
Ministry of Science and Higher Education of the Russian Federation

Federal State Autonomous Educational Institution of Higher Education

«Ural Federal University named after the first President of Russia B.N. Yeltsin»

Engineering School of Information Technologies,

Telecommunications and Control Systems

School of Professional and Academic Education

 ADMIT TO THESIS DEFENSE BEFORE THE SEC

 Head of EP 09.04.03 M.A. Medvedeva

 «01» June 2024

MASTER THESIS

Development of methods and algorithms for intrusion detection and prevention

systems based on statistical methods and sustainable machine learning algorithms

Research supervisor: Medvedev M.A.
Associate Professor, signature

Candidate of Economic Sciences

Research supervisor: Agbozo E.
Senior lecturer, signature

Student: Kirin E.D.
Group number RIM-210980 signature

Yekaterinburg

2024

2

ABSTRACT

Topic of master’s thesis:

Development of methods and algorithms for intrusion detection and prevention

systems based on statistical methods and sustainable machine learning

algorithms

The master thesis has been written on 114 pages and contains 14 tables, 56

figures, 42 references.

Researching vulnerabilities in intrusion detection systems (IDS/IPS) using

algorithms based on statistical methods and machine learning is a pertinent topic due

to the continuous rise of cyber threats, the necessity of data privacy protection, the

application of cutting-edge technologies, and the widespread use of machine learning

methods in the field of information security.

The practical significance of this research lies in the following aspects: the

findings will help identify vulnerabilities in intrusion detection systems (IDS/IPS), thus

enhancing the overall security level of information systems; studying algorithms based

on statistical methods and machine learning will facilitate the development of new

methods for defense against attacks and their integration into existing IDS/IPS systems;

the obtained results can be utilized for training information security specialists, thereby

enhancing qualification levels and preparing personnel in this field.

The economic efficiency of the research directions can be assessed as follows:

the use of improved protection algorithms will mitigate cyber attack risks, data

breaches, and other incidents, consequently reducing organizational losses associated

with security breaches; ensuring reliable protection of information systems from

external threats enhances organizational reputation, increases customer and partner

trust, potentially leading to expanded business activities and attracting new clients.

The scientific novelty proposed by this research involves refining existing

vulnerability detection algorithms in IDS/IPS systems, based on a combination of

statistical methods and machine learning techniques. Additionally, the feasibility of

3

applying machine learning methods to detect hidden and advanced attacks, which

traditional IDS/IPS systems may overlook, will be explored.

The research will utilize a wide range of data, including real cyber attack data

for experimental testing. Previous research findings in cybersecurity and intrusion

detection systems will also be examined.

The object of the research is intrusion detection systems (IDS/IPS) utilizing

algorithms based on statistical methods and machine learning techniques. The focus of

the study is on the system itself, its components, detection algorithms, and mechanisms,

as well as its operational principles in the context of identifying vulnerabilities and

potential attacks.

The subject of the research includes intrusion detection algorithms in IDS/IPS

based on statistical methods and machine learning.

Based on existing research and literary sources, the research objectives and goals

have been identified. The main goal is to evaluate IDS/IPS based on statistical methods

and machine learning. The project tasks include:

1. Studying intrusion detection algorithms based on statistical methods and

machine learning.

2. Analyzing vulnerabilities in IDS/IPS systems and identifying common

types of attacks.

3. Studying methods to protect IDS/IPS from common attacks.

4. Developing a test environment to research vulnerabilities in intrusion

detection systems.

5. Evaluating the effectiveness of intrusion detection algorithms.

6. Comparing intrusion detection algorithms based on statistical methods

and machine learning.

7. Identifying the most effective intrusion detection algorithm based on

statistical methods and machine learning.

4

CONTENTS

INTRODUCTION ... 5

1INTRUSION DETECTION SYSTEMS (IDS/IPS) THAT UTILIZE ALGORITHMS BASED ON

STATISTICAL METHODS AND MACHINE LEARNING. .. 9

1.1 Justification of the relevance of research on vulnerabilities in intrusion detection

systems (IDS/IPS). ... 9

1.2 Extraction of Data on IDS/IPS Methods Based on Statistical Methods and Machine Learning

Techniques ... 13

1.3 Task Formulation for Management ... 19

Results and conclusions of the first chapter ... 26

2 COMPARATIVE ANALYSIS OF EXISTING MACHINE LEARNING METHODS FOR

ASSESSING IDS/IPS VULNERABILITIES ... 40

2.1 Network Anomalies and Methods for Their Detection.. 40

2.2 Comparative analysis of well-known machine learning algorithms applied in IDS/IPS......... 52

Results and Conclusions of Chapter Two .. 78

3 APPLICATION OF ADVERSARIAL LEARNING IN INTRUSION DETECTION

ALGORITHMS ... 80

3.1 Adversarial Machine Learning .. 80

3.2 Application of adversarial learning in intrusion detection algorithms to realize protection

against attacks .. 88

Results and conclusions of the third chapter.. 107

CONCLUSION .. 109

LIST OF SOURCES USED... 111

5

INTRODUCTION

Modern information technologies play a crucial role in ensuring the national

security of the Russian Federation. Presidential Decree of the Russian Federation dated

May 1, 2022, No. 250 "On Approval of the Strategy for the Development of the

Information Society in the Russian Federation for 2022-2030" identifies one of the

main directions for the development of the information society in Russia as ensuring

the security of critical information infrastructure. In this context, researching

vulnerabilities in intrusion detection systems (IDS/IPS), which are important elements

of information system protection, becomes particularly relevant.

Intrusion detection systems are designed to detect and prevent unauthorized

access to information resources. However, despite their importance, these systems may

contain various vulnerabilities that malicious actors can exploit to penetrate protected

information systems. Researching such vulnerabilities is a necessary condition for

increasing the effectiveness of protecting the critical information infrastructure of the

Russian Federation.

Studying vulnerabilities in intrusion detection systems (IDS/IPS) using

algorithms based on statistical methods and machine learning is a topical issue due to

the constant growth of cyber threats, the need to protect data confidentiality, the

application of cutting-edge technologies, and the prevalence of machine learning

methods in the field of information security.

Conducting research to study vulnerabilities in IDS allows for identifying and

addressing weaknesses in intrusion detection systems, thereby improving their

effectiveness and accuracy in detecting attacks. This is particularly important in the

face of constantly evolving cyber threats, as malicious actors continuously develop new

methods and techniques for intrusion.

Research on vulnerabilities in IDS also contributes to enhancing overall

information security, as it helps detect and mitigate vulnerabilities that could be

exploited to bypass defense systems and conduct successful cyber-attacks.

Works by authors Le Kuang Min, Nguyen An Chuen, Nguyen Chung Thien, and

Fan Hue Anh address the challenges of improving the effectiveness of traditional

6

methods used for detecting network anomalies in network systems. Substantial

contributions to studying this issue were made by Glushchenko M.V., Glushchenko

S.A., Shiryayev A.A., who examined the types and methods of intrusion detection

systems in the information structure of enterprises. Their work reflects the nature of

intrusion detection systems based on anomaly methods, which typically search for

network traffic deviating from the standard network behavior model. Alshaibi A.D.,

Al-Ani M.M., Konev A.A. had a significant impact on solving the problem of this

research. Their works contain fundamental principles of machine learning models,

advantages, and limitations of all detection methods, providing the basis for developing

Intrusion Detection Systems (IDS).

The practical significance of the research lies in the following aspects: the

research results will help identify vulnerabilities in intrusion detection systems

(IDS/IPS), thereby enhancing the overall level of information system security; studying

algorithms based on statistical methods and machine learning will enable the

development of new methods for protection against attacks and their implementation

in existing IDS/IPS systems; the obtained results can be used for training information

security specialists, contributing to raising the qualification level and preparing

personnel in this field.

Modern technologies and internet infrastructure permeate all aspects of our lives,

from banking operations to critical infrastructure systems. With the increasing number

of devices connected to the internet and the volume of digital data, the risk of cyber-

attacks also rises. IDS/IPS play a crucial role in detecting and preventing such attacks.

Hackers continuously refine their methods to bypass existing defense systems.

Traditional intrusion detection approaches based on statistical methods and rules are

becoming less effective against new and advanced threats.

Machine learning (ML) is a powerful tool in cybersecurity, enabling threat

detection through the analysis of large volumes of data and the identification of hidden

patterns. However, there is a risk that attackers may also use ML to create more

sophisticated and stealthy attacks that evade existing IDS/IPS systems.

7

Given these factors, there is an evident need to improve intrusion detection

systems. Researching vulnerabilities in existing IDS/IPS systems based on both

statistical methods and machine learning will help identify and address their

weaknesses, enhancing the effectiveness of detecting and preventing cyber-attacks.

The results of this research can be directly applied to enhancing the security of

information systems in both corporate and government sectors, as well as in developing

new methods for detecting and preventing cyber-attacks.

Thus, researching vulnerabilities in intrusion detection systems (IDS/IPS) using

algorithms based on statistical methods and machine learning is a relevant and

important task in the field of cybersecurity, which requires further research and

development.

To achieve the research goals, a comprehensive approach will be used, including

literature analysis and experimental studies. Specifically, data analysis, examination of

machine learning algorithms, and testing on real datasets and attack simulations will

be conducted.

The scientific novelty offered by this research includes refining existing

algorithms for detecting vulnerabilities in IDS/IPS systems based on a combination of

statistical methods and machine learning. Additionally, the potential application of

machine learning methods for detecting hidden and advanced attacks that traditional

IDS/IPS systems may overlook will be explored.

The research will focus on intrusion detection systems (IDS/IPS) that use

algorithms based on statistical methods and machine learning. The study will

concentrate on the system itself, its components, detection algorithms, and

mechanisms, as well as its operation principles in the context of identifying

vulnerabilities and possible attacks.

The subject of the research is intrusion detection algorithms in IDS/IPS systems

based on statistical methods and machine learning.

Based on existing research and literature sources, the research goals and

objectives have been identified. The main goal is to evaluate IDS/IPS based on

statistical methods and machine learning. Project tasks include:

8

1. Studying intrusion detection algorithms based on statistical methods and

machine learning.

2. Analyzing vulnerabilities in IDS/IPS systems and identifying common

attacks.

3. Studying methods to protect IDS/IPS from common attacks.

4. Developing a test environment for investigating vulnerabilities in

intrusion detection systems.

5. Evaluating the effectiveness of intrusion detection algorithms.

6. Comparing intrusion detection algorithms based on statistical methods

and machine learning.

7. Identifying the most effective intrusion detection algorithm based on

statistical methods and machine learning.

9

1 INTRUSION DETECTION SYSTEMS (IDS/IPS) THAT UTILIZE

ALGORITHMS BASED ON STATISTICAL METHODS AND MACHINE

LEARNING.

1.1 Justification of the relevance of research on vulnerabilities in intrusion

detection systems (IDS/IPS).

The relevance of a systematic literature review on vulnerabilities in intrusion

detection systems (IDS/IPS) and their widespread use for protecting various

organizational networks has been demonstrated by several scholarly works on this

topic.

Glushchenko M.V., Shiryaev A.A., Glushenko S.A. [1] investigated the types

and methods of intrusion detection systems in the information structure of enterprises.

They found that intrusion detection systems based on anomaly detection methods

typically search for network traffic that differs from the standard behavior model of the

network. The main principle is that network traffic behavior during an attack

significantly differs from normal user traffic. IDS using anomaly detection methods

create a profile (model of normal network traffic behavior) based on the standard

behavior of network traffic in the network. When such IDS detects differences in the

current network traffic behavior from the saved profile, an intrusion is recorded.

Intrusion detection systems based on anomaly detection methods are capable of

detecting new attacks whose signatures have not yet been identified. However, it was

also found that the main drawback of this method is false positives when network

traffic behavior deviates from the created profile.

Le Quang Minh, Fan Huy Anh, Nguyen Anh Chuen, Nguyen Chung Thien [2]

concluded that traditional methods used in modern network systems to detect network

anomalies are becoming outdated and ineffective in the face of changing hacker attacks

and methods. In this study, the authors presented an intelligent model of an IPS/IDS

system that combines machine learning with the development of additional updates

10

before new network attacks to improve IDS transmission systems. Thus, this helps the

system effectively prevent attacks even with new types of hacker attacks. The authors'

team created an IDS system based on machine learning, self-learning, and intelligent

reasoning, where new attacks are based on collected datasets. However, the proposed

system still has some shortcomings, such as: the dataset was built over a long period,

there are not many updates, new forms of attack have not been added, and there is a

lack of accuracy.

Kumaga N.K., Grigoryevych A.V. [3] studied the design and implementation of

an intrusion detection and prevention system "IDS/IPS" in the corporate network of

UGTU. They found that currently, in UGTU, to ensure security or protect information,

intermediate access tools (Proxy Server), firewalls (Firewall), and antivirus protection

tools are used. Using only these information security mechanisms does not fully and

effectively detect and prevent unauthorized and malicious activity in the UGTU

network. The authors concluded that the following problems arise from this:

1. Unauthorized access to the network and systems.

2. Unauthorized use of IP telephony.

3. Hacking of sites and web applications.

4. Encryption of users' computers for ransom.

To address these issues, the authors propose using network resources from

external attacks and supplementing existing technologies, which will allow timely

detection and prevention of IDS/IPS intrusions.

A.D. Alshaibi, M.M. Al-Ani, A.A. Konev [4] conducted an extensive systematic

literature review. They analyzed machine learning models and provided information

about the advantages and limitations of all detection methods, laying the groundwork

for the development of Intrusion Detection Systems (IDS). Machine learning methods

(ANN, SVM, KBS) are widely used for developing IDS to timely and automatically

detect and classify cyberattacks. This study provides a general overview of various

approaches to creating machine learning algorithms, their major pros and cons, and

helps select the appropriate algorithm based on the dimensionality and type of input

data.

11

Currently, we observe dynamic growth in scientific activity concerning the

vulnerability assessment of IDS/IPS. Bazhenov I.O. [5] showed that applying ready-

made intelligent attack detection tools "out of the box" to the anomaly detection task

leads to a high number of false positives and misses attacks because network traffic is

a stream that changes daily. Therefore, one approach to solving the attack detection

problem is dynamic, adaptive adjustment of intelligent detectors.

However, in the vast majority of attack detection systems, rule-based methods

are primarily used, as the created rules provide justification for recording an attack at

a specific moment and allow for easier system configuration, whereas intelligent attack

detection methods, due to their complex learning algorithm, represent a black box.

Some authors [6] examined methods and means of ensuring information security

in a local computer network and implementing a module of an intrusion detection and

prevention system based on it, presented in the form of a deceptive system, which

allows combating various network threats by setting traps and falsifying system

parameters. The flexibility of configuration is a feature of such a solution.

Some authors [7] consider signature analysis as an effective preventive measure

against intrusions. However, they conclude that the problem of detecting cybercrimes

is complicated by gaps in existing legislation and that IDS/IPS systems require

continuous improvement and modernization.

Algorithms based on statistical methods and machine learning techniques

significantly enhance the process of detecting new network attacks, learning to identify

them correctly, block them, and prevent future threats.

Analysis of related research in this area has shown an increasing number of high-

quality articles identifying practical and theoretical issues in using IDS/IPS systems.

However, most studies still emphasize the need for continued in-depth research and

systematic study of vulnerabilities in intrusion detection systems (IDS/IPS).

The bibliometric indicators of the corresponding research direction are presented

in Figures 1-3. The trends indicate a growing interest of the scientific community in

research in this direction.

12

Figure 1 - Scientometric Indicators

Figure 2 - Scientometric Indicators

13

Figure 3 - Scientometric Indicators

1.2 Extraction of Data on IDS/IPS Methods Based on Statistical Methods

and Machine Learning Techniques

Inclusion Criteria for the Review:

− Original articles and conference papers describing the study of IDS/IPS

vulnerabilities based on statistical methods and machine learning

techniques, research on intrusion detection algorithms, and evaluation of

algorithm effectiveness against various typical attacks.

− Patent documentation containing descriptions of statistical methods and

machine learning techniques applied in IDS/IPS systems, along with

detailed descriptions of IDS/IPS system architectures.

Exclusion Criteria:

− Documents and conference materials on algorithms not based on

statistical methods and machine learning techniques;

14

− Articles and materials inaccessible via Ural Federal University's corporate

subscription.

Research Question for the Literature Review: What are the existing methods of

intrusion detection systems (IDS/IPS) based on statistical methods and machine

learning techniques? For example, XGBoost, KNN, SVM, etc.?

Potential Users of the Results: specialists in cybersecurity and organizational

system protection, researchers of intrusion detection systems,

Analysis and evaluation of intrusion detection system (IDS/IPS) algorithms

based on statistical methods and machine learning techniques.

Practical Outcome - evaluation of the effectiveness of IDS/IPS protection

methods based on experiments, reducing detection vulnerabilities in systems with

algorithms based on statistical methods and machine learning techniques.

The literature review can be applied in both industrial (practical) and scientific

(research) environments.

Description of the Search Process:

1. Selected Libraries: Elsevier, eLibrary.

2. Selected Timeframe: 2017-2023.

3. Quality Criteria: Only articles indexed in RSCI, HAC, and Scopus.

4. Examples of Search Queries:

15

The step-by-step process for analyzing the documentation is presented in Table 1.

Table 1 - Publication Analysis Process

 Elibrary Elsevier

Step 0 - Query Found: 67 Found: 729

Step 1 - Full-text

Availability Check

Available in full text:

23

Available in full text:

287

Step 2 - Title

and Metadata Analysis

Remaining: 11 Remaining: 184

Step 3 - Abstract

Analysis

Remaining: 7 Remaining: 37

Step 4 - Result

Analysis

Remaining: 4 Remaining: 10

The main goal of the research is to extract methods of intrusion detection systems

(IDS/IPS) based on statistical methods and machine learning techniques from the

documents.

From the IDS/IPS algorithms, it is necessary to extract models based on

statistical methods and those related to machine learning.

The primary aim of data synthesis is to compare existing statistical methods and

machine learning techniques to assess the vulnerabilities of IDS/IPS and to identify

recommendations for addressing these vulnerabilities in IDS/IPS algorithms.

For the search, the technical field was determined by selecting IPC indexes:

1. G06F 21/57 - Certification or maintaining trusted computer platforms, such as

secure booting or shutting down, version control, software system checks, secure

updates, or vulnerability assessment [2013.01].

2. G06F 21/55 - Local intrusion detection or countermeasures [2013.01].

3. G06N 20/00 - Machine learning [2019.01].

4. G06F 21/00 - Devices for protecting computers, their components, programs, or

data against unauthorized activity [2013.01].

16

For the analysis of patent documentation, the following databases were used:

Rospatent, Google Patents.

We analyzed the documentation of patented tools, methods, and algorithms in

the field of information system and data protection, the documentation of patented

methods and algorithms for machine learning applied in the field of information

security, and the documentation of registered software models for electronic computers

(EC).

The main goal is to extract from the patent documentation the machine learning

methods and algorithms used in the field of information security, as well as the methods

and algorithms for the functioning of intrusion detection systems (IDS/IPS) based on

statistical methods and machine learning techniques.

Patent Search Queries for Rospatent:

1. Main Query Area: Intrusion Detection System OR Intrusion Prevention

System

Total Found: 141

Selected Search Bases (number of documents found):

Abstracts of Russian Inventions (RI): 25

Applications for Russian Inventions (ZIZ): 46

Full Texts of Russian Inventions from the Last Three Bulletins (NIZ): 45

Formulas of Russian Utility Models (FPM): 11

Formulas of Russian Utility Models from the Last Three Bulletins (NPM): 3

Prospective Russian Inventions (PI): 11

2. Main Query Area: Intrusion Prevention System OR Intrusion detection

system

Total Found: 13

Selected Search Bases (number of documents found):

Abstracts of Russian Inventions (RI): 0

Applications for Russian Inventions (ZIZ): 0

Full Texts of Russian Inventions from the Last Three Bulletins (NIZ): 10

17

Formulas of Russian Utility Models (FPM): 0

Formulas of Russian Utility Models from the Last Three Bulletins (NPM): 0

Prospective Russian Inventions (PI): 3

3. Main Query Area: (Intrusion Prevention System OR Intrusion detection

system OR система обнаружения вторжений) AND машинное

обучение

Total Found: 7

Selected Search Bases (number of documents found):

Abstracts of Russian Inventions (RI): 0

Applications for Russian Inventions (ZIZ): 3

Full Texts of Russian Inventions from the Last Three Bulletins (NIZ): 3

Formulas of Russian Utility Models (FPM): 1

Formulas of Russian Utility Models from the Last Three Bulletins (NPM): 0

Prospective Russian Inventions (PI): 0

4. Main Query Area: (Intrusion Prevention System OR Intrusion detection

system OR система обнаружения вторжений) AND (машинное

обучение OR статистические методы)

Total Found: 12

Selected Search Bases (number of documents found):

Abstracts of Russian Inventions (RI): 1

Applications for Russian Inventions (ZIZ): 3

Full Texts of Russian Inventions from the Last Three Bulletins (NIZ): 6

Formulas of Russian Utility Models (FPM): 1

Formulas of Russian Utility Models from the Last Three Bulletins (NPM): 0

Prospective Russian Inventions (PI): 1

5. Main Query Area: Система обнаружения вторжений OR Система

предотвращения вторжений AND (машинное обучение OR

статистические методы)

Total Found: 123

Selected Search Bases (number of documents found):

18

Abstracts of Russian Inventions (RI): 21

Applications for Russian Inventions (ZIZ): 38

Full Texts of Russian Inventions from the Last Three Bulletins (NIZ): 39

Formulas of Russian Utility Models (FPM): 11

Formulas of Russian Utility Models from the Last Three Bulletins (NPM): 3

Prospective Russian Inventions (PI): 11

6. Main Query Area: машинное обучение and атаки

Total Found: 27

Selected Search Bases (number of documents found):

Abstracts of Russian Inventions (RI): 3

Applications for Russian Inventions (ZIZ): 3

Full Texts of Russian Inventions from the Last Three Bulletins (NIZ): 21

Formulas of Russian Utility Models (FPM): 0

Formulas of Russian Utility Models from the Last Three Bulletins (NPM): 0

Prospective Russian Inventions (PI): 0

Patent Search Queries for Google Patents:

1. (Intrusion Prevention System) and (machine learning) and (Intrusion

detection system)

2. (Intrusion Prevention System) and (Intrusion detection system) and

after:priority:20170101

Пошаговый процесс анализа патентной документации представлен в

таблице 2.

19

Table 2 - Patent Documentation Analysis Process.

Step Google Patents Rospatent

Step 0 - Query Found: 32,000 Found: 323

Step 1 - Full-text

Availability Check

Remaining: 32,000 Remaining:

300

Step 2 - Title and

Metadata Analysis

Remaining: 46 Remaining: 11

Step 3 - Abstract

Analysis

Remaining: 21 Remaining: 7

Step 4 -

Documentation Analysis

and Data Extraction

Remaining: 2 Remaining: 5

1.3 Task Formulation for Management

The object of management is intrusion detection systems at any enterprise,

including its components, configuration parameters, as well as the processes of

detection and response to threats.

The subject of management is algorithms and methods of intelligent support for

the threat detection process and ensuring the effective operation of the intrusion

detection system.

Within the framework of management task formulation, the aspect of efficiency

parameters of the information system is considered. The following efficiency

parameters have been identified:

1. Detection Accuracy:

− The proportion of truly detected attacks and anomalies among all detected

events.

− Measured by the ratio of the number of correctly classified events to the

total number of detected events.

20

2. False Positives:

− The proportion of events incorrectly classified as attacks or anomalies

among all detected events.

− Measured by the ratio of the number of false positives to the total number

of detected events.

3.False Negatives:

− The proportion of actual attacks or anomalies that the system failed to

detect among all real attacks or anomalies.

− Measured by the ratio of the number of undetected attacks to the total

number of real attacks.

4. Response Time:

− The time required for the system to detect and respond to a threat after its

occurrence.

− A shorter response time usually indicates a more efficient system.

Innovation refers to the transformation of the flow of information resources.

Let's consider this transformation through the prism of the "black box" model:

Рисунок 4 – Схематическая модель «черного ящика».

1. Input: Network traffic (data packets, network activity events), metadata

about network activity (e.g., source, destination, port, protocol, etc.).

21

2. Output: Determination of whether the network activity is normal or

abnormal (possibly indicating the type of attack), decision to block or

allow network activity (in the case of IPS).

3. External environment: Network infrastructure: network nodes, routers,

switches, etc. Network protocols and standards. Network topology and

application architecture.

4. Feedback: In the event of detecting an attack or suspicious activity, the

IDS/IPS system can generate notifications or alerts for the system

administrator. In the case of blocking network activity, information about

the system's actions may be sent back to logs or monitoring system for

subsequent analysis or response.

An information security system can be considered as consisting of four

subsystems:

1. Access control subsystem;

2. Registration and accounting subsystem;

3. Cryptographic subsystem;

4. Integrity assurance subsystem.

This research focuses on the access control subsystem.

As a supersystem, the information security department can be considered

responsible for the integrity of the information system and receiving reports on the

results of the intrusion detection system's operation. The supersystem coordinates the

subsystem's work and interacts with the external environment.

Intrusion Detection System (IDS/IPS): This is the primary system that analyzes

network activity, detects anomalies or potential attacks, and makes decisions about

blocking or allowing traffic.

In the framework of the management task formulation, answers to questions of

the conceptual model were provided:

1. Main function: Implementation of the continuous analysis process of

network traffic and events to identify and prevent potential attacks and

anomalous activity in the network.

22

2. System structure: Internal server-side and external interface parts of the

intrusion detection and prevention system.

Internal server-side part:

− Sensors (data collection): Responsible for collecting and filtering network

traffic and events.

− Analyzers (data analysis): Apply intrusion detection algorithms to analyze

collected data and detect anomalies.

− Reacting devices (decision-making and response): Responsible for

making decisions and taking actions to prevent threats.

3. System operation direction: Improvement of the continuous detection and

prevention process of potential attacks and anomalous activity in the

network, thereby ensuring the necessary security and integrity of the

information infrastructure.

4. Goal: Ensuring the security of the organization's network infrastructure

by detecting and blocking attempts of unauthorized access, as well as

anomalous activity, which may indicate an attack or threat.

Let's define some factors that influence the value of the previously highlighted

performance indicators:

1. Types of attacks and threats. Different types of attacks may have different

characteristics and behavior patterns, which can affect the intrusion

detection system's ability to identify them.

2. Quality of training data. The quality of data used for training machine

learning algorithms or creating attack signatures can significantly affect

the accuracy and reliability of detection.

3. Configuration parameters. Proper configuration of system parameters,

such as thresholds for anomaly detection and false positive thresholds, can

significantly affect its effectiveness.

4. Technical architecture. The system's efficiency also depends on hardware

and software, network architecture, and the location of sensors.

23

5. Network scale. The size and scale of the network can affect the

performance and capabilities of the intrusion detection system.

6. Staff training. The level of training and education of personnel responsible

for configuring and monitoring the system can also significantly affect its

effectiveness.

7. Degree of integration. Integrating IDS/IPS with other security systems

and network devices can affect its ability to respond quickly to threats and

coordinate actions.

The lifecycle of managing the operation algorithms of intrusion detection and

prevention systems may include the following stages:

1. Analysis and Planning:

− Defining the requirements for the intrusion detection and prevention

system.

− Studying existing algorithms and methods for threat detection and

prevention.

− Planning the strategy for updating and changing algorithms according to

security needs and requirements.

2. Algorithm Selection:

− Choosing the most suitable algorithms and methods for implementing the

intrusion detection and prevention system.

− Taking into account security requirements, performance, and other

factors.

3. Development and Implementation:

− Developing and implementing the selected algorithms and methods within

the intrusion detection and prevention system.

− Integrating algorithms into the overall system architecture.

− Testing and debugging new algorithms.

4. Operation and Monitoring:

− Deploying the system in the operational environment.

24

− Monitoring the operation of the system and intrusion detection and

prevention algorithms.

− Monitoring the performance and effectiveness of algorithms in real

operational conditions.

5. Update and Adaptation:

− Conducting regular updates of algorithms according to changing threats

and security requirements.

− Adapting algorithms to new types of attacks and changes in the network

environment.

6. Analysis and Optimization:

− Regularly analyzing the effectiveness and performance of algorithms.

− Optimizing algorithm operation based on the results obtained and

feedback from monitoring.

7. Removal and Replacement:

− In case of obsolescence or insufficient effectiveness of algorithms,

removing them and replacing them with more modern or efficient

alternatives.

The current state of the system can be represented as follows:

𝑆0 = {𝑃0
𝑖}, (1),

where P0 – represents the initial values of parameters, i = 1, 2…n – denotes the

number of parameters.

To solve the control problem, the system must reach a final state described as:

𝑆𝑘 = {𝑃𝑘
𝑖 } (2),

where Pк – represents the final values of the system parameters.

The following parameters will be used to solve the problem:

1. Precision - measures how much the classifier can be trusted:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
 (3),

25

2. Recall - indicates how many items of the class "attack present" are correctly

identified by the classifier:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
 (4),

3. F1-score - the harmonic mean between precision and recall (the closer to 1, the

better):

𝐹 =
(2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙)
 (5),

4. Accuracy - the proportion of correct answers by the algorithm:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
 (6),

Notation used in the metrics formulas:

1) TP (true positive) - the number of true positive results,

2) TN (true negative) - the number of true negative results,

3) FP (false positive) - the number of false alarms,

4) FN (false negative) - the number of missed attacks.

Goal of management (Zu):

 𝑍𝑢 = max 𝐾 (7),

Where maxK - represents the maximization of cases of detecting unauthorized access

attempts, as well as anomalous activity that may indicate an attack or threat and

ensuring the security of the network infrastructure.

Control vector (ufunc):

𝑢(𝑡) = [𝑢𝑓𝑢𝑛𝑐] (8),

where ufunc - denotes the control of operation (alteration of system operation

algorithms).

In the generalized model of the control system, the controlling subsystem is the

intrusion detection system (IDS/IPS).

The controlling subsystem establishes the parameters and rules of operation of

the system, as well as monitors and controls its functioning.

26

The controlled subsystem, in turn, is the server part from which network traffic

data is received into the intrusion detection system.

The scheme of the management task is presented in Figure 5.

Figure 5 - Scheme of the system's management task formulation.

Results and conclusions of the first chapter

Networks play a crucial role in modern society, and cybersecurity has become a

critically important area of research. Intrusion Detection Systems (IDS) monitor the

operation of software in the network, but existing IDS still face challenges in increasing

detection accuracy, reducing false alarms, and recognizing new types of attacks. To

address these issues, many researchers focus on creating IDS that utilize machine

learning algorithms.

Supervised machine learning uses labeled data to train a model, which can then

predict labels for new data. For example, a spam classifier can determine whether a

 Subject of management

object of management
S(t) = ({Pi}, … t)

u(t) = [ufunc]

Goal of management: Zu = maxK

Данные

Система

External environment

f(t)

27

new email is spam or not. Unsupervised machine learning, on the other hand, works

with unlabeled data. For instance, in clustering botnets attacking the network, they need

to be distinguished from each other without predefined labels. Classification and

regression analysis are examples of supervised machine learning, while clustering

represents a form of unsupervised machine learning.

Machine learning methods can accurately identify differences between normal

and anomalous data and detect unknown attacks due to their generalization ability.

Cybersecurity methods mainly include antivirus software, firewalls, and Intrusion

Detection Systems (IDS). Among them, IDS is a type of detection system that plays a

key role in cybersecurity by monitoring the status of software and hardware operating

in the network.

It is worth noting that the lack of available datasets can be the biggest challenge.

Thus, unsupervised learning and incremental learning approaches have broad prospects

for development. For practical IDS, interpretability is essential because interpretable

models are more persuasive. The interpretability of models could be an important

research direction for IDS in the future.

In the article "Applying convolutional neural network for network intrusion

detection (Conference Paper)" [8], the authors concluded that Convolutional Neural

Network (CNN) architectures in deep learning have achieved significant results in

computer vision. To transform this performance into intrusion detection (ID) in

cybersecurity, in this document, network traffic is modeled as a time series,

specifically, Transmission Control Protocol/Internet Protocol (TCP/IP) packets in a

predefined time range with supervised learning methods, such as Multilayer Perceptron

(MLP), CNN, CNN-Recurrent Neural Network (CNN-RNN), CNN-Long Short-Term

Memory (CNN-LSTM), and CNN-Gated Recurrent Unit (GRU), using millions of

known good and bad connection networks.

The methodology involves measuring the effectiveness of the proposed

approaches. The authors evaluated the most significant synthetic ID dataset, such as

KDDCup 99. For selecting the optimal network architecture, the article conducted a

comprehensive analysis of various MLP, CNN, CNN-RNN.

28

The models in each experiment were run for up to 1000 epochs with a learning

rate in the range [0.01-05]. CNN and its architecture variations significantly

outperformed classical machine learning classifiers. This was mainly because CNN has

the ability to extract high-level feature representations, which are abstract forms of

low-level feature sets of network traffic connections.

Deep Neural Network (DNN) is widely used for complex systems, allowing

abstraction of features and learning as a machine learning method. Some researchers

[9] used deep learning methodology to develop efficient and flexible IDS using one-

dimensional Convolutional Neural Network (1D-CNN). The machine learning model

based on 1D-CNN serialized Transmission Control Protocol/Internet Protocol

(TCP/IP) packets in a specified time range as an intrusion internet traffic model for

IDS, where normal and abnormal network traffic is classified and labeled for

supervised learning in 1D-CNN.

As a result of comparative performance research, Random Forest (RF) and

Support Vector Machine (SVM) models based on machine learning were used in

addition to 1D-CNN with various network parameters and architecture. In each

experiment, the models were trained for up to 200 epochs with a learning rate of 0.0001

on both imbalanced and balanced data. 1D-CNN and its architecture variations

outperformed classical machine learning classifiers.

In the article "Intrusion detection using neural networks and support vector

machines" [10], the authors conducted experiments on two datasets - KDD Cup 1999

and DARPA 1999, and compared the results with other intrusion detection methods

such as Bayesian networks and decision trees. The authors proposed a Multilayer

Perceptron (MLP) and SVM architecture for intrusion detection. The results showed

that models based on MLP and SVM provide high intrusion detection accuracy,

outperforming other methods.

The ensemble feature selection method improves the quality of feature selection

and reduces selection time. This method was proposed by foreign researchers [11],

whose goal was to develop a new approach to feature selection for intrusion detection

systems. Experiments were conducted on several datasets: DARPA98, KDD99,

29

ISC2012, and ADFA13, to evaluate the effectiveness of the proposed method. The

results showed that the proposed method outperforms other feature selection methods

in terms of accuracy, recall, and F-score metrics, while having lower computational

complexity.

However, it is worth noting that the authors do not consider the impact of the

number of selected features on the performance of the intrusion detection system.

Additionally, there was no comparison with other methods based on ensemble filters,

which could be an interesting aspect for future research in this area.

The "one-class SVM" algorithm (support vector machine method for anomaly

detection) for creating an ensemble of models improves the efficiency of attack

detection [12]. Experimental evaluation of this method was conducted on two datasets:

KDDCup'99 and DARPA2000. The experiments showed that the proposed method

outperforms other methods (including SVM with RBF kernel and multilayer

perceptron). The analysis of the experiment results also helped identify which data

characteristics affect the quality of attack detection. As a result, it was found that using

different feature sets and tuning algorithm parameters can significantly affect the

effectiveness of attack detection.

The article describes an intrusion detection system, a variety of intrusion

detection methods to combat cybersecurity threats, which can generally be divided into

signature-based intrusion detection systems (SIDS) and anomaly-based intrusion

detection systems (AIDS). Some authors propose using machine learning algorithms

for network traffic classification, as well as visualizing the obtained results for

convenient analysis [13]. Authors used Bayesian networks, decision trees, and artificial

immune system cloning algorithms as machine learning methods. The most popular

publicly available datasets used for IDS research were examined, and their data

collection methods, evaluation results, and limitations were discussed.

The testing was conducted only using DARPA/KDD99 datasets collected in

1999 as they are publicly available, and there are no other alternative and acceptable

datasets. It is worth noting that despite their widespread recognition as a standard, these

30

datasets no longer reflect modern "zero-day" attacks. Although the ADFA dataset

contains many new attacks, it is still insufficient.

The article "Hybrid anomaly detection system for intrusion detection" [14]

describes a new hybrid approach to anomaly detection for intrusion detection systems.

The authors propose using statistical methods such as the maximum likelihood

algorithm and decision tree-based classifiers, combined with neural networks to create

an effective intrusion detection system.

The authors proposed using a variety of features, including flow information,

ports, protocols, sessions, packet size, etc., as well as a variety of algorithms such as

decision trees, SVM, and neural networks, to detect anomalies in network traffic.

The authors evaluated the performance of their system on the DARPA 1998

dataset, and the results showed that the hybrid approach outperforms individual

methods such as SVM and neural networks in anomaly detection accuracy.

Considering the current types of attacks, one of the main problems is the "Denial

of Service" (DoS) and "Distributed Denial of Service" (DDoS) attacks in a cloud

environment [15]. To address this issue, using an Intrusion Detection System (IDS) as

a security procedure operating at the network level is proposed. Conventional IDS in

the cloud platform leads to low detection accuracy with high computational

complexity. M. Mayuranathan, M. Murugan, V. Dhanakoti presented an efficient

classification model based on feature subset selection for identifying DDoS attacks

[15]. For DDoS attack detection in IDS, feature sets with maximum detection using the

Random Harmony Search (RHS) optimization model were selected. After selecting

features for DDoS detection, a deep learning-based classifier model using Restricted

Boltzmann Machines (RBM) was applied. To increase the speed of DDoS attack

detection, a set of seven additional layers was included in the visible and hidden layers

of RBM.

As a result, accurate results are achieved through the optimization of

hyperparameters of the presented deep RBM model. The probability distribution of the

visible layer in the RBM model is replaced with a Gaussian distribution. For

experiments, the RHS-RBM model was tested on the KDD'99 dataset.

31

Experimental results showed that the RHS-RBM model provides maximum

accuracy - 99.92 and an F-score of 99.93. These obtained values of the RHS-RBM

model were found to be better compared to the RBM model without using the RHS

algorithm.

Many foreign and domestic researchers in the field of machine learning and

cybersecurity conduct reviews in this area. For example, the authors of the article "A

survey on machine learning techniques in wireless sensor networks intrusion detection"

[16] reviewed 68 studies published from 2007 to 2014. The article discusses various

machine learning methods used for intrusion detection in wireless sensor networks,

such as neural networks, decision trees, support vector machines, naive Bayesian

classifiers, etc.

One of the main conclusions of the article is that machine learning methods are

an effective tool for intrusion detection in wireless sensor networks and can be used in

combination with other methods to improve the efficiency of intrusion detection

systems. It is also noted that to achieve high intrusion detection accuracy, it is necessary

to consider the specific characteristics of wireless sensor networks, such as limited

resources and the possibility of attacks at the physical device level.

Computer networks are constantly threatened by malicious actors who attempt

to gain unauthorized access to systems on them. Malicious actors constantly refine their

attack methods, while network administrators develop new defense measures in

response to these threats. This ongoing interaction leads to the emergence of new

vulnerabilities and exploits, as well as the removal of ineffective attack methods.

Network administrators must anticipate the detection of new threats and respond to

them quickly. Identifying and blocking new exploits presents a complex challenge for

administrators, especially if the attack targets a small number of services on the

network or has not yet gained widespread use.

LO Penchen, BRIGGS Reeves Hopp, AHMAD Navid patented an invention

related to the field of network security [17]. Its technical result consists of providing

more reliable and fast identification of new forms of attacks, increasing network

security, and reducing processing resources used to protect the network from malicious

32

entities. The result is achieved through a method of providing security for an online

service provided over the network, using a model with continuous learning, which

includes collecting a set of security signals, with the set of security signals collected in

a sliding time window; identifying whether each security signal from the set of security

signals is malicious or harmless; creating a balanced training dataset for the sliding

time window by: ensuring a balance of malicious signals from the set of security signals

based on the type of attack identified for each malicious signal, ensuring a balance of

harmless signals from the set of security signals to create a balanced training dataset

based on the type of device from which each harmless signal is received, and ensuring

a balance of malicious signals with harmless signals by cross-connecting malicious

signals with harmless signals; and creating a predictive model based on the balanced

training dataset, wherein, in response to receiving an additional security signal related

to a new network session from the online service, the predictive model is applied to

determine whether this additional security signal is malicious or harmless [17].

By integrating continuous learning intrusion detection models into the network,

the capabilities of devices and software are improved. This allows for faster and more

reliable identification of new types of attacks, solving the problem of increasing

network security. It also allows for more efficient use of computational resources,

without spending them on detecting outdated attack methods, thereby reducing the load

on the defense system against malicious actors.

To determine whether users are harmless or malicious, or whether devices are

harmless (not sending malicious signals) or compromised (sending malicious signals),

various security signals from the online service are collected and fed into production

models to generate detection results indicating whether a given session is malicious or

harmless. Security signals such as event logs, network state traces, and system

commands undergo analysis using production models that evaluate their

characteristics. Feature values are determined by training production models to detect

malicious or safe behavior. The training data sampling mechanism excludes safe

signals received from compromised devices in real-time, leaving only malicious

signals from compromised devices.

33

The model adjusts rules or algorithms over several cycles, changing the values

of variables that affect the input data to more accurately match the desired outcome.

However, due to the variability of the training dataset and its large volume, achieving

perfect metrics such as accuracy and precision may be unattainable.

Thus, each security signal is analyzed in a production model, which is created

by training the model on a balanced dataset and tuned to determine whether a specific

security signal is malicious or safe. With the active development of computer

technology and networks, the task of detecting computer attacks and timely detecting

cases of server infection with malicious software becomes increasingly relevant.

Network-level intrusion detection systems (IDS) use decision rule bases. These

rules contain criteria for analyzing communication sessions and recording information

security events. The criteria describe the content and attributes of network connections

that the system considers malicious within the established syntax.

In practical application, network IDS tasks include: timely updating the decision

rule base for more effective detection of new threats; reducing the number of type I

errors (false positives) [21]. Kislicin N.I. considers in his patent documentation a

method of autogenerating decision rules for intrusion detection systems with feedback,

performed on a server, which includes at least the following steps: receiving at least

one event from the event database formed by data received from at least one sensor;

analyzing the received at least one event for belonging to the class of interaction with

command and control centers of malware; extracting from at least one of the above

events belonging to the class of interaction with command and control centers of

malware, at least one feature used to form decision rules; forming decision rules using

at least one of the above extracted features; saving the generated decision rules and

providing the possibility of receiving updates to the decision rules for at least one

sensor; sensors cyclically check the availability of updates on the central node and, if

updates are available, receive them for use, in case of receiving updates on the sensors,

a trigger is triggered, rebooting the decision rules [21].

The rule generation module, capable of analyzing events received from sensors,

receives at least one event from the event database of the central node, received from

34

at least one sensor, and analyzes it for belonging to the class of interaction with

command and control centers of malware based on the list of identifiers of the rules of

the module database. If the event belongs to such a class, the module extracts at least

one feature from the event used to form decision rules.

Various identifiers can be used as features, such as the IP address of the data

recipient or the domain name, which can be extracted from the service headers of

transmitted data. For example, for the HTTP protocol, the domain name can be found

in the Host field, and for DNS, from the binary data structure according to RFC 1035.

In the case of the TDS protocol, the domain name can be extracted from the "client

hello" message with the SNI extension.

After extracting features, the rule creation module checks if these characteristics

are present in the list of allowed names. If they are present in this list, processing of

these features is completed.

In their invention "Deep-learning-based intrusion detection method, system and

computer program for web applications" [22], the authors patented an invention related

to deep learning-based intrusion detection, namely, a method for detecting whether

traffic is a hacker attack based on a deep neural network (DNN) model after setting up

network traffic entering the server as input data to the model.

The authors suggest conducting analysis based on signatures as one of the

intrusion detection methods. It represents a scheme for searching for a specific pattern

corresponding to a known attack threat, and regular expressions are used to analyze

strings by comparing strings with an already saved list of signatures. When a pattern

with a specific signature is detected in the useful data packet, the strings are considered

an attack. An accurate and limited list of signatures can reduce the number of false

positives. Signature-based analysis methodology may be successful if up-to-date

signature patterns are supported, however, an unknown attack, such as a zero-day

attack (a security attack exploiting a security vulnerability before the vulnerability is

widely known after its discovery) or the latest malware, may not be detected.

To address the above problems, the present invention provides an effective

intrusion detection system through the use of deep neural networks in the form of

35

complex web service protocol messages (Hypertext Transfer Protocol (HTTP)), which

is the most common and representative for the company among various application-

level services. In particular, the present invention provides a method for detecting web

application threats, a system, and a computer program implementing it, configured to

identify security threats by bypassing and interfering with the signature-based security

detection scheme.

To achieve the above-mentioned objectives, the deep learning-based intrusion

detection method for web applications according to the present invention includes: (a)

inputting input data formed by preprocessing traffic data on the web server into a deep

neural network model for intrusion detection; (b) outputting from the intrusion

detection model information on whether intrusion is detected in the traffic data; and (c)

generating an alarm signal when intrusion is detected.

In their research work titled "Cybersecurity detection and mitigation system

using machine learning and advanced data correlation" [23], the authors described

methods related to active security risk reduction, which are detected through combined

analysis of risky users and compromised systems, a capability currently not available

on the market.

Reducing attacks and risks, based on a unified view of system security as well

as on identification and access constraints, can be achieved using a comprehensive

Enterprise Cybersecurity Defense System (eCDS). Such an eCDS can provide the

methods and design elements necessary to create a full-fledged system capable of

providing active protection and mitigating unforeseen and dynamically detected

cyberattacks. Such a system can be beneficial to organizations like PayPal™ as well as

other individuals and corporations.

Thus, in various implementation scenarios outlined in the study, data from

multiple domains (such as user identity, system logs) can be integrated into a machine

learning-based solution that can recognize anomalous attempts to access electronic

resources. These anomalous attempts may not be recognized by a simple rule-based

system, as they could potentially be problematic. For example, a firewall might be

configured to allow access to certain communication ports, or a specific user might

36

have access to a wide range of files and relational databases. However, statistically

improbable (e.g., anomalous) access attempts may still indicate a fundamental security

issue, even if such access could be permitted within a rule-based system.

As a result of the research, the choice of dataset for training can be highlighted.

For training attack detection systems among the available public datasets, the

"Intrusion Detection Evaluation Dataset" CICIDS2017 was selected. The CICIDS2017

dataset was prepared based on the analysis of network traffic in an isolated

environment, where the actions of 25 legitimate users as well as malicious actions of

intruders were simulated. The dataset combines over 50 GB of "raw" data in PCAP

format and includes 8 pre-processed files in CSV format containing annotated sessions

with selected features observed on different days. A brief description of the files is

presented in Table 3, and the quantitative composition of the dataset is provided in

Table 4.

Table 3 - Brief description of files from the dataset.

Brief description of files from the dataset

№ File Name Contained Attacks

1 Monday-

WorkingHours.pcap_ISCX.csv

Benign (обычный

трафик)

2 Tuesday-

WorkingHours.pcap_ISCX.csv

Benign, FTP-Patator, SSH-

Patator

3 Wednesday-

workingHours.pcap_ISCX.csv

Benign, DoS GoldenEye,

DoS Hulk, DoS Slowhttptest,

DoS slowloris, Heartbleed

4 Thursday-WorkingHours-

Morning-WebAttacks.pcap_ISCX.csv

Benign, Web Attack –

Brute Forse, Web Attack – Sql

Injection, Web Attack - XXS

5 Thursday-WorkingHours-

Afternoon-

Infilterations.pcap_ISCX.csv

Benign, Infiltration

37

6 Friday-WorkingHours-

Morning.pcap_ISCX.csv

Benign, Bot

7 Friday-WorkingHours-

Afternoon-PortScan.pcap_ISCX.csv

Benign, PortScan

8 Friday-WorkingHours-

Afternoon-DDoscap_ISCX.csv

Benign, DDoS

Table 4 - Quantitative composition of the dataset.

Quantitative composition of the dataset

№ Record Type Number of Records

1 BENING 2359087

2 DoS Hulk 231072

3 PortScan 158930

4 DDoS 41835

5 DoS GoldenEye 10293

6 FTP-Patator 7938

7 SSH-Patator 5897

8 DoS slowloris 5796

9 DoS Slowhttptest 5499

10 Bot 1966

11 Infiltration 36

12 Heartbleed 11

13 Web Attack – Brute Force 1507

14 Web Attack – XSS 652

15 Web Attack – SQL Injection 21

38

At Figure 6, a fragment from the dataset is presented.

Figure 6 - Dataset for the research.

For further analysis, the following 10 most common machine learning models

(algorithms) were selected for comparison (abbreviations are provided in parentheses

along with the corresponding implementation of the model from the scikit-learn

package):

1. K-Nearest Neighbors (KNN, sklearn.neighbors.KNeighborsClassifier).

2. Support Vector Machine (SVM, sklearn.svm.SVC).

3. Decision Tree (CART, CART learning algorithm,

sklearn.tree.DecisionTreeClassifier).

4. Random Forest (RF, sklearn.ensemble.RandomForestClassifier).

5. AdaBoost (AdaBoost, sklearn.ensemble.AdaBoostClassifier).

6. Logistic Regression (LR, sklearn.linear_model.LogisticRegression).

7. Naive Bayes (NB, sklearn.naive_bayes.GaussianNB).

8. Linear Discriminant Analysis (LDA,

sklearn.discriminant_analysis.LinearDiscriminantAnalysis).

9. Quadratic Discriminant Analysis (QDA,

sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis).

10. Multi-layer Perceptron (MLP, sklearn.neural_network.MLPClassifier).

From the literature review on vulnerability research of intrusion detection

systems (IDS/IPS) based on statistical methods and machine learning methods, the

following conclusions can be drawn:

1. Analyzing intrusion detection algorithms such as XGBoost, KNN, SVM, and

others reveals the diversity of approaches to cybersecurity problem-solving.

Assessing the effectiveness of these algorithms across various types of

attacks demonstrates the potential for enhancing the detection and prevention

of new network threats.

39

2. Research into scientific papers and patents indicates the ongoing

development of intrusion detection methods based on statistical techniques

and machine learning, emphasizing the relevance and significance of this

topic for cybersecurity.

3. The objective of evaluating IDS/IPS based on statistical methods and

machine learning is to enhance the level of protection for information

systems against cyberattacks. Investigating vulnerabilities in IDS/IPS

systems and identifying common attack types helps to better understand

weaknesses in existing systems and develop more reliable defense

mechanisms.

4. The project tasks, such as algorithm analysis, test environment development,

algorithm effectiveness assessment, and approach comparison, provide a

deep understanding of cybersecurity issues and identify the most effective

protection methods. The research findings can be utilized by cybersecurity

professionals to enhance intrusion detection systems in both industrial and

academic settings.

Thus, the analysis of intrusion detection algorithms based on statistical methods

and machine learning indicates a low level of research depth in the subject matter and

the potential for significant improvement in cybersecurity through the application of

modern methods and technologies.

40

2 COMPARATIVE ANALYSIS OF EXISTING MACHINE LEARNING

METHODS FOR ASSESSING IDS/IPS VULNERABILITIES

2.1 Network Anomalies and Methods for Their Detection

2.1.1 Types of Network Anomalies

Currently, one of the actively developing and demanded directions in the field

of information security is the detection of attacks and prevention of intrusions by

malicious actors into computer systems and corporate networks. To achieve this, a

range of specialized algorithms and tools are applied, using behavior models and

signature methods to detect known and unknown attacks and identify anomalous

activities. This approach is highly effective in detecting insider attacks and "zero-day"

attacks.

An anomaly is a deviation or divergence from a rule, so anything deviating or

diverging from what is correct or normal is considered anomalous.

When detecting a network anomaly, in order to make decisions about further

actions, it is necessary to carefully study its nature, potential danger, and possible

consequences, i.e., to solve a classification problem. In this work, a generalized

approach to the classification of network anomalies is proposed (Figure 7).

41

Figure 7 – generalized approach to the classification of network anomalies

As the main classification features, the following are used:

1. Source type;

2. Cause of occurrence;

3. Area (location) of occurrence;

4. Manifestation method;

5. Nature of changes.

In this regard, for identifying potential network attacks, the most significant

features would include the source of occurrence, the area of manifestation, and the

nature of traffic changes. Table 4 presents a description of the relationship between

anomalies classified by the cause of occurrence and the nature of network traffic

changes.

42

Table 4 - Description of network traffic anomalies.

Type and cause

of network

anomaly

Description Traffic change characteristics

Alpha

Anomaly

Extremely high point-to-

point traffic level

Spike in traffic representation in

bytes/s, packets/s for a dominating

source-destination flow. Duration

around 10 minutes.

DoS-, DDoS- Distributed denial-of-service

attack on a single victim

Spike in traffic representation in

packets/s, flows/s, from multiple

sources to a single destination address.

Overload Unusually high demand on a

single network resource or

service

Spike in traffic per flows/s to a

dominating IP address and port.

Typically a short-term anomaly.

Network/Port

Scanning

Network scanning for

specific open ports or host

scanning for all ports to

identify vulnerabilities

Spike in traffic per flows/s, with

multiple packets in streams originating

from a single dominating IP address.

Worm Activity Malicious software capable

of self-propagation across

networks and exploiting OS

vulnerabilities

Spike in traffic without a dominating

destination address, but always with one

or several dominating destination ports.

Point-to-

Multipoint

Content distribution from one

server to multiple users

Spike in bytes from a main source to

multiple destinations, to a well-known

port.

Outages Network disruptions causing

a drop in traffic between a

source and destination pair

Decrease in packet, flow, and byte

traffic typically down to zero. May be

long-term and include all traffic flows

from or to a single router.

Flow switching Unusual switching of traffic

flows from one incoming

router to another

Drop in bytes or packets in one traffic

flow and an increase in another. May

involve multiple traffic flows.

2.1.2 Methods of anomaly detection

Passive Network Monitoring: The computer network includes sensors that

collect data from the network and evaluate it. In this scenario, there are two

possibilities. The collected data may be intended directly for the sensors (for example,

events sent via the SNMP protocol), or it may be a copy of the production traffic

occurring in the network regardless of whether a sensor is connected or not.

43

Active Network Monitoring: The network may also contain sensors that generate

additional traffic, which they send through the network. This traffic can be used to

continuously determine the availability or general parameters of the tested services,

network lines, and devices.

Accordingly, methods of anomaly detection in these categories can be divided

into four broad groups: behavioral methods, machine learning methods, computational

intelligence methods, and knowledge-based methods.

Figure 8 - Anomaly Detection Methods

2.1.2.1 Behavioral Methods

Wavelet transformation of a one-dimensional signal involves decomposing it

into a basis constructed from a soliton-like function (wavelet) with certain properties,

using scale changes and translations. Performing wavelet transformation allows for a

clearer distinction of the signal component with greater amplitude and reduces the

influence of small amplitudes, which mostly represent noise components of the signal.

Statistical analysis is a part of behavioral methods for intrusion detection and is

based on comparing the current state of the network with predefined features

characterizing the normal state of the network. The major challenge lies in attacks with

44

anomalous behavior in the header of selected packet telecommunications traffic. The

application of statistical analysis methods is the most common way to implement

anomaly detection technology.

For real-time analysis of anomalous intrusions, the following current statistical

characteristics are calculated: sample mean, sample variance, skewness coefficient, and

kurtosis coefficient. The detection process occurs in two stages. In the first stage,

training is performed, assuming the absence of anomalous outliers in the observed

interval. During this period, the threshold for anomaly detection is determined based

on a specified probability of Type I error. The key moment for accurate detection is the

correct selection of the training segment, where the threshold level is established. Then,

according to the proposed methodology, a decision is made about the presence or

absence of an attack by analyzing data in a sequentially shifting window. At each

window position, the analysis is based on a sequential data analysis.

Statistical analysis methods can be divided into two main groups:

1. Parametric methods: Assume that normal data is generated by a parametric

distribution with parameters θ and probability density function P(x,θ), where x

is the observation. An anomaly is the inverse function of the distribution. These

methods are often based on Gaussian or regression models, as well as their

combinations.

2. Non-parametric methods: It is assumed that the model structure is not

predefined, but is determined from the provided data. This category includes

methods based on histograms or kernel functions.

Anomaly detection systems based on the concept of "entropy" analyze network

flows rather than individual network packets. Network flows represent one-way

metadata about packets with the same source and destination IP addresses, ports, and

IP protocol type. It is important to note that all network activity at OSI model levels 3

and above is reduced to flows, including not only TCP connections but also stateless

45

protocols such as UDP and ICMP. The advantages of using the concept of flows

include the following:

− They require minimal resources for usage and storage, facilitating

analysis.

− They pose fewer problems with confidentiality and protection of personal

data.

− Access to the necessary information in the network is easily organized, for

example, through Cisco NetFlow, sFlow, or IPFIX.

Spectral methods find data approximation using a combination of attributes that

capture most of the variability in the data. This methodology is based on the assumption

that data can be embedded in a lower-dimensional subspace where normal states and

anomalies manifest differently. Spectral methods are often used in conjunction with

other algorithms for data preprocessing. Modifications of spectral methods are

investigated in the work by V.P. Shkodyrev, K.I. Yagafarov, V.A. Bashtovenko [24].

Fractal analysis methods allow timely detection of anomalous traffic. The main

parameter of fractal analysis is the Hurst exponent (scaling exponent). It is most

commonly used in time series analysis. The larger the delay between two identical pairs

of values in a time series, the smaller the Hurst exponent. The hypothesis is advanced

that to find the Hurst exponent, it is sufficient to know whether the process under study

is stationary or not. The choice of algorithm for further computation of this exponent

depends on this. It should be noted that there are few practical experiments aimed at

studying the fractal properties of traffic.

All statistical analysis methods have similar drawbacks. Firstly, malicious

software adapts to the behavior of ordinary users, which reduces the effectiveness of

statistical methods. Secondly, it is difficult to establish a threshold that allows for

effective detection of anomalies and intrusions with minimal false positives. In

addition, statistical methods require complete information about the processes taking

place, which is challenging in conditions of limited data.

46

2.1.2.2 Machine Learning Methods

The reason for using machine learning is that it can help automate threat

processing and continuously update the system by analyzing threats and recognizing

them. In other words, the software learns to recognize traffic patterns in order to

classify different events and either reject or allow traffic.

Machine learning is the ability of a program or system to learn and improve its

functions based on the tasks assigned. Unlike statistical methods, which focus on

understanding the process itself, machine learning involves creating a system that

evolves based on accumulated knowledge. Machine learning-based systems can adjust

their data processing strategy in response to new information. However, machine

learning methods require significant computational resources, and adapting them to

specific domains can be challenging. The ML approach typically consists of the

following stages:

− Defining class attributes (features) and the classes themselves in the

training data.

− Determining a subset of attributes needed for classification (i.e.,

dimensionality reduction).

− Training the model using training data.

− Using the trained model to classify unknown data in testing mode.

Depending on the type of data classes used to implement the algorithm, anomaly

detection methods can be performed in one of the following three modes:

1. Supervised anomaly detection: This method requires a training set that fully

represents the system and includes instances of both normal and anomalous data

classes. The algorithm operates in two stages: training and recognition. During

training, a model is built, which is then used to compare unlabeled instances. In

most cases, it is assumed that the data does not change its statistical

characteristics; otherwise, there is a need to modify the classifier.

2. Semi-Supervised anomaly detection: In this approach, the original data

represents only the normal class. After being trained on one class, the system

47

can determine whether new data belongs to it, thereby identifying anomalies.

Algorithms operating in semi-supervised mode do not require information about

the anomalous class of instances, making them more widely applicable and

capable of detecting deviations without predefined information about them.

3. Unsupervised anomaly detection: This method is applied when there is no prior

information about the data. Unsupervised anomaly detection algorithms assume

that anomalous instances occur much less frequently than normal ones. Data is

processed, and the most distant points are identified as anomalies. This

methodology requires access to the entire dataset and cannot be applied in real-

time mode.

Decision trees are a non-parametric supervised learning method used for

classification and regression tasks. The main goal is to create a model that predicts the

value of the target variable using simple decision rules derived from the features of the

data. Decision trees can be considered as piecewise-constant approximations.

A Bayesian network is a graphical model representing probabilistic

dependencies between a set of variables, allowing for probabilistic inference using

these variables. It consists of two main components: a graphical structure that defines

dependencies and independencies between random variables representing the domain,

and a set of probability distributions defining the strength of dependencies encoded in

the graphical structure. In the context of anomaly detection, Bayesian networks are

used to estimate the probability of an observation belonging to one of the normal or

anomalous classes. The simplest implementation of this approach is the naive Bayes

approach.

A clustering algorithm involves grouping similar instances into clusters and does

not require knowledge of the properties of potential anomalies. Anomalies detection

can be based on the following assumptions: - Normal data instances belong to a data

cluster, while anomalies do not belong to any of the clusters. However, this formulation

may encounter a problem of defining precise cluster boundaries. Hence, another

assumption follows: - Normal data are closer to the center of the cluster, while

anomalies are significantly farther away. In cases where anomalous instances are not

48

singular, they can also form clusters. Thus, their detection is based on the following

assumptions:

− Normal data form large dense clusters, while anomalies form small and

sparse ones.

− Normal objects are close to the cluster center, while anomalies are distant

from the center.

− Normal objects belong to large, dense clusters, while anomalies belong to

small and sparse ones.

One of the simplest implementations of the clustering-based approach is the k-

means algorithm.

2.1.2.3 Methods of artificial intelligence

Methods of computational intelligence include the use of artificial neural

networks, immune networks, genetic and swarm algorithms, support vector machines,

and other approaches for intrusion detection. Except for the support vector machine

method, all these methods are based on "peeking" at the chains of actions of living

beings (individual organisms or populations) and translating them into a mathematical

language. In other words, machines implement algorithms that simulate phenomena of

living nature, which react more flexibly to the environment and execute faster

computationally.

Neural networks can make inferences about new objects based on incomplete

data, classifying them into appropriate attack categories. Similar to living beings, they

can both make mistakes and correctly guess, depending on the quality of training and

the training dataset. The ability to self-learn eliminates the need for constant signature

updates, reduces the system's response time to network anomalies, and allows

processing a larger volume of traffic, thereby increasing the level of information

security.

More complex, though similar, method is artificial immune networks (AINs),

based on the human immune system. Typically, algorithms such as negative selection

and clonal selection are used for their training. The immune system is a distributed

49

multilevel defense mechanism against foreign microorganisms, viruses, and pathogens.

Each level of immunity performs its type of defense reaction, and the higher the level,

the higher the specificity of the response.

The negative selection algorithm is based on the mechanism of T-lymphocyte

maturation in the thymus. Input data for this algorithm is a set of strings composed of

characters from a specific alphabet (e.g., numbers or letters).

The clonal selection algorithm, belonging to the class of evolutionary

algorithms, is used to solve optimization problems. The key concept of this algorithm

is affinity, which in immunology means the degree of compatibility between two cells,

and in mathematical implementation, it represents the value of the optimized function.

During the algorithm's operation, a population of antibodies P is generated,

representing a set of randomly created arguments of the optimized function. Then, the

affinity of each antibody is calculated. After that, each antibody is cloned, and the

higher its affinity, the more clones are created. Then, each antibody (including clones)

undergoes mutation, with the lower the affinity of the antibody, the more mutations

occur. Mutation involves introducing random changes into the elements of the

antibody. After mutation, the affinity of each antibody is recalculated, and as a result,

n antibodies with the best affinity are selected. These antibodies are added to the

memory cell pool M. Then, n worst antibodies from the initial population P are replaced

by antibodies from M. In the proposed approach, the clonal selection algorithm is used

to improve the quality of attack detection and reduce the level of false positives.

