
Indonesian Journal of Electrical Engineering and Computer Science

Vol. 34, No. 3, June 2024, pp. 1557~1565

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v34.i3.pp1557-1565 Æ 1557

Journal homepage: http://ijeecs.iaescore.com

Development and implementation of a Python functions for

automated chemical reaction balancing

Pankaj Dumka1, Rishika Chauhan2, Dhananjay R. Mishra1, Feroz Shaik3, Pavithra Govindaraj 4,

Abhinav Kumar 5, Chandrakant Sonawane6, Vladimir Ivanovich Velkin 5
1Department of Mechanical Engineering, Jaypee University of Engineering and Technology, Madhya Pradesh, India

2Department of Electronics and Communication Engineering, Jaypee University of Engineering and Technology, Madhya Pradesh, India
3Department of Mechanical Engineering, Prince Mohammad Bin Fahd University, Dhahran, Saudi Arabia

4Department of Electronics and Communication Engineering, Dayananda Sagar College of Engineering, Bangalore, India
5Department of Nuclear and Renewable Energy, Ural Federal University Named After the First President of Russia Boris Yeltsin,

Ekaterinburg, Russia
6Department of Mechanical Engineering, Symbiosis International University, Pune, India

Article Info ABSTRACT

Article history:

Received Dec 25, 2023

Revised Feb 24, 2024

Accepted Mar 16, 2024

 Chemical reaction balancing is a fundamental aspect of chemistry, ensuring

the conservation of mass and atoms in reactions. This article introduces a

specialized Python functions designed for automating the balancing of

chemical reactions. Leveraging the versatility and simplicity of Python, the

module employs advanced algorithms to provide an efficient and

user-friendly solution for scientists, educators, and industry professionals.

This article delves into the design, implementation, features, applications,

and future developments of the Python functions for automated chemical

reaction balancing. The functions thus developed were tested on some

typical chemical reactions and the results are the same as that in the

literature.

Keywords:

Chemical engineering

Coding

Linear algebra

Pandas

Python

Reaction balancing

SumPy

This is an open access article under the CC BY-SA license.

Corresponding Author:

Pankaj Dumka

Department of mechanical Engineering, Jaypee University of Engineering and Technology

Madhya Pradesh, India

Email: p.dumka.ipec@gmail.com

1. INTRODUCTION

Chemical reactions serve as the bedrock of chemical understanding, offering insights into the

intricate transformations of matter. At the heart of this understanding lies the essential practice of balancing

chemical reactions, ensuring fidelity to the principles of mass conservation and atomic integrity [1].

However, manual balancing can prove challenging, particularly with the complexity of advanced chemistry

reactions [2]ï[4]. Recognizing this challenge, there is a pressing need for specialized computer programs

designed to automate and optimize the balancing process [5], [6].

Motivated by this necessity, our research endeavours to present a novel approach to chemical

reaction balancing, offering a solution that is both efficient and precise [7]. We introduce a dedicated Python

module engineered to automate the balancing process while prioritizing versatility, ease of integration, and

robust algorithmic foundations [8]ï[10]. This module fills a crucial gap left by previous efforts, by not only

providing automation but also delving into the intricate details of analysis and programming.

As the landscape of chemical research continues to evolve, the demand for computational tools that

streamline processes becomes increasingly pronounced. The developed Python module aims to meet this

demand, serving as a sophisticated yet accessible resource for researchers, educators, and industry

https://creativecommons.org/licenses/by-sa/4.0/

 Æ ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 34, No. 3, June 2024: 1557-1565

1558

professionals alike. With its broad scope encompassing a diverse range of chemical reactions, the module

promises applicability across various domains within the realm of chemistry.

2. PYTHON AND SOME OF ITS STANDARD MODULES

Python has emerged as one of the most popular programming languages, celebrated for it is

simplicity, readability, and versatility. It is open-source nature and a vast ecosystem of libraries make it a

preferred choice for diverse applications, from web development to data science [11]ï[17]. Pythonôs appeal

lies in its syntax, which is designed to be clear and readable, fostering a codebase that is easy to understand

and maintain. It is versatility spans across domains, making it an ideal language for beginners and seasoned

developers alike [9], [18]. Python supports object-oriented, imperative, and functional programming

paradigms, providing developers with flexibility in their coding approaches. In this note, a brief skim over

into the significance of Python programming has been done to explore four essential modules-SymPy, re, and

Pandas-that contribute to it is widespread adoption.

2.1. SymPy: Symbolic mathematics

SymPy facilitates symbolic computation by representing mathematical objects as symbolic

expressions. Variables, equations, and mathematical operations are manipulated symbolically rather than

numerically, allowing for exact and precise results. This is particularly useful in scenarios where maintaining

the symbolic representation of mathematical expressions is essential, such as in algebraic simplifications,

calculus, and solving equations symbolically [19]ï[21].

2.2. re: Regular expressions in Python

The óreô module in Python stands for regular expressions, a powerful tool for pattern matching and

string manipulation. Regular expressions allow developers to search, match, and manipulate strings based on

specified patterns. This module is invaluable for tasks such as data cleaning, text parsing, and pattern

recognition. Pythonôs óreô module facilitates the use of regular expressions, enabling developers to handle

complex string operations with ease [22].

2.3. Pandas: Data manipulation made easy

Pandas is a high-level data manipulation library that simplifies working with structured data. It

provides data structures like DataFrames and Series, which are intuitive and powerful for handling and

analyzing tabular data. Pandas seamlessly integrates with NumPy, allowing for efficient data manipulation

and analysis [12]. Whether it is cleaning messy data, aggregating information, or performing complex

operations on datasets, Pandas is an indispensable tool in the data scientistôs arsenal.

3. METHODOLOGY OF BALANCING ALGORITHM

The core algorithm of the Python module is based on linear algebraic principles [23]. It transforms

an unbalanced chemical reaction into a system of linear equations [24]ï[26], solving for the coefficients that

achieve mass and atom balance. This algorithm is optimized for both efficiency and accuracy, making it

suitable for reactions of varying complexities. The algorithm is explained with the help of a simple example

as mentioned below. Consider a simple oxidation reaction as (1).

 ὅὌ ὕ ᴼ ὅὕ Ὄὕ (1)

Now the task is to evaluate the unknowns , , , and . Here first the different elements involved
in the chemical reaction are identified viz. ὅ, Ὄ, and ὕ. Now as there are 3 elements, so the number of each
element in different compounds are written in the vector form as follows:

ὅὌ ᴼ
ὅ
Ὄ
ὕ
ᴼ
ς
τ
π

ὕ ᴼ
ὅ
Ὄ
ὕ
ᴼ
π
π
ς

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 Æ

Development and implementation of a Python functions for automated chemical reaction é (Pankaj Dumka)

1559

ὅὕ ᴼ
ὅ
Ὄ
ὕ
ᴼ
ρ
π
ς

Ὄὕᴼ
ὅ
Ὄ
ὕ
ᴼ
π
ς
ρ

now the (1) can be written in the vector form as:

ς
τ
π

π
π
ς
ᴼ

ρ
π
ς

π
ς
ρ
 (2)

by bringing the terms from right side to the left side, the rearranged from of the (2) becomes:

♪
ς
τ
π

♫
π
π
ς

♬
ρ
π
ς

♯
π
ς
ρ
 O
π
π
π

 (3)

finally in the matrix form the (3) takes the shape of (4).

ς
τ
π

π
π
ς

ρ
π
ς

π
ς
ρ

π
π
π

 (4)

As shown in (4) is a system of homogeneous linear equation of the form: ὃὼ π. The task is to find
the null space of matrix [23], [27]. So, the matrix has to be reduced into row reduced echelon form (RREF).

After reduction to RREF the (4) becomes:

ρ
π
π

π
ρ
π

π
π
ρ

ρȾς
σȾς
ρ

π
π
π
 (5)

as shown in (5) has three pivot columns (marked red in colour). To start the solution an initial guess for is
required which has been taken as 1. Thereafter, on solving the system backward the values of the unknowns will

come out to be: ρ, σȾς, and ρȾς. Hence, the balanced chemical equation will be as (6).

ρȾς ὅὌ σȾς ὕ ᴼ ρ ὅὕ ρ Ὄὕ (6)

This algebraic method is very powerful but the complexity increases to a great extent for the equations which

are having large number of terms. Therefore, the use of programming for the to automate the task of chemical

reaction balancing becomes so much important.

4. METHOD TO DEVELOP PYTHON MODULE

On the basis of the computation procedure explained in the previous section the algorithm to balance

the chemical reaction can be layout as follows: i) first the elements are identified; ii) then the counting must

be done that how many elements are there in each compound of the equation; iii) then they are arranged in a

matrix form; iv) convert the matrix into row reduced echelon form; and v) find the null space.

To perform these tasks two algoritms are developed, the Algoritms 1 and Algoritms 2 are as follows:

Algoritm 1
def count_elements(elements,chemical_formula):

 # Regular expression to match element symbols and their counts

 pattern=compile(r'([A-Z][a-z]*)(\d*)')

 # Dictionary to store element counts

 element_counts={}

 # Find all matches in the chemical formula

 Æ ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 34, No. 3, June 2024: 1557-1565

1560

 matches=pattern.findall(chemical_formula)

 # Loop through matches and update element counts

 for match in matches:

 element_symbol, count_str=match

 count=int(count_str) if count_str else 1

 element_counts[element_symbol]=element_counts.get(element_symbol, 0) +

count

 # Making list of numbers according to the element list

 lst=[]

 for i in elements:

 if i in element_counts.keys():

 lst.append(element_counts[i])

 else:

 lst.append(0)

 return element_counts,lst

Algoritm 2
def Reaction_coefficients(elements, list_of_compounds):

 Mat=[]

 for i in list_of_compounds:

 Mat.append(count_elements(elements,i)[1])

 M=Matrix(Mat)

 M=M.transpose()

 M_rref=M.rref()

 # No. of pivots

 n_p=len(M_rref[1])

 # Null space

 x_n=M_rref[0][:n_p,-1]

 # appending 1 as last element

 a=list(x_n)

 a.append(-1)

 a=Matrix(a)

 ch_cm=list_of_compounds

 data_main={"Ch. composition":ch_cm,"coefficient":list(a)}

 df=DataFrame(data_main)

 return df

Explanation of Algoritm 1:

- Inputs:

(a) óelementsô: A list of element symbols.

(b) óchemical_formulaô: The chemical formula for which element counts need to be determined.

- Processing steps:

(a) Utilizes a regular expression (ócompile(r'([A-Z][a-z]*)(\d*)')ô) to match element symbols and their

counts in the chemical formula.

(b) Initializes an empty dictionary (óelement_countsô) to store the counts of each element.

(c) Finds all matches in the chemical formula using the defined pattern, resulting in a list of tuples
(ómatchesô).

(d) Iterates through the matches, extracting element symbols and counts, converting count strings to
integers (or defaulting to 1 if no count is provided), and updating the óelement_countsô dictionary

accordingly.

- List generation:

(a) Initializes an empty list (ólstô) to store counts of elements in the order specified by the input list of
elements.

(b) Iterates through the input list of elements, appending the corresponding counts from the

óelement_countsô dictionary to the list (ólstô). If an element is not present in the chemical formula,

appends 0 for that element.

- Outputs:

Returns a tuple containing:

(a) óelement_countsô: A dictionary with element symbols as keys and their counts in the chemical

formula as values.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 Æ

Development and implementation of a Python functions for automated chemical reaction é (Pankaj Dumka)

1561

(b) ólstô: A list representing the counts of elements in the order specified by the input list of elements.

Explanation of Algoritm 2:

- Inputs:

(a) óelementsô: A list of element symbols.

(b) ólist_of_compoundsô: A list of chemical compounds for which reaction coefficients need to be
determined.

- Processing steps:

(a) Initializes an empty matrix (óMatô) to store the counts of elements in each compound using the
ócount_elementsô function.

(b) Iterates through the ólist_of_compoundsô, using the ócount_elementsô function to obtain the list of
element counts for each compound and appends it to the matrix óMatô.

- Matrix operations:

(a) Creates a matrix (óMô) from the obtained óMatô.

(b) Transposes the matrix (óMô) to facilitate further operations.

(c) Computes the row reduced echelon form of the transposed matrix (óMô) using the órrefô method.

(d) Determines the number of pivots in the reduced row-echelon form, denoted as ón_pô.

- Null space calculation:

(a) Extracts the null space of the matrix, specifically the last column, representing the coefficients of
the compounds in the balanced chemical reaction.

(b) Appends ó-1ô to the null space vector, creating a list (óaô).

(c) Converts the list to a matrix (óaô) for further processing.

