the 2-element subset S = Q .w whence amongst
the three states p . vw, p1 . vw, p2 . vw, some two must be equal. We have p . vw ̸= pi . vw since {p . vw, pi . vw} =
Si . vw = S . uivw for i = 1, 2, and each set of the form S . u, u ∈ Σ∗, consists of two states. The only remaining
option is p1 . vw = p2 . vw.

We have thus proved that the pair (p1, p2) with p1 ̸= p2 belongs to the stability relation σ on A . Hence,
σ is not the equality, and since A is primitive, Lemma 3.2(1) implies that σ is the universal relation. By
Lemma 3.2(2), A is synchronizing, a contradiction.

It was mentioned after Corollary 2.4 that the presence of a letter of defect 2 forces synchronizability for
permutation-primitive DFAs but fails to do so for general primitive DFAs. Continuing this line of discussion,
one may ask whether primitivity implies synchronizability in the presence of a word or a letter of rank 3. The
answer is negative even for the permutation-primitive case. An example of a non-synchronizing permutation-
primitive DFA with nine states and a letter of rank 3 is described after Theorem 4 in [13]; the graph of this
DFA is shown in Figure 3, where the loops have been omitted for better readability.

Each of the two 5-state non-synchronizing primitive DFAs from Figure 2 also has a letter of rank 3, but these
DFAs are not permutation-primitive.
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Remark 4.2. We could have stated and proved Corollary 2.4 in the form used in Theorem 4.1, that is, requesting
the presence of a word of defect 1 rather than a letter of defect 1. However, this would not be a generalization
since a DFA having a word of defect 1 necessarily has a letter of defect 1. In contrast, a DFA can have a word
of rank 2 without having any letter of rank 2.
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