The support vector machine (SVM) method is applied for anomaly detection in

systems where normal behavior is represented by only one class. This method defines

the boundary of the region where the instances of normal data are located. For each

examined instance, it is determined whether it is in a certain region. If the instance is

outside the region, it is identified as anomalous.

50

2.1.2.4 Knowledge-based methods

Knowledge-based methods include approaches that utilize predefined facts,

inference rules, and pattern matching to detect anomalies (attacks) based on an

embedded search mechanism. Search procedures may involve pattern matching,

regular expressions, state transition analysis, and other methods. These methods are so

named because systems employing them operate with a knowledge base containing

descriptions of known attacks.

The knowledge base serves as a repository with expert-contributed records

supporting data processing logic and interpretation and includes a logical inference

subsystem.

The signature-based method can protect against viral or hacker attacks if the

attack signature is already known and entered into the system's attack detection

database (AD). However, during the first encounter with an unknown virus, when the

attack signature is absent from the database, a signature-based AD will fail to recognize

the threat and consider it legitimate. Such vulnerabilities are referred to as zero-day

vulnerabilities. This approach, akin to virus detection technologies, enables the system

to detect all known attacks but is incapable of recognizing new, as yet unknown types

of attacks.

This method is straightforward to implement and forms the basis of most

intrusion detection systems. However, administrators encounter several challenges

when operating such systems. The first challenge lies in creating a mechanism for

describing signatures, that is, a language for describing attacks. The second problem,

related to the first, is correctly describing the attack to capture all possible variations.

2.1.3 Network traffic analysis

The most likely way for attackers to penetrate infrastructure is through

interception via the network environment, which is a system of connections between

nodes for data transmission. Network security involves a wide range of measures to

51

protect computer networks and endpoints from malicious activities, misuse, and critical

failures.

Network firewalls are perhaps the most widely known network security tools,

which use access strategies and unauthorized traffic filtering between devices in the

network environment. However, network security is not limited solely to the use of

network firewalls.

Due to the variety of potential threats and the multitude of possible attacks, the

network security model is a complex system. Administrators need to counter attacks

from different directions and not rely solely on one component to ensure security. The

interaction between clients and the network begins with access control, which is an

authorization method that allows administrators to control user, role, or device access

to various parts of the network.

Intrusion detection systems operate within the network and are used to detect

attempts or successful attacks through passive observation. Intrusion prevention

systems (IPS) are an evolution of intrusion detection systems (IDS), allowing

interception and analysis of traffic between the source and destination for automatic

anomaly detection. Intercepting and analyzing network packets in real-time, known as

sniffing, is considered a critical requirement for intrusion detection and prevention

systems as it provides access to the content and data passing through the network,

helping to identify threats.

Considering the possibility that attackers can bypass access control measures and

evade detection by intrusion detection systems, it is important to anticipate the

likelihood of network infiltration. Well-designed systems should be prepared to detect

insider attacks. Administrators need to actively use network activity monitoring and

logging tools to expand visibility on servers and between them. Restricting protection

only at the perimeter is insufficient, as attackers who overcome this barrier often

succeed. Proper network segmentation can limit damage.

Micro-segmentation is the practice of dividing the network into different

sections based on the functionality of each element. When properly configured, micro-

segmentation simplifies network structure and security strategy management.

52

However, its effectiveness depends on clearly defined infrastructure change processes.

Changes in the network must be accurately reflected in the micro-segmentation

schemes, which can be a challenging task. Nevertheless, network segmentation allows

administrators to strictly control and manage different routes between nodes A and B,

and provides an extended visibility area for applying data analysis methods to detect

attacks.

Intercepting data transmitted over the network is a key method for recording

network activity for subsequent online and offline analysis. Similar to a surveillance

camera at a crossroads to monitor traffic, packet analyzers (sniffers) intercept and

record traffic on the network. Network activity logs are useful not only for security

incident investigation but also for debugging, performance monitoring, and network

operations control. Positioned at strategic points in the network and properly

configured packet analyzers can become an important tool for creating detailed data

sets that provide a comprehensive view of what is happening on the network.

2.2 Comparative analysis of well-known machine learning algorithms

applied in IDS/IPS.

The machine learning algorithm operates by processing the training dataset and

creating a model. The model, in turn, uses new data for predictions, maintaining the

format of the training data. All machine learning algorithms comprise three key

components: a model family, which defines possible model variations; a loss function,

which numerically evaluates the quality of models; and an optimization procedure,

which selects the best model from the given family.

After setting constraints on the selection of forecasting algorithms in a specific

parameterized family, it is necessary to choose the optimal algorithm for the training

dataset. However, how can one ensure that the best algorithm is chosen? The best

algorithm should optimize the numerical metric computed based on the studied data.

This metric is called the objective function. In the context of machine learning, the

objective function is also referred to as the cost function or loss function, as it helps

quantitatively assess the "cost" of incorrect predictions or associated losses.

53

From a mathematical perspective, the loss function is a function that maps pairs

of values (predicted label, truth label) to a number. The goal of the machine learning

algorithm is to find such model parameters that minimize the loss function, which is

obtained by processing the training data. An optimization algorithm is used to

implement the search process.

Optimization algorithms are divided into two main groups:

1. First-order optimization algorithms - they use the first derivative of the objective

function with respect to the model parameters for its optimization. Gradient

descent methods are the most common type of such algorithms. They are used

to find the minimum or maximum value of the objective function by computing

the gradient of the function, i.e., partial derivatives with respect to each

parameter. The gradient determines the direction in which parameter values

should be adjusted to achieve the most optimal result provided by the function.

2. Second-order algorithms, also known as second-order methods, use the second

derivatives of the objective function for optimization. Unlike first-order

algorithms, they have a higher convergence rate and can successfully solve

saddle point problems. However, second-order methods typically require more

computational resources and may be slower compared to first-order algorithms.

The choice of a suitable optimization algorithm depends on the size of the

dataset, the type of learning task, and the requirements for the necessary resources.

The first-order optimization algorithm group includes:

1. LIBLINEAR [27] - the default solver for linear classification in the scikit-learn

library. This algorithm is not very efficient for large datasets, so the scikit-learn

documentation recommends using Stochastic Average Gradient (SAG) or

SAGA (an improved version of SAG) methods, which perform better with large

datasets.

2. Stochastic Gradient Descent (SGD) - a simple and efficient optimization

algorithm that updates parameters for each individual training data instance. The

stochastic nature of gradient descent means that this algorithm is more likely to

54

find new and possibly better local minima compared to the standard gradient

descent method.

3. AdaGrad, AdaDelta, and Adam (Adaptive Moment Estimation) - these

algorithms allow for the separation and adaptation of learning rates for each

parameter and solve some tasks with other simpler gradient descent algorithms.

As in many areas of data science, there is no universally ideal optimization

algorithm. Determining the best algorithm for specific tasks often requires trial and

error. Selection criteria include not only convergence and speed but also other factors.

It is often customary to start with the default or most reasonable option and gradually

improve it.

Ensemble learning involves combining multiple classifiers to create a more

complex and often more effective classifier. Combining decision trees into ensembles

is a widely used method for creating high-quality classifiers. These ensembles are often

referred to as decision forests. The most common types in practice are random forests

and gradient-boosted decision trees.

Random forests consist of simple ensembles of multiple decision trees, which

typically contain tens to thousands of such trees. The presence of multiple decision

trees in the forest leads to a high degree of similarity between trees and a large number

of repeated splits in the trees, especially for features that are the most stringent

predictors of the dependent variable. The algorithm for constructing a random forest

solves this problem.

Gradient-boosted decision trees (GBDT) apply more complex combinations of

predictions from individual decision trees. When using the gradient boosting

methodology, several weak learners are selectively combined by performing gradient

descent optimization in the loss function to obtain a much more powerful learning

model.

GBDT has been enhanced to improve performance, enhance generalization, and

create more efficient models. Some of these improvements are highlighted below:

55

1. Setting artificial constraints for trees (e.g., limiting tree depth, maximum number

of nodes, or minimum number of elements in a node) helps limit the capabilities

of trees without compromising their learnability.

2. Sometimes decision trees added at early stages of training gradient-boosted

ensembles may have a greater impact on the overall prediction than those added

later. This can lead to model imbalance, reducing the benefits of ensembling. To

address this issue, a weighted assessment of each tree's contribution is applied

to slow down the learning process. A "shrinkage" technique is also used to

reduce the influence of individual trees, allowing later trees to improve the

model.

3. Properties of random forests, which are based on stochastic processes, can be

combined with gradient boosting methodology by applying data subsampling

before building trees and by thinning the feature set before using it for branching.

4. To prevent overfitting, widely used regularization methods such as L1 and L2

regularization are applied to balance the learning weights.

XGBoost is a widely used gradient boosting method for decision trees that

delivers outstanding results when working with large volumes of data while

maintaining the ability to scale correctly [28]. It serves as the foundation for many

innovative ideas in machine learning and has attracted attention from the community

as a reliable solution for creating decision tree ensembles. However, GBDT is more

prone to overfitting compared to regular random forests and is more difficult to

parallelize due to its additive training, which depends on the results of each tree when

updating the gradient for the next one.

Based on the original typical scheme (Figure 9), the following action plan can

be developed for the development of an attack detection system, which complements

the signature analyzer to increase the overall efficiency of the system, especially

regarding previously unknown attacks:

1. Selecting a dataset for training the computer attack detection system.

2. Preprocessing the data.

3. Sampling against class imbalance.

56

4. Assessing feature importance and selection.

5. Reducing the feature space.

6. Choosing a model.

7. Tuning and training the model.

8. Testing and validation.

Figure 9 - Typical Supervised Learning Scheme by Sebastian Raschka

(licensed under CCA 4.0)

57

2.2.1 Selecting a dataset for training the computer attack detection system

Some of the available datasets suffer from a lack of diversity and traffic volume,

some do not cover the variety of known attacks, while others anonymize packet

payload data, which may not reflect current trends. Some also lack feature sets and

metadata. For training the attack detection system among the available public datasets

(DARPA1998, KDD1999, ISCX2012, ADFA2013, and others), one of the current and

comprehensive ones was chosen - the "Intrusion Detection Evaluation Dataset"

CICIDS2017. Developed by the Canadian Institute for Cybersecurity.

The CICIDS2017 dataset is prepared based on the analysis of network traffic in

an isolated environment, where the actions of 25 legitimate users and malicious actions

of intruders were modeled.

The CICIDS2017 dataset contains safe and modern common attacks that

resemble real-world data (PCAP). It also includes the results of network traffic analysis

using CICFlowMeter with flow marking based on timestamps, source and destination

IP addresses, source and destination ports, protocols, and attacks (CSV files).

Creating realistic background traffic was the main priority for the developers

when creating this dataset. They used their proposed B-profile system (Sharafaldin et

al., 2016) to profile the abstract behavior of human interactions and generate

naturalistic background traffic. For this dataset, abstract behavior of 25 users was

constructed based on HTTP, HTTPS, FTP, SSH, and email protocols.

The dataset combines over 50 GB of "raw" data in PCAP format and includes 8

preprocessed CSV files containing labeled sessions with selected features on different

observation days. The comma-separated values (CSV) format in this dataset is a

standard way of representing data for analytical research.

A brief description of the files and the quantitative composition of the dataset

are presented in the tables and figures below.

58

Table 5 - Brief Description of Files in the Dataset

Brief Description of Files in the Dataset

№ File Name Contained Attacks

1 Monday-

WorkingHours.pcap_ISCX.csv

Benign

2 Tuesday-

WorkingHours.pcap_ISCX.csv

Benign, FTP-Patator, SSH-

Patator

3 Wednesday-

workingHours.pcap_ISCX.csv

Benign, DoS GoldenEye, DoS

Hulk, DoS Slowhttptest, DoS

slowloris, Heartbleed

4 Thursday-WorkingHours-Morning-

WebAttacks.pcap_ISCX.csv

Benign, Web Attack – Brute

Forse, Web Attack – Sql

Injection, Web Attack - XXS

5 Thursday-WorkingHours-Afternoon-

Infilterations.pcap_ISCX.csv

Benign, Infiltration

6 Friday-WorkingHours-

Morning.pcap_ISCX.csv

Benign, Bot

7 Friday-WorkingHours-

Afternoon-PortScan.pcap_ISCX.csv

Benign, PortScan

8 Friday-WorkingHours-

Afternoon-DDoscap_ISCX.csv

Benign, DDoS

59

Table 6 - Quantitative Composition of the Dataset

Quantitative Composition of the Dataset

№ Record Type Number of Records

1 BENING 2359087

2 DoS Hulk 231072

3 PortScan 158930

4 DDoS 41835

5 DoS GoldenEye 10293

6 FTP-Patator 7938

7 SSH-Patator 5897

8 DoS slowloris 5796

9 DoS Slowhttptest 5499

10 Bot 1966

11 Infiltration 36

12 Heartbleed 11

13 Web Attack – Brute Force 1507

14 Web Attack – XSS 652

15 Web Attack – SQL

Injection

21

60

Figure 10 – A Fragment of the Dataset in Tabular Format

Figure 11 – A Fragment of the Dataset Loaded in Google Colab

Complete and well-prepared data are essential for building a good classifier. In

reviews of the CICIDS2017 dataset (Intrusion2017, Panigrahi2018, Sharafaldin2018),

some researchers noted issues with class imbalance, complex file structure, and

missing values. These aspects can generally be considered non-critical.

2.2.2 Data Preprocessing

It is important to note that in the study by Kahraman Kostas, "Anomaly

Detection in Networks Using Machine Learning," discrepancies in results were found

by other authors when using the selected CICIDS2017 dataset.

61

To reduce computation time, a subset named "WebAttacks" with a single class

of attacks (web attacks - Brute Force, XSS, SQL Injection) was used in the training set

based on processing the file Thursday-WorkingHours-Morning-

WebAttacks.pcap_ISCX.csv from the CICIDS2017 dataset. The WebAttacks set

includes 458,968 records, of which 2,180 pertain to web attacks, while the rest pertain

to normal traffic.

This decision simplifies the task and reduces the quality of the final conclusions

- the multiclass classification was reduced to binary, and the size of the training set was

reduced.

This subset is publicly available in the repository and was prepared through the

following data preprocessing steps:

1. Exclusion of the "Fwd Header Length.1" feature (the "Fwd Header Length" and

"Fwd Header Length.1" features are identical).

2. Removal of records with null values in the "Flow ID" session identifier (out of

458,968 records, 170,366 records remained after removal).

3. Replacement of non-numeric values of the "Flow Bytes/s" and "Flow Packets/s"

features with -1.

4. Replacement of undefined (NaN) and infinite values with -1.

5. Conversion of string values of the "Flow ID," "Source IP," "Destination IP," and

"Timestamp" features to numeric values using label encoding.

6. Encoding of responses in the training set according to the rule: 0 - "no attack," 1

- "attack present."

2.2.3 Sampling Against Class Imbalance

The prepared "WebAttacks" subset is imbalanced: out of a total of 170,366

records, the "no attack" class constitutes 168,186 records, while the "attack present"

class constitutes 2,180 records (Figure 12).

62

Figure 12– Number of Records in the Imbalanced "WebAttacks" Subset.

To address the class imbalance, the random sampling method (undersampling)

was employed, which involves removing randomly selected instances of the

"BENIGN" class. The target ratio of the number of instances between the "BENIGN"

class and the "ATTACK" class is 70% (5087 records) / 30% (2180 records).

Figure 13 - Formation of the balanced dataset df_balanced.

Figure 14 - Dataset df_balanced.

63

2.2.4 Feature Space Reduction

Results of feature importance assessment and selection for the dataset we are

investigating were found in publicly available repositories, which formed the basis for

further research (Figure 15).

Figure 15 - Final results of significance analysis (top 20 features).

For further analysis, a correlation matrix with linear correlation coefficients

(Pearson correlation coefficients) calculated for all pairs of the top twenty most

significant features was used. It is presented in Figure 16. The color saturation of the

fill is proportional to the correlation coefficient value.

