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Abstract
 Hydroxyapatite (HAP) bio-composites are widely utilized for the repair and replacement of bone and
teeth tissues in humans. However, due to their suboptimal mechanical properties, the strength and
durability of pure HAP have been improved by incorporating various alloys and materials. This study
examines the radiation shielding and mechanical properties of Fe2O3-reinforced HAP composites for use
as implants, with Fe2O3 concentrations of 0.0, 2.5, 5.0, and 7.5 wt.%. The study also investigates the
composite's behavior in a magnetic field. Using the FLUKA Monte Carlo Code, radiation shielding factors
are determined, and the mechanical properties of the composites are assessed through theoretical
methods. Results indicate that increasing Fe2O3 content in HAP bio-composites enhances the radiation
shielding and mechanical properties of the selected samples. Additionally, without a magnetic field,
particle distribution displays symmetry along the x-axis; however, when exposed to a magnetic field of
Bx=5 microT, a distinct pattern emerges.

1. Introduction
Hydroxyapatite (calcium phosphates, Ca10(PO4)6(OH)2, HAP) is a hydroxyl end member of the Apatite
group. This is characterized by its ionic substitution capability which makes it ideal for medical
applications. The close resemblance of HAP to bones and teeth makes this material useful as an implant
for dental and orthopedic applications [1–3]. Because of the HAP’s poor mechanical qualities, significant
improvements are achieved by adding various dopants like ZnO, ZrO2, Fe3O4, and Li to HAP [1–16]. Htun
et al. [2] discovered that reinforced CaO-ZrO2/HAP is an effective material for improving the strength and
toughness of the selected bio-composites. The reinforced ZrO2/HAP strength has been effectively

improved from 35.70 MPa to 52.88 MPa, and the toughness has been increased from 0.65 MPa.m 1/2 to
1.33 MPa.m 1/2. They also discovered that adding CaF2 to CaO-ZrO2/HAP improves the bio-composites'
sinterability. On the other hand, because HAP bio-composites are widely used in the human body, having
information about the interactions of gamma rays with patients via radiotherapy or other radiation
examinations is critical. Accordingly, the current work investigates gamma photons penetration in HAP + 
Fe2O3 as derived from the Beer-Lambert Law. Other researchers have noticed this issue recently [17–18].
H. Badran et. al. [17] reported the lithium-doped hydroxyapatite nano-composites' gamma attenuation
coefficient and dielectric features. Composites were prepared using the sol-gel technique. Outcomes
reveal that the gamma attenuation coefficient values increased from 0.562 cm− 1 for 0.0 wt.% Li-HAp to
2.190 cm− 1 for 40.0 wt.% Li-Hap. In addition, the Li concentration affected the dielectric values and
proved that the synthesized nano-composite are ideal material for medical purposes. Another integral
item to consider is the HAP + Fe2O3 composite response in the magnetic field. The interactions of gamma
photons with sample and lead shields produce a huge number of charged particles that are impacted in
the presence of the magnetic field [19].

Thus, the current study investigates radiation shielding qualities, mechanical properties, and HAP + Fe2O3

reaction in the magnetic field. To acquire the attenuation performance, simulations are performed in the
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FLUKA Monte Carlo Code environment. Mechanical properties are extracted and the outcomes are
presented utilizing Makishima and Mackenzie theory. In addition, the particles’ spatial map in the
absence and presence of a magnetic field is examined.

2. Materials and Methods

2.1 Composites Preparation
In the current study, Fe2O3 is doped with HAP bio-composites in concentrations of 0.0, 2.5, 5.0, and 7.5
wt.%, and four unique samples denoted as S1, S2, S3, and S4 are simulated. Table 1 gives the approved
composites' weight percentages (wt.%) and chemical compositions. The samples are irradiated for wide
energy spans between 0.01 and 15 MeV.

Table 1
The wt. % of the HAP + Fe2O3 composite.