- Data frame creation:

(a) Constructs a DataFrame (ódfô) containing two columns:

(b) "Ch. composition": List of chemical compounds (ólist_of_compoundsô).

(c) "Coefficient": Reaction coefficients corresponding to each compound.

- Output:

(a) Returns the DataFrame (ódfô) containing the chemical compositions of the compounds and their
corresponding reaction coefficients in a balanced chemical reaction.

These functions provide a straightforward and intuitive interface for users to integrate into their

Python scripts or applications. Users can input chemical reactions in a human-readable format, and the

module automatically balances them, returning the balancing coefficients as results. The point to be noted

here is that the coefficients on the left side of the equation will come positive whereas the one on the right

side of the equation will come as negative.

5. RESULTS AND DISCUSSION ON THE ASSESSMENT OF DEVELOPED PYTHON FUNCTIONS

The Python functions for automated chemical reaction balancing has broad applications across

academic, research, and industrial domains. Its seamless integration into computational workflows makes it a

valuable resource for researchers seeking to automate repetitive tasks. Educators can incorporate the module

into their teaching materials to enhance studentsô understanding of reaction balancing principles.

Additionally, industry professionals can leverage the module for process optimization, ensuring the efficient

use of resources and maintaining the quality of chemical processes. The module undergoes a rigorous

performance evaluation to assess its capabilities across various scenarios. Benchmarking is conducted against

known chemical reactions, ranging from simple to complex cases. The results not only demonstrate the

efficiency and accuracy of the module but also provide insights into its limitations and potential areas for

improvement. The steps to be adopted for the effective utilization of functions are as follows:

- First, the SymPy, Pandas, and Re modules are imported.

- Second, the elements are identified and placed in a list of characters (called as elements).

- Third the chemical formulas list is created as list of strings (called as list_of_compounds). Important thing
to note here is that the compounds are written from left to right as they appear in the chemical reaction.

Below are some of the examples which shows the use of functions developed in the previous sections.

Example 1: Balance the following chemical reaction.

Ὄὖὕ ὑὕὌO ὑὖὕ Ὄὕ

Solution: The program to balance the above equation along with its solution is shown in Table 1.

Therefore, the balanced reaction will be:

ρȾσὌὖὕ ρὑὕὌO ρȾσὑὖὕ ρὌὕ

 Æ ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 34, No. 3, June 2024: 1557-1565

1562

Example 2: Balance the following chemical reaction.

ὑ ὄὕ ᴼὑὕ ὄ

Solution: Table 2 displays the program used to balance the above equation, along with its solution. Therefore,

the balanced reaction will be:

σὑ ρȾςὄὕ ᴼ σȾςὑὕ ρὄ

Example 3: Balance the following chemical reaction.

Ὄὖὕ ὓὫὕὌ ᴼὓὫ ὖὕ Ὄὕ

Solution: Here the point to be noted is that as brackets are not permitted in the list of compounds so we have

to write the expanded forms i.e. ὓὫὕὌ is written as MgO2H2 and ὓὫ ὖὕ is written as Mg3P2O8.

The same philosophy will be followed in the subsequent example as well. Table 3 exhibits the program used

to balance the mentioned equation, along with its corresponding solution.

Table 1. Program and solution for example 1
Code Output

elements=['H','P','O','K']

list_of_compounds=['H3PO4','KOH', 'K3PO4','H2O']

Reaction_coefficients(elements, list_of_compounds)

Table 2. Program and solution for balancing the equation (example 2)
Code Output

elements=['K', 'B', 'O']

list_of_compounds=['K','B2O3','K2O','B']

Reaction_coefficients(elements, list_of_compounds)

Table 3. Balancing program and solution overview for example 3
Code Output

elements= ['H', 'P', 'O', 'Mg']

list_of_compounds=['H3PO4','MgO2H2','Mg3P2O8','H2O']

Reaction_coefficients(elements, list_of_compounds)

Therefore, the balanced reaction will be:

ρȾσὌὖὕ ρȾςὓὫὕὌ ᴼ ρȾφὓὫ ὖὕ ρὌὕ

Example 4: Balance the following chemical reaction.

ὅὥ ὖὕ ὛὭὕ ὅᴼὅὥὛὭὕ ὅὕ ὖ

Solution: Refer to Table 4 for the program and solution related to balancing the above equation.