Figure 16 - Correlation Analysis

64

Figure 17 - Results of the Correlation Analysis of the Twenty Most

Significant Features

The correlation analysis revealed a strong dependence between pairs of features

(unnecessary features for training can be excluded):

1. "Average Packet Size" and "Packet Length Mean".

2. "Subflow Fwd Bytes" and "Total Length of Fwd Packets".

3. "Fwd Packet Length Mean" and "Avg Fwd Segment Size".

4. "Flow Duration" and "Fwd IAT Total".

5. "Flow Packets/s" and "Fwd Packets/s".

6. "Flow IAT Max" and "Fwd IAT Max".

2.2.5 Model Selection

At this stage, a comparison of the previously selected 10 most common machine

learning models was conducted. Let's consider the models identified during the

literature review and frequently used by various researchers.

The quality of classifier responses (models) was compared using the following

metrics:

1. Accuracy

2. Precision

3. Recall

65

4. F1-score

The evaluation of model performance was conducted on the balanced and

preprocessed subset of web attacks (WebAttacks) from the CICIDS2017 dataset (with

a ratio of normal to abnormal traffic of 70% / 30%, using 20 most significant features)

using two approaches - with stratification and cross-validation, and without

stratification but with cross-validation. The evaluation results are presented below in

Tables 7 and 8.

Table 7 - Evaluation of model performance on the balanced and preprocessed

subset of web attacks (WebAttacks) from the CICIDS2017 dataset.

Without stratification train-test split

Model Acc Pr Recall F1 Execution

KNN 0.966 0.936 0.951 0.969 1.02 s

SVM 0.703 0.618 0.032 0.603 46.60 s

CART 0.965 0.928 0.957 0.964 0.54 s

RF 0.968 0.959 0.911 0.963 0.42 s

ABoost 0.974 0.966 0.947 0.971 8.02 s

LR 0.956 0.970 0.880 0.947 3.14 s

NB 0.735 0.532 0.990 0.775 0.20 s

LDA 0.933 0.909 0.862 0.940 0.65 s

QDA 0.866 0.706 0.656 0.866 0.21 s

MLP 0.942 0.874 0.920 0.964 77.35 s

66

Table 8 - Evaluation of model performance on the balanced and preprocessed subset

of web attacks (WebAttacks) from the CICIDS2017 dataset.

With stratification on train-test split

Model Acc Pr Recall F1 Execution

KNN 0.971 0.943 0.957 0.968 1.38 s

SVM 0.702 0.558 0.025 0.603 33.90 s

CART 0.971 0.953 0.953 0.964 0.68 s

RF 0.971 0.974 0.938 0.965 0.63 s

ABoost 0.970 0.976 0.947 0.971 11.28 s

LR 0.961 0.969 0.898 0.952 3.23 s

NB 0.736 0.532 0.990 0.775 0.18 s

LDA 0.939 0.915 0.879 0.940 0.94 s

QDA 0.924 0.935 0.814 0.949 0.30 s

MLP 0.948 0.907 0.923 0.941 21.77 s

Так, as expected, the models (algorithms) KNN, CART, RF, AdaBoost, and LR

demonstrated the best results. The most optimal model considering the combination of

the above parameters is the RandomForestClassifier (RF).

It's worth noting that this algorithm, due to quasi-optimal hyperparameter tuning,

showed different results for some researchers: Kahraman Kostas' study resulted in

Recall 0.94 and F1-score 0.94, while the authors of the CICIDS2017 dataset reported

Recall 0.97 and F1-score 0.97.

For intrusion detection algorithms, it's not common to use XGBoost and

XGBoost with Principal Component Analysis (PCA).

XGBoost is a machine learning algorithm based on decision tree and gradient

boosting framework. It was developed as a research project at the University of

Washington. Tianqi Chen and Carlos Guestrin presented their work at the SIGKDD

conference in 2016, making a significant impact in the machine learning community.

Since its introduction, this algorithm has not only been leading in Kaggle competitions

but has also been the foundation of several industry-leading applications. This has led

to the formation of a community of data analysis experts contributing to XGBoost

67

open-source projects, with approximately 350 contributors and 3,600 commits on

GitHub.

Features of the framework include:

1. Wide applicability: it can be used for regression, classification, ranking, and

custom prediction tasks.

2. Compatibility: Works on Windows, Linux, and OS X.

3. Language support: Supports most major programming languages such as C++,

Python, R, Java, Scala, and Julia.

4. Cloud integration: Supports AWS, Azure, and Yarn clusters, and integrates

well with Flink and Spark.

XGBoost is based on the gradient boosting method of decision trees, which is

used for classification and regression tasks. This method creates a prediction model as

an ensemble of weak models, usually decision trees. Training occurs sequentially,

where each new model predicts the deviations of the previous ensemble on the training

set. By adding the predictions of a new tree to the predictions of the trained ensemble,

the average deviation of the model can be reduced, which is the target of the

optimization problem. Adding new trees allows reducing the model's error until the

"early stopping" criteria are met (forms of regularization used to prevent overfitting

when training the model with an iterative method like gradient descent; with such

methods, the model is updated after each iteration to better fit the training data, and up

to a certain point, this also improves the model's performance on data not in the training

set, but after that point, the improvement in fitting the training data occurs at the

expense of increasing generalization error).

Let's consider a visual illustration of boosting in Figure 18. It shows the behavior

of the model at a single point in an abstract linear regression task. Suppose the first

model of the ensemble, F, always outputs the sample mean of the predicted value, f0.

Such a prediction is quite rough, so the mean squared deviation at the selected point

will be quite large. To correct this, we train a model Δ1, which will "adjust" the

prediction of the previous ensemble F0. Thus, we obtain an ensemble F1, the prediction

of which will be the sum of the predictions of models f0 and Δ1. Continuing this

68

sequence, we arrive at an ensemble F4, the prediction of which is the sum of predictions

f0, Δ1, Δ2, Δ3, Δ4, and precisely predicts the value of the given target.

Figure 18 - Boosting Illustration.

XGBoost supports integration with libraries such as scikit-learn, offering

regularization capabilities. It supports three main forms of gradient boosting:

- Standard gradient boosting with the ability to adjust the learning rate.

- Stochastic gradient boosting with the ability to sample rows and columns

of the dataset.

- Regularized gradient boosting with L1 and L2 regularization.

The implementation of the algorithm is designed for efficiency in computational

resources such as time and memory. The project's goal was to maximize the utilization

of available resources for model training. Some key implementation features of the

algorithm include various strategies for handling missing data, a block structure to

support parallelization of tree training, and support for continuing training to fine-tune

on new data.

Let's examine the behavior of the XGBClassifier algorithm from the XGBoost

library. When configuring a classification model in Python, you can use the

`classification_report()` function from the sklearn library to generate three

performance metrics for the algorithm (see Figure 19).

69

Figure 19 - classification_report() for XGBClassifier.

Let's highlight the final key indicators of the algorithm (Figure 20):

Figure 20 - Key indicators of the XGBClassifier algorithm.

It is also proposed to consider the behavior of the XGBClassifier algorithm using

Principal Component Analysis (PCA) for signal decomposition into components, using

the PCA module from the sklearn.decomposition package. The performance indicators

of the algorithm are shown below in Figure 21.

70

Figure 21 - classification_report() for XGBClassifier rotated.

Let's highlight the final key performance indicators of the above-mentioned

algorithm (Figure 22):

Figure 22 - Key Performance Indicators of the XGBClassifier Rotated

Algorithm.

Also, an evaluation of the algorithms was conducted using stratification. To

summarize the obtained results of the proposed and previously compared algorithms,

let's present them in Table 9.

71

Table 9 - Evaluation of Model Performance on the Balanced and Preprocessed Subset

of WebAttacks in the CICIDS2017 Dataset.

With stratification on train-test split

Model Acc Pr Recall F1 Execution

KNN 0.971 0.943 0.957 0.968 1.38 s

SVM 0.702 0.558 0.025 0.603 33.90 s

CART 0.971 0.953 0.953 0.964 0.68 s

RF 0.971 0.974 0.938 0.965 0.63 s

ABoost 0.970 0.976 0.947 0.971 11.28 s

LR 0.961 0.969 0.898 0.952 3.23 s

NB 0.736 0.532 0.990 0.775 0.18 s

LDA 0.939 0.915 0.879 0.940 0.94 s

QDA 0.924 0.935 0.814 0.949 0.30 s

MLP 0.948 0.907 0.923 0.941 21.77 s

XGBoost 0.976 0.971 0.963 0.976

XGBoost

Rotated

0.971 0.957 0.957 0.976

Practical results have been obtained regarding the performance of 12 models,

from which the best ones need to be selected.

In this study, a multi-criteria evaluation matrix is used, where each parameter is

assigned a specific "weight", and models are rated on a scale from 1 to 3, where 1 -

unsatisfactory, 2 - satisfactory, and 3 - good. This method minimizes the likelihood of

error and provides a clear assessment of priority mathematics. Parameters such as

algorithm accuracy (Accuracy) and precision (Precision) are assigned a weight of 0.3,

while the others are assigned 0.2 each.

Thanks to this method, we can consider multiple selection parameters present in

the study to evaluate the models. Table 10 shows the final evaluation results of the

models, from which it can be concluded that the Adaptive Boosting over Decision Tree

(AdaBoost, sklearn.ensemble.AdaBoostClassifier) and XGBoost gradient boosting

algorithms can be considered suitable for solving the stated tasks.

72

Table 10 - Multi-criteria evaluation of models.

Model Acc Pr Recall F1 Result

 0,3 0,3 0,2 0,2 max=3

KNN 3 1 3 2 2,2

SVM 1 2 1 1 1,3

CART 3 2 3 2 2,5

RF 3 3 3 2 2,8

ABoost 3 3 2 2 2,6

LR 2 2 1 2 1,8

NB 1 1 3 1 1,4

LDA 2 1 1 1 1,3

QDA 2 1 1 1 1,3

MLP 2 1 2 1 1,5

XGBoost 3 3 3 3 3

XGBoost Rotated 3 2 3 3 2,7

According to the obtained results, RF and XGBoost gradient boosting algorithm

can be considered suitable for solving the stated tasks.

Considering the comparison conducted, the authors of the study suggest

considering two types of algorithms:

1. Combining neural networks with traditional machine learning methods, such as

RandomForestClassifier (using neural networks for feature selection together

with RandomForestClassifier for classification).

2. VotingClassifier model containing RandomForestClassifier and XGBClassifier

(an intrusion detection system model based on the VotingClassifier ensemble

model containing random forest and XGBClassifier models).

Let's consider each of them in more detail.

Combining a neural network with a Random Forest classifier for tabular data

classification can be useful for extracting complex features using a neural network and

73

then using these features for a more interpretable or robust classifier, such as Random

Forest.

The algorithm of the approach looks as follows:

1. Training a neural network to extract features: train a neural network to extract

features from tabular data. Instead of using the network output for classification,

take the intermediate layer containing useful data representations (features).

2. Using these features to train Random Forest: use the extracted features to train

the Random Forest model.

The RF algorithm itself will work as follows (Figure 23):

Figure 23 - RF Architecture.

For the classification task, a majority voting solution is chosen, while for

regression, it's the average.

This approach combines the advantages of neural networks for extracting

complex features and the stability of Random Forests for final classification.

Feature extraction from tabular data is the process of transforming raw data into

a format better suited for analysis and modeling. It's a crucial step in machine learning

74

as the right features can significantly improve model performance. In the context of

tabular data, feature extraction can involve various techniques such as:

1. Direct use of features. With well-prepared data, original features can be

directly used for model training.

2. Creating new features. Generating new features based on existing data. This

can include mathematical transformations or aggregations.

3. Feature selection. Choosing the most important features from the dataset using

feature selection methods.

4. Applying complex models for automatic feature extraction. Utilizing complex

models like neural networks to automatically extract complex features from the data.

When we talk about feature extraction using a neural network, we mean using

the intermediate layers of the network to create new data representations. These

representations can capture higher-level information than the original features. The

intermediate outputs of the network can be used as new features for other models, such

as Random Forest.

Now, let's consider the second algorithm – VotingClassifier.

In machine learning, an ensemble of models refers to a combination of several

learning algorithms that, when working together, allow for building a more effective

and accurate model. The goal of ensemble methods is to combine predictions from

multiple base estimators, built with a specified learning algorithm, to improve

generalization/reliability compared to a single estimator.

VotingClassifier is a machine learning model that is trained on an ensemble of

multiple models and predicts the result (class) based on their highest probability of the

selected class as the output. It simply aggregates the results of each classifier passed

into the voting classifier and predicts the output class based on the majority of the votes.

The idea is that instead of creating individually conceptually different machine

learning classifier models and determining accuracy for each of them, we create a

single model that is trained using these models and predicts the output based on their

aggregate majority votes for each output class. The aggregate solution often provides

better generalization and predictive performance than individual models.

75

The scikit-learn library provides a convenient implementation of the voting

classifier, allowing for easy integration and experimentation with various models in a

unified environment. This approach is particularly useful when working with different

data patterns and provides more reliable predictions, making it a valuable tool in a

machine learning practitioner's toolkit.

Analyzing the behavior of the VotingClassifier model, which contains Random

Forest and XGBClassifier, both of which were discussed earlier, is proposed. The

architecture of this algorithm is presented in Figure 24.

Figure 24 - Architecture of the VotingModel (RF + XGB).

We'll cover some practical aspects of implementing the two proposed methods.

Each algorithm was trained on a balanced and preprocessed subset of

WebAttacks web attack data from the CICIDS2017 dataset (with a normal to anomaly

RF XGB

Selected feature set

P1 P2

A

76

traffic ratio of 70% / 30%, using the 10 most significant features selected after the

earlier conducted correlation analysis).

Categorical labels were transformed into numerical form using a simple label

encoding: "1" for samples with attacks and "0" for samples without attacks (see Figure

25).

Figure 25 - Preparation of features and labels for model training.

The neural network for feature extraction consists of several fully connected

layers with ReLU activation (Figure 26).

Figure 26 - Creating a neural network model for feature extraction..

The feature extraction model outputs data from the last hidden layer of the neural

network (Figure 27).

77

Figure 27 - Feature Extraction.

Hyperparameter tuning for the RandomForestClassifier was conducted.

GridSearchCV was employed to search for the best hyperparameters of the

RandomForestClassifier model. GridSearchCV utilizes cross-validation for a more

reliable model evaluation and hyperparameter search, which can help improve the

model's performance (Figure 28).

Figure 28 - Applying GridSearchCV for RF.

Next, the Random Forest model is trained on the extracted features, and the

accuracy is evaluated on the test data. The evaluation results are presented below in

Figure 29.

Figure 29 - Evaluation Metrics of the RF Model with Feature Extraction Neural

Network Combination.

78

For the VotingClassifier model, hyperparameter tuning of the

RandomForestClassifier was also conducted using GridSearchCV. The model

evaluation results are presented in Figure 30.

Figure 30 - Evaluation Metrics of the VotingClassifier Model.

Let's summarize the obtained results in tabular form (Table 11).

Table 11 - Evaluation of the Proposed Algorithms.

 VotingClassifier (Random

Forest + XGBClassifier)

RF + neural network

Metrics of Model

Performance

Values of Metrics

Confusion_matrix array([[1280, 1],

 [44, 492]])

array([[1269, 12],

 [17, 519]])

Accuracy 0.976 0.988

Precision 1.0 0.981

Recall 0.918 0.978

F1 0.957 0.979

Results and Conclusions of Chapter Two

Thus, an approach to classifying network anomalies has been proposed, their

main features have been identified, and the main methods of their detection have been

structured. Intrusion detection methods are divided into four major groups: behavioral

79

methods, machine learning methods, computational intelligence methods, and

knowledge-based methods.

The general principles of operation of each group of methods have been carefully

described, along with their advantages, disadvantages, and better utilization options for

each method.

In practical comparisons of known machine learning algorithms used in IDS/IPS,

the best results were expectedly demonstrated by models (algorithms) RF, XGBoost,

and XGBoost Rotated.