Composites codes wt.% of the compositions Density (g.cm− 3)

S1 100.0%HAP + 0.0%Fe2O3 3.14

S2 97.5%HAP + 2.5% Fe2O3 3.17

S3 95.0%HAP + 5.0% Fe2O3 3.20

S4 92.5%HAP + 7.5% Fe2O3 3.24

2.2 FLUKA Monte Carlo Code Environment
FLUKA is an important and widely used Monte Carlo code for different applications [20]. Thus besides
other code it has been in a variety of studies in radiation fields [21–39]. In the present study, the FLUKA
Monte Carlo Code is utilized to calculate the radiation shielding capacity of the HAP + Fe2O3 samples [18,
40–41]. The BEAM card defines the isotropic source in this code. The position and direction of the 1 cm
radius gamma photon source are controlled by a BEAMPOS card. The sample is modeled as a cylinder
(RCC) with a thickness of 2 cm and a height of 10 cm. The BLKBODY shell with an inner radius of 1000
cm and an outside radius of 1010 cm encases the 3 cm radius simulated lead collimators, source, and
sample. GEOBEGIN and GEOEND cards specify all geometries. MATERIAL and COMPOUNDS cards are
used to model samples’ density, elemental fractions, and weight percentages.

2.3Radiation Shielding Capacity
Linear Attenuation Coefficient (LAC) is utilized to predict the gamma photon attenuation features through
Beer-Lambert Law (BLL) [42–53]:

I = I0. e
−LAC∗a (1)
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Where I0 and I are the initial and final intensities respectively, and a is the thickness of the preferred
samples. Half Value Layer (HVL) and Tenth Value Layer (TVL) play a significant role to discover the
attenuation qualities of different materials derived through the following Eqs. [53–55]:

2.4 Mechanical Properties of the HAP + Fe2O3 Composites
Makishima and Mackenzie Model (MMM) [56–58] is used to obtain the mechanical features of the HAP 
+ Fe2O3 via Eqs. 4–12. The bond dissociation energy (Gt, kJ.cm− 3) and the packing factor (Vi, cm3.mol− 1)
of the investigated composites are employed to derive the mechanical properties such as packing density
(Vt, cm3.mol− 1), Young's modulus (E, GPa), Bulk modulus (B, GPa), Shear modulus (S, GPa), Longitudinal
modulus (L, GPa), Poisson's ratio (σ), and Indentation modulus (E*, GPa):

HVL (cm) = (2)
Ln (2)

LAC (cm−1)

TVL (cm) = (3)
Ln (10)

LAC (cm−1)

Gt(kJ. cm−3) = ∑
i

Gixi (4)

Vi (cm3. mol) = NA (XR3
A + YR3

o) (5)
4π

3

Vt (cm3. mol) = ∑
i

Vixi (6)
ρ

M

E (GPa) = 8.36VtGt (7)

B (GPa) = 10V2
t Gt (8)

S (GPa) = (9)
30V2

t Gt

(10.2Vt − 1)

L (GPa) = B + S (10)
4

3

σ = 0.5 − (11)
1

7.2Vt

E* = (12)
E

1 − σ2
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Where NA, RA, RO, X, and Y represent Avogadro’s number, ionic radius of the metal, ionic radius of oxygen,
the number of metal atoms, and the number of oxygen atoms, respectively [59–61].

2.5 HAP + Fe2O3 Composite Response in a Magnetic Field
A huge number of charged particles are produced when gamma photons interact with composite
materials. In the presence of a magnetic field, these particles react differently in various composites.
Accordingly, to assess the trend of charged particles in the preferred composite, a magnetic field with the
value of 5 microT in the x-axis (Bx=5 microT) is applied to the HAP + Fe2O3 composite, and the charged
particle behavior is examined.

3. Results and Discussion
The Half Value Layer (HVL) is an important measure for estimating the attenuation properties of different
samples. The HVL for four S sample types, S1, S2, S3, and S4 is calculated, and the results are visually
depicted in Fig. 2. HVL is energy-dependent in low and intermediate energy zones, increasing as energy is
increased. But, in the high-energy region, the HVL varies with log E [62–65]. In addition, increasing the rate
of Fe2O3 in HAP samples results in decreased HVL, and less thickness of S samples is necessary to
reduce the initial intensity to half of it. Some numerical results are provided to back up this argument. The
HVL values for recommended samples vary between 0.019 and 9.994 cm, 0.018 and 9.832 cm, 0.017 and
9.674 cm, 0.016 and 9.508 cm for 0.01 to 15 MeV, from S1 to S4, respectively. Thus, the S4 sample with
the highest concentration of Fe2O3 possesses the lowest HVL value in all energy ranges and performs
better in terms of gamma photon protection. The Tenth Value Layer (TVL) versus Fe2O3 concertation in
HAP composites is presented in Fig. 3 for energy levels of 0.1, 0.6, 4.0, 6.0, and 15 MeV. As shown,
increasing the rate of Fe2O3 in HAP samples leads TVL to fall to lower values. However, the reduction in
the high-energy zone is significant when compared to low-energy levels. For example, at 0.1 MeV, TVL
ranges from 3.846 to 3.580 cm, whereas at 15 MeV, TVL ranges from 33.201 to 31.190 cm for S1 to S4
samples. Furthermore, the results show that increasing the energy in a specified S sample from 0.1 to 15
MeV increases TVL.