The most optimal combination of the above parameters is the

RandomForestClassifier (RF). For training intrusion detection systems among

available public datasets, one of the relevant and comprehensive datasets - "Intrusion

Detection Evaluation Dataset" CICIDS2017 was chosen, which contains safe and

modern common attacks resembling real-world data.

The performance metrics of the XGBClassifier and XGBClassifier with the

application of principal component analysis (PCA) were also evaluated.

According to the obtained results, the gradient boosting algorithm (a machine

learning algorithm based on decision tree and utilizing the gradient boosting

framework) can be considered a suitable algorithm for solving the posed tasks.

Two algorithms were proposed - VotingClassifier (Random Forest +

XGBClassifier) and RF + neural network for feature extraction. The second approach

showed a higher accuracy metric (0.988), while the first one showed a precision metric

(1.0) when trained on the same balanced and preprocessed subset of web attack data

(WebAttacks dataset of CICIDS2017) with a normal to anomalous traffic ratio of 70%

/ 30%, utilizing 10 most significant features selected after a previously conducted

correlation analysis.

80

3 APPLICATION OF ADVERSARIAL LEARNING IN INTRUSION

DETECTION ALGORITHMS

3.1 Adversarial Machine Learning

Machine learning systems can become targets of malicious attacks just like

vulnerabilities in a firewall can be exploited to gain access to a web server. Therefore,

before implementing such systems in the realm of security, it is necessary to carefully

examine their weaknesses and understand how susceptible they are to attacks.

Adversarial machine learning is the study of vulnerabilities in machine learning

systems in hostile environments. Many researchers in the fields of security and

machine learning have demonstrated research results on various attacks against

antivirus programs [28], spam filters [29], and so forth. Developers of machine learning

systems are responsible for preventing attacks and creating means of protection in case

of threats to data confidentiality, national security, and human lives.

Some researchers still realize that modern AI-driven security solutions are

significantly underdeveloped and have defects [30].

The implementation of the concept of adversarial machine learning is difficult

because most machine learning models operate as black boxes. This means that users

and specialists cannot precisely understand how models make their predictions due to

the lack of transparency in the internal processes of detectors and classifiers. Without

explanations about the decisions made, it is difficult for people to determine when a

system is being influenced by malicious actors. This creates doubts about the reliability

of machine learning systems and leads to resistance to their deployment as primary

decision-making tools in the field of security.

Machine learning methodologies are typically developed with preliminary

assumptions about data stability, feature independence, and low stochasticity

(randomness) [31]. Adversaries violate any assumptions made by specialists until they

compute the path into the system with the least resistance.

81

In fact, when an algorithm is trained on training data, it operates with a limited

amount of information, which represents only a portion of the entire theoretical space

of possible variations. When the model is tested in laboratory conditions or in real-

world practice, the test dataset may contain elements that were not present in the

training data. These missing elements are referred to as the "adversarial space."

Malicious actors can exploit these areas of adversarial space to deceive machine

learning algorithms. However, an even more serious threat arises when adversaries can

interfere with the process of training models and invalidate assumptions about the

stability of the data used in machine learning. Since statistical learning models rely on

the provided data, vulnerabilities in such systems naturally arise due to mismatches in

this data. It is important for specialists to ensure that the data used for training

accurately reflects the real distribution to the extent possible. At the same time, it is

crucial to continuously monitor various attack methods to enable the development of

more robust algorithms and systems.

The goal of this section is to assess the stability of the developed model against

adversarial attacks - how difficult (or easy) it will be for a malicious actor to "trick" the

system. Adversarial attacks ("adversarial" or "hostile") encompass all known attacks

on machine learning models that can be implemented both during the model training

stage and during its operation.

Let us highlight the main types of adversarial attacks, as visualized in Figure 31:

1) Poisoning attack (poisoning attack), when an attacker affects the training data

during the training phase and, for example, adds incorrectly labeled examples, which

leads to model errors during the exploitation phase.

2) Membership inference attack, where an attacker attempts to infer a set of

training data while violating its privacy (such attacks are especially dangerous for

personal data - facial recognition, medical records, financial transactions, etc.).

3) Model extraction attack (model extraction attack), when an attacker, not

knowing the target model, tries to “steal features” of the model.

4) Evasion attack, when an attacker selects input data at the exploitation stage so

that the model gives an incorrect response.

82

Figure 31 - The main types of adversarial attacks.

According to adversa.ai rankings, one of the most common and easy to

understand attacks is the evasion attack (Figure 32). It requires only a basic

understanding of the target system, so evasion attacks can be considered one of the

most dangerous attacks. In the following we will consider this type of adversarial

attack.

83

Figure 32 - Ranking of the most common adversarial attacks according to adversa.ai

Some machine learning models routinely misclassify adversarial examples -

input data generated by applying small but intentionally worst-case perturbations to

examples in the dataset, so that the distorted input data causes the model to produce an

incorrect answer with high confidence. Early attempts to explain this phenomenon

focused on nonlinearity and overtraining [32].

In the paper “EXPLAINING AND HARNESSING ADVERSARIAL

EXAMPLE” [32], published in 2015 at a conference, showed an example of an evasion

attack, where a mask invisible to the human eye is superimposed on an image of a

panda, and the recognition model starts to make the mistake of calling the panda a

gibbon (Figure 33). The paper also proposed an efficient way to generate adversarial

examples, the “Fast Gradient Sign Method” (FGSM). It is this publication that is

usually associated with a sharp increase in interest in adversarial attacks.

84

Figure 33 - An example of an evasion attack.

Existing algorithms for generating adversarial examples (adversarial attacks)

generally involve two steps:

(1) - selecting the direction of the attack. The sensitivity of the model F to

changes in the values of individual attributes is evaluated.

(2) - perturbation formation. The obtained knowledge is used to generate a

perturbation that affects the classification of the sample X. If the model F misclassifies

the result X + δX instead of the original class, it means that an adversarial example has

been found. Otherwise, the above steps are repeated, e.g., already for the example X +

δX.

The operation of the evasion attack is shown in general in Figure 34.

Figure 34 - Evasion attack steps in the general case [32].

85

Let us turn to the table with adversarial attacks contained in the most cited studies

in recent years (Figure 35).

Figure 35 - Adversarial attacks and example implementations [33].

Every evasion attack uses special methods to create adversarial examples, which

can be seen as masks or data changes (e.g., in the case of the above example with the

panda image - how to find the hidden mask in the image?). Each of the attacks

presented in the table has its own unique way of creating adversarial examples.

White-box attacks use knowledge of the internals of the target model to create

adversarial examples that fool the model. Neural networks and decision trees use

different methods to find such examples. Whereas black box attacks have no

information about the internals of the target model. Most studies focus on white-box

attacks, but some authors also investigate the transition from white-box to black-box

attacks using the adversarial example portability property. This property allows

adversarial examples to retain their effectiveness when used against other models.

Implementing a black-box attack involves training a “replacement model,” creating

86

adversarial examples for that model, and applying them to the original model. Although

rigorous evidence and explanations for portability have not yet been established,

numerous studies have confirmed this property on a variety of datasets.

Since the random forest model is widely used as a classifier, it is important to

investigate its robustness to adversarial attacks. However, it is known that classical

black-box attacks do not take into account the specificity of solver trees. In the case of

ensembles of decision trees, it is impossible to apply typical white-box attacks that are

successfully used against neural networks. This is because the loss function in a random

forest model is usually a discontinuous piecewise defined function for which no

gradient exists, making it difficult or impossible to apply gradient-based attacks to such

models.

Because of these factors, the design of intrusion detection systems that utilize

machine learning techniques must pay special attention to the study of attacks that

target specific models, such as ensembles of decision trees (in particular, the “random

forest”).

Since adversarial distortion attacks rely on the use of gradient lifting to find

instances of the adversarial space, the general idea of defending machine learning

models against such attacks is to make it more difficult for the adversary to gain

information about the gradients of the model's decision surface.

Traditional methods for improving the robustness of machine learning models,

such as weight reduction, generally do not provide practical protection against

malicious examples. To date, only two methods have shown some significant

protection.

Adversarial training is one possible method of defense against distortion attacks.

If a machine learning model is trained on malicious examples, it can minimize the

adversarial space available to attackers. This defense method tries to cover all possible

input variants for the classifier, while using data samples that belong to a theoretical

input space that is not covered by the original training data distribution. Models trained

in this way should ideally not be fooled by malicious examples known to them, but can

this method allow defeating an attacker at his own game? - is an open question.

87

Adversarial learning has shown good results in studies by experts, but it does not

solve the problem completely, as the success of this defense method depends on a

constant race between the attacking and defending parties.

Therefore, it is infeasible to cover all possible input variants, and an experienced

attacker with sufficient computational resources will most likely always be able to find

malicious examples that were not used to train the model.

Another technique for defending against distortion attacks is defensive

distillation.

Distillation was originally developed to reduce the size of neural network models

and reduce the computational resource requirements so that they can run on resource-

constrained devices such as mobile devices. This was achieved by training an

optimized model using replacement of categorical class labels from the original dataset

with probabilistic outcome vectors on a simpler model. The resulting model had a

smoother decision surface, which in turn made it more difficult for attackers to obtain

the desired gradient.

However, like adversarial learning, distillation only slows down and complicates

the process of detecting and exploiting adversarial spaces, so it only provides some

protection against attackers with limited computational resources.

Defensive distillation is a technique originally developed to make neural

networks more resilient to attacks using machine learning techniques. However, in the

context of XGBoost or other tree-busting algorithms, this technique is not directly

applicable due to differences in the architecture and operating principles of these

models.

Applying this technique to algorithms such as random forests requires some

adaptation, as the architecture and operating principles of these models are significantly

different. In addition, this method can be computationally expensive.

Using defensive distillation for random forests is an experimental technique and

requires careful testing and tuning. Alternative methods for improving robustness, such

as regularization and the use of ensembles, may also be useful and easier to implement.

88

It is difficult to defend against distortion attacks because of the problem of

imperfect learning, where statistical processes cannot capture all possible inputs

needed for correct classification. In most cases, machine learning models perform very

well, but only work with a small number of all possible inputs they may encounter.

Developing a strategy capable of providing a defense against a powerful and

adaptive attacker is an important area of research for machine learning practitioners.

Adversarial examples show that many state-of-the-art machine learning

algorithms can be hacked in unconventional ways. These machine learning failures

demonstrate that even simple algorithms can behave quite differently than their

designers intended.

3.2 Application of adversarial learning in intrusion detection algorithms to

realize protection against attacks

This subsection implements adversarial learning defense against evasion attacks

targeting ML-based IDSs.

The implementation consists of two main steps:

1. Evasion attack execution: creating adversarial patterns for the model;

2. Adversarial learning: extending the original dataset with correctly labeled

adversarial samples and training a new and adversarial resistant model on the new

training set.

A brief description of the implementation of the main steps:

1. Searching for adversarial samples:

− Each model is trained on the CICIDS2017 dataset (in the web attacks

subset: web_attacks_balanced.csv).

− The performance of the models is evaluated on the test set.

− For all samples that are correctly labeled as an attack by the model, the

value of the “Total Forward Packet Length” function changes within the

specified range.

89

− If the model changes its prediction for a sample with a changed “Total

Fwd Packet Length” function, that sample is adversarial (i.e., it misleads

the model).

− A second test set with adversarial samples is generated. The performance

of the model is evaluated on this test set. The performance is expected to

decrease: even one adversarial sample provides an opportunity for an

attack.

2. Defense against evasion attack:

− Adversarial samples are labeled as “attacking” and added to the original

training and test sets.

− A new model is trained on a new training set.

− The performance of the adversarially trained model is evaluated on the

new test set. The performance is expected to be close to that of the original

model before the attack, since the addition of adversarial samples

increases the robustness of the model to adversarial attacks.

We will show some aspects of the practical implementation of the evasion attack

on the previously proposed models by the authors. Let us consider VoitingModel as an

example.

In order to implement the evasion attack, we first need to modify the feature

“Total Length of Fwd Packets” (index 5 in the list of selected features) with the check

of non-zero values of the feature for samples with the type “attack” (Figure 36).

Figure 36- Checking for non-zero values of a trait.

The evasion_attack function finds adversarial samples for the given samples. It

returns a copy of the given feature matrix with the found adversarial samples that

replaced the original ones in the matrix and the indices of these samples (Figure 37).

90

The function works as follows:

− all samples that are correctly labeled by the model as an attack are

processed;

− for these samples, the value of the “Total Length of Fwd Packets” feature

is changed in the range [initial value, initial value + 500);

− if the model changes its prediction for a sample with the “Total Length of

Fwd Packets” trait changed, that sample is adversarial. The function

outputs the index and the new value of “Total Packet Length Fwd” of that

sample.

Figure 37 - Evasion_attack function.

It was found that the found adversarial samples for the original samples are under

the following indices (Figure 38).

91

Figure 38 - Adversarial sample indices.

The difference of predictions with the example of the original sample and its

adversarial replacement is presented in Figure 39.

Figure 39 - Difference between an example of the original design and its

adversarial replacement.

Thus, the adversarial sample misleads the model, i.e., the classifier changes its

response (for the sample with index 140) from “1” (there is an attack) to “0” (no attack).

Note that the retrieved pattern retains its attackability and is, in fact, an effective

adversarial pattern: we can increase the value of the “Total Packet Length Fwd” feature

by augmenting the payload with zeros/spaces/etc.

92

Let us specify the model evaluation metrics for the test data with adversarial

samples added.

Figure 40- VoitingModel evaluation metrics after the implementation of an

evasion attack.

For example, some performance metrics deteriorate after the attack because

adversarial samples added to the test set mislead the model.

An evasion attack was also implemented on the RF + neural network algorithm.

The evaluation results of this model for the test data with adversarial samples added

are shown in Figure 41.

Figure 41 - RF + NN evaluation metrics after implementing the evasion attack.

To protect the model from a realized evasion attack, we need to find adversarial

samples for the entire dataset and perform adversarial training with them, augmenting

the original dataset with adversarial samples that are correctly labeled as “attack”.

The post-defense VotingModel (XGB + RF) evaluation metrics are summarized in

Figure 42.

93

Figure 42 - VotingModel (XGB + RF) evaluation metrics after defense by

adversarial learning.

The same process of implementing defense with adversarial learning was

performed with the second RF model. The post-protection RF model evaluation metrics

are shown in Figure 43.

Figure 43 - Metrics for evaluating the RF model after defense by adversarial

learning.

To draw conclusions, we summarize the results in a summary table (Table 12).

94

Table 12 - Performance metrics of the proposed models.

Model name Model evaluation metrics

Before attack After attack After defense

VotingModel (XGB

+ RF)

Accuracy = 0.976

Precision = 1.0

Recall = 0.918

F1 = 0.957

Accuracy = 0.961

Precision = 1.0

Recall = 0.870

F1 = 0.931

Accuracy = 0.976

Precision = 0.985

Recall = 0.933

F1 = 0.958

RF + NN Accuracy = 0.988

Precision = 0.982

Recall = 0.978

F1 = 0.980

Accuracy = 0.984

Precision = 0.981

Recall = 0.965

F1 = 0.973

Accuracy = 0.980

Precision = 0.965

Recall = 0.970

F1 = 0.967

Thus, the evaluation metrics of the models are almost restored to the values that

were before the evasion attack.

Hence, it can be concluded that the implemented adversarial learning defense

improves the robustness of the proposed models against adversarial attacks.

Next, an experiment was conducted by implementing iterative adversarial

learning with HopSkipJump attack, which is a powerful black-box evasion attack, and

two models, VotingClassifier (Random Forest + XGBClassifier) and RF model with

feature extraction with NN using CICIDS2017 dataset.

The hypothesis here is that adversarial learning will then be able to improve the

robustness to repeated adversarial attacks. This hypothesis is further disproved by the

results.

Let us re-emphasize the main aspects of the raw data used. The CICIDS2017

dataset is prepared by the Canadian Cybersecurity Institute by analyzing network

traffic in an isolated environment in which the actions of 25 legitimate users as well as

malicious actions of intruders were simulated.

Each record in the CICIDS2017 dataset represents a network session and is

characterized by 84 attributes, such as source and destination IP addresses of the data

stream (“Source IP” and “Destination IP”), data flow rate (“Flow Bytes/s”), and so on.

95

Among the 14 types of attacks presented in the dataset, in this study, we consider

only web-based attacks. The training subsample contains 4 classes: “BENIGN”

(background traffic without attacks, 5087 records), “Web Attack - Brute Force” (1507

records), “Web Attack - Sql Injection” (21 records), “Web Attack - XSS” (652

records).

Note that the task of detecting network attacks on the CICIDS2017 dataset is

currently only addressed in 5 papers. In total, the task of “Network Intrusion Detection”

on different datasets combines 34 articles, and in total there are more than 100000

articles published on paperswithcode.com.

We implement iterative adversarial learning using HopSkipJump attack, which

is a powerful black-box evasion attack, and the above models.

The implementation of the experiment is 10 iterations of the Hop Skip Jump

attack followed by defense by adversarial learning. This experiment verifies the

conclusions of one of the papers (“The Limitations of Deep Learning in Adversarial

Settings”), in which it was demonstrated that the model's resistance to adversarial

attacks increased after adversarial learning: the repeated attack of the neural network

using the JSMA algorithm lost effectiveness; in particular, the number of adversarial

examples found decreased from 18000 to 9000.

We use an implementation of the adversarial evasion attack HSJA from the ART

library: art.attacks.evasion.HopSkipJump.

Let's first look at the VotingClassifier (Random Forest + XGBClassifier) model.

Let's highlight some implementation details.

For convenience, we first defined a classifier class (Figure 44), which will allow

us to use the same training code with different classifiers if necessary in the future. It

provides the necessary functionality: creating, fitting, saving, loading a model;

predicting labels; creating adversarial samples for the original samples.

96

Figure 44 - class Classifier.

The key function is generate_hsja_samples - creates adversarial samples for

given initial samples using the HopSkipJump attack. It uses the HSJA l2 version

implemented in the Adversarial Robustness Toolbox library [34].

The evaluation metrics are accuracy, precision, recall, f1_score.

A function is defined that retrains the model using the adversarial samples

generated (Figure 45). This step is performed at each iteration of adversarial learning.

97

Figure 45 - Retrain_model function.

Next, an iterative adversarial learning algorithm (function adversarial_training)

is defined that performs adversarial training of the given model for a given number of

iterations using HSJA (Figures 46, 47).

Figure 46 - Part of the adversarial_training function.

98

Figure 47 - Part of the adversarial_training function.

Based on the results of the correlation analysis in Chapter 2 of this study, the

following features were excluded from the feature space: “Packet Length Mean”,

“Subflow Fwd Bytes”, “Avg Fwd Segment Size”, “Fwd IAT Total”, “Fwd Packets/s”,

“Fwd IAT Max”. After excluding the features with the lowest significance, the feature

space was reduced to a union of 10 features (Figure 48):

1. “Average Packet Size”, the average length of the data field of a TCP/IP packet

(hereafter referred to as packet length).

2. “Flow Bytes/s”, the data flow rate.

3. “Max Packet Length”, the maximum packet length.

4. “Fwd Packet Length Mean”, the average length of packets transmitted in the

forward direction.

5. “Fwd IAT Min”, the minimum forward inter-packet interval time (IAT, inter-

arrival time) value.

6. “Total Length of Fwd Packets”, the total length of packets transmitted in the

forward direction.

7. “Fwd IAT Std”, the standard deviation of the inter-packet interval value in the

forward direction of packets.

8. “Flow IAT Mean”, the average value of the inter-packet interval.

9. “Fwd Packet Length Max”, the maximum length of the packet transmitted in the

forward direction.

10. “Fwd Header Length”, the total header length of packets transmitted in the

forward direction.

99

Figure 48 - 10 most important features.

Training of the model using the previously allocated Classifier class (Figure 49).

Figure 49 - VotingClassifier training.

A total of 10 iterations were performed. At each iteration, adversarial examples

are searched for the available test sample using HSJA (Figure 50). Adversarial

learning on the original model for a given number of iterations took a significant

amount of time due to the performance of the available hardware. The time cost may

vary depending on the power of computing resources.

100

Figure 50 - Implementation of iterative adversarial learning.

 At each iteration, adversarial examples are searched for in the available test

sample using HSJA, after which the found adversarial examples are labeled and added

to the original sample. The original sample is divided into training sample (75%) and

test sample (25%), after which the model is retrained and the quality is evaluated on

the test sample. An example of iteration output is shown in Figure 51.

Figure 51 - Output of the results for the 10th iteration.

101

The results for 10 iterations of adversarial learning are presented in Table 13.

Table 13 - Results for 10 iterations of adversarial learning with VotingModel and HSJA

attack.

No. of

iterations

Generation time,

sec

Metrics before protection Metrics after protection

1 937.8 Accuracy=0.715

Precision=0.648

Recall=0.715

F1=0.630

Accuracy=0.871

Precision=0.870

Recall=0.871

F1=0.870

2 1044,9 Accuracy=0.761

Precision=0.747

Recall=0.761

F1=0.723

Accuracy=0.864

Precision=0.859

Recall=0.864

F1=0.860

3 1273.8 Accuracy=0.702

Precision=0.657

Recall=0.702

F1=0.658

Accuracy=0.863

Precision=0.863

Recall=0.863

F1=0.862

4 2115.5 Accuracy=0.460

Precision=0.556

Recall=0.460

F1=0.480

Accuracy=0.869

Precision=0.868

Recall=0.869

F1=0.868

5 1881.2 Accuracy=0.591

Precision=0.571

Recall=0.591

F1=0.504

Accuracy=0.873

Precision=0.869

Recall=0.873

F1=0.870

6 2268.6 Accuracy=0.560

Precision=0.505

Recall=0.560

F1=0.489

Accuracy=0.875

Precision=0.873

Recall=0.875

F1=0.874

102

Continuation of Table 13.

No. of

iterations

Generation

time, sec

Metrics before

protection

Metrics after protection

7 2820.1 Accuracy=0.478

Precision=0.437

Recall=0.478

F1=0.369

Accuracy=0.870

Precision=0.867

Recall=0.870

F1=0.869

8 3401.6 Accuracy=0.437

Precision=0.413

Recall=0.437

F1=0.335

Accuracy=0.882

Precision=0.880

Recall=0.882

F1=0.881

9 4165.0 Accuracy=0.404

Precision=0.328

Recall=0.404

F1=0.336

Accuracy=0.890

Precision=0.888

Recall=0.890

F1=0.888

10 5235.6 Accuracy=0.357

Precision=0.285

Recall=0.357

F1=0.288

Accuracy=0.910

Precision=0.906

Recall=0.910

F1=0.907

Using a pre-written function we output the following statistics (Figure 52):

− ratio of adversarial samples generated to original samples per iteration;

− number of adversarial samples generated per iteration;

− average time for the generation algorithm to process one original sample

per iteration;

− total generation time per iteration;

− performance metrics per iteration for two cases: after attack and after

defense.

Graphs of the obtained results are shown below in Figures 52 - 56.

103

Figure 52- Ratio of adversarial samples generated to original samples per iteration.

Figure 53 - Number of adversarial samples generated per iteration.

104

Figure 54 - Average time for the generation algorithm to process one initial sample

per iteration.

Figure 55 - Total generation time per iteration.

105

Figure 56 - Performance metrics per iteration for two cases: after attack and

after defense.

The results for 10 iterations of adversarial learning for the second model are

presented in Table 14.

Table 14 - Results for 10 iterations of adversarial learning with RF and HSJA attack.

No. of

iterations

Generation

time, sec

Metrics before

protection

Metrics after protection

1 920.6 Accuracy=0.767

Precision=0.649

Recall=0.718

F1=0.620

Accuracy=0.880

Precision=0.820

Recall=0.876

F1=0.867

2 1024.4 Accuracy=0.771

Precision=0.758

Recall=0.789

F1=0.747

Accuracy=0.869

Precision=0.860

Recall=0.865

F1=0.867

106

Continuation of Table 14.

No. of

iterations

Generation

time, sec

Metrics before

protection

Metrics after protection

3 1120.8 Accuracy=0.710

Precision=0.689

Recall=0.789

F1=0.710

Accuracy=0.898

Precision=0.870

Recall=0.893

F1=0.867

4 2328.1 Accuracy=0.510

Precision=0.569

Recall=0.501

F1=0.509

Accuracy=0.879

Precision=0.868

Recall=0.879

F1=0.868

5 1671.5 Accuracy=0.610

Precision=0.574

Recall=0.610

F1=0.508

Accuracy=0.886

Precision=0.870

Recall=0.886

F1=0.871

6 2427.7 Accuracy=0.590

Precision=0.510

Recall=0.590

F1=0.497

Accuracy=0.879

Precision=0.875

Recall=0.879

F1=0.880

7 2910.6 Accuracy=0.490

Precision=0.443

Recall=0.481

F1=0.402

Accuracy=0.881

Precision=0.867

Recall=0.881

F1=0.869

8 3076.2 Accuracy=0.511

Precision=0.503

Recall=0.498

F1=0.489

Accuracy=0.892

Precision=0.880

Recall=0.892

F1=0.880

9 4792.4 Accuracy=0.501

Precision=0.487

Recall=0.471

F1=0.407

Accuracy=0.904

Precision=0.897

Recall=0.901

F1=0.891

10 5932.3 Accuracy=0.453

Precision=0.397

Recall=0.401

F1=0.305

Accuracy=0.927

Precision=0.911

Recall=0.927

F1=0.910

107

Results and conclusions of the third chapter

The robustness of the developed models to adversarial attacks was assessed, i.e.

how difficult or easy it would be for an attacker to “cheat” the system.

Of the main types of adversarial attacks used was the implementation of an

evasion attack, in which an attacker selects input data during the exploitation phase so

that the model gives an incorrect response.

Since the random forest model is widely used as a classifier, it is important to

investigate its robustness to adversarial attacks. However, it is known that classical

black-box attacks do not take into account the specificity of solver trees. In the case of

ensembles of decision trees, it is impossible to apply typical white-box attacks that are

successfully used against neural networks.

Because of these factors, when developing intrusion detection systems that

utilize machine learning techniques, special attention should be paid to studying attacks

that target specific models, such as ensembles of decision trees.

Traditional methods for improving the robustness of machine learning models,

such as weight reduction, generally do not provide practical protection against

malicious examples. To date, only two methods have shown some significant

protection - adversarial training and defensive distillation.

Adversarial training has shown good results in studies by experts, but it does not

solve the problem completely, because the success of this defense method depends on

a constant race between the attacking and defending parties.

It is difficult to defend against distortion attacks because of the problem of

imperfect learning, where statistical processes cannot capture all possible inputs

needed for correct classification.

Developing a strategy that can defend against a powerful and adaptive attacker

is an important research area for machine learning practitioners.

Adversarial examples show that many modern machine learning algorithms can

be hacked in unconventional ways. These machine learning failures demonstrate that

even simple algorithms can behave quite differently than their designers intended.

108

A two-step defense against evasion attacks using adversarial learning has been

implemented - performing an evasion attack (creating adversarial samples for the

model) and adversarial learning (expanding the original dataset with correctly labeled

adversarial samples and training a new and adversarial-resistant model on the new

training set).

For example, some performance metrics have been shown to deteriorate after the

attack is implemented because adversarial samples added to the test set mislead the

model. However, after the adversarial training is implemented, they are almost restored

to the values they were before the evasion attack.

Hence, it can be concluded that the implemented defense with adversarial

learning improves the robustness of the proposed models against adversarial attacks.

An experiment with the implementation of iterative adversarial learning using

the HopSkipJump attack and the two models considered: the VotingClassifier (Random

Forest + XGBClassifier) and the RF model with feature extraction with NN, disproved

the hypothesis that adversarial learning in this case will be able to increase the

robustness to repeated adversarial attacks.

Thus, according to the results, the following conclusions can be drawn after

conducting this experiment with the models:

1. The performance metrics shift to the worse side after the attack.

Adversarial learning after the attack effectively protects the model by recovering the

values of the metrics. However, the model remains vulnerable to repeated attacks

thereafter: that is, the defense only works against those generated adversarial examples

that we correctly labeled and then added to the dataset. A new iteration of the attack

can still generate effective adversarial examples.

2. The dataset is expanded at each iteration, which may increase the number

of adversarial subsamples generated, but also increases the ratio of adversarial samples

to original samples.

3. Adversarial learning did not improve the robustness of the considered

models to repeated HSJA attacks.

109

CONCLUSION

Thus, as a result of this work, the goal was achieved and the objectives were

solved.

Two algorithms were proposed, VotingClassifier (Random Forest +

XGBClassifier) and RF + neural network for feature extraction. The latter approach

showed a higher Accuracy metric (0.988) and the former showed a higher Precision

metric (1.0) when trained on the same balanced and preprocessed subsample of

WebAttacks web attacks of the CICIDS2017 dataset (70% / 30% ratio of normal to

abnormal traffic, 10 most significant features selected after the correlation analysis

performed earlier).

The robustness of the developed models to adversarial attacks was assessed, i.e.

how difficult or easy it would be for an attacker to “trick” the system

The obtained results indicate the necessity of training the proposed machine

learning model on the dataset obtained from the analysis of network traffic in the

protected network. Otherwise, when using a pre-trained model, it is mandatory to

match the physical structure of the protected network and the network in which the

model was trained, as well as the settings of network equipment. At the stage of

collecting and preparing the training sample, it is necessary to avoid imbalanced

distribution of normal and abnormal records, which may cause overtraining of the

model and/or a sharp increase in the number of false positives of the classifier.

It is difficult to defend against distortion attacks due to the problem of imperfect

learning, where statistical processes cannot capture all possible inputs needed for

correct classification. Developing a strategy that can provide defense against a

powerful and adaptive attacker is an important research area for machine learning

practitioners.

Adversarial learning has shown good results in the research of experts, but it is

worth noting that it does not solve the problem completely, as the success of this

defense method depends on a constant race between the attacking and defending

parties.

110

Adversarial examples show that many modern machine learning algorithms can

be hacked in unconventional ways. These machine learning failures demonstrate that

even simple algorithms can behave quite differently than their designers intended.

Reducing performance requirements is possible through the use of “layered”

classifiers that combine fast, low-performance models at the preprocessing stage and

efficient, computationally complex models at higher levels.

Implementation of the proposed solutions in real-time (near-real-time) systems

implies efficient processing and analysis of high-speed data streams in high-power

feature space conditions and is possible only in the presence of a high-performance

hardware and software platform.

These circumstances together with the known results of research in the subject

area allow us to conclude that it is possible to use machine learning methods to search

for anomalies and detect computer attacks.

It should be noted that a promising direction for further research is the

development of algorithms for detecting computer attacks based on the use of features

independent of the physical structure of the network and the settings of the equipment

used, as well as the use of deep learning neural networks (deep learning), which

demonstrate better results than other methods in solving a wide range of problems.

In addition, an important aspect of the development of this topic is the study of

ways to increase the resistance of machine learning algorithms to attacks, as well as

the development of methods for detecting anomalies in real time, taking into account

the specifics of modern threats and methods of their covert manifestation.

Thus, the study of intrusion detection system (IDS/IPS) vulnerabilities in

algorithms based on statistical and machine learning methods requires a comprehensive

approach that includes both theoretical research and experimental studies on real data

sets. Only such an approach will make it possible to develop effective and reliable

methods for protecting information systems from modern cyber threats. This topic

represents an urgent and important challenge in the field of cybersecurity, which

requires further research and development.

111

LIST OF SOURCES USED

1. Глущенко, М. В. IDS / IPS — системы обнаружения и предотвращения

вторжений / М. В. Глущенко, А. А. Ширяев, С. А. Глушенко. — Текст:

электронный // Концепция «Общества знаний2 в современной науке. —

2019. — С. 115-117. — URL: https://www.elibrary.ru/item.asp?id= 41328677

(дата обращения: 30.04.2023).

2. Ле Куанг Минь, Фан Хью Ань, Нгуен Ань Чуен, Нгуен Чунг Тьен

«Интегрированная IDS/IPS модель между открытым источников с

улучшением машинного