It is beneficial to analyze mechanical moduli in order to evaluate the effectiveness of preferred
composites in various technologies. Thus, in the current work, E, B, S, L, Poisson's ratio, and E* are
theoretically estimated. Increasing the rate of the Fe2O3 in HAP samples raises the E, B, S, and L from
391.13 to 520.17 GPa, 357.18 to 677.18 GPa, 148.43 to 189.57 GPa, and 468.51 to 819.36 GPa,
respectively. E* follows a similar pattern. That is, E* is proportional to the concentration of Fe2O3.
Furthermore, as expected, mechanical moduli variations behave similarly to changes in Vt, [66–68] which

ranges from 0.76 to 1.08 m3.mol− 1 for S1 to S4 samples. On the other hand, Poisson's ratio acts opposite
to other mechanical parameters, and a considerable reduction in Poisson's ratio is detected for S1 to S4
samples. The mechanical moduli versus bond dissociation energy (Gt) show that increasing the rate of
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Fe2O3 in HAP samples reduces the Gt from 256.98 to 239.74 kJ.cm− 3, which may be attributed to
replacing low Gt material (Fe2O3) with high Gt material (HAP) in the provided samples.

To determine why mechanical moduli increase from S1 to S4 samples, E, B, S, L, Poisson's ratio, and E*
are plotted versus density in Figs. 8, 9. A strong link exists between density and mechanical moduli
except for Poisson's ratio. That is, increasing the sample density from S1 with the density of ρ = 3.14
g.cm− 3 to S4 with the density of ρ = 3.24 g.cm− 3 induces a dramatic increase in mechanical moduli. This
could be related to an increase in the stiffness of the samples, which improves the mechanical properties
significantly [67, 68]. The results obtained in this work are in consist on previous data in the literature [69-]

In order to evaluate the Fe2O3 response in the magnetic field, two separate cases are studied in Figs. 10
and 11: In the absence of magnetic field and in the presence of magnetic field with the value of Bx=5
microT. According to Fig. 10 (in the absence of a magnetic field case), the particles' spatial map exhibits
symmetric behavior along the x-axis, but Fig. 11 (in the presence of magnetic field along the x-axis with
the value Bx = 5 microT) exhibits different behavior. That is, in the presence of a magnetic field, no
symmetry is observed. This trend demonstrates that Fe2O3 is an effective magnetic shield.

4. Conclusion
The current work looks into the radiation shielding quality, mechanical characteristics, and Fe2O3

response in a magnetic field. To determine the gamma photons shielding capability of the selected HAP
composite samples, the FLUKA environment is used. Because the Hap bio-composite is used as an
implant, the mechanical properties of the chosen composite are also assessed. The charged particles’
spatial maps are evaluated in two different cases. Outcomes show that

Increasing the rate of the Fe2O3 in HAP samples improves the attenuation features of the S samples.

A strong relationship between density and mechanical moduli related to the S samples is monitored.

By increasing the Fe2O3 concentration from S1 to S4 sample, Gt decreases rapidly.

Particles' spatial map exhibits symmetric behavior along the x-axis in the absence of the magnetic
field, while a different trend is monitored in the presence of the magnetic field.
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Figure 1

Screenshot of Flair interface for a left view of the simulation.
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Figure 2

HVL versus initial gamma photon energy ranging from 0.01 to 15 MeV.
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Figure 3

TVL versus Fe2O3 concentrations for 0.1, 0.6, 4.0, 6.0, and 15 MeV energy levels.
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Figure 4

Mechanical moduli versus HAP+ Fe2O3 concentration.
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Figure 5

Poisson’s ratio and E* versus HAP+ Fe2O3 concentration.
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Figure 6

Mechanical moduli versus Gt.
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Figure 7

Poisson’s ratio and E* versus Gt.
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Figure 8

Mechanical moduli versus Density.
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Figure 9

Poisson’s ratio and E* versus density.
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Figure 10

Charged particles’ spatial map in the absence of the magnetic field for preferred composite.
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Figure 11

Charged particles’ spatial map in the presence of the magnetic field (Bx=5 micro T) for preferred
composite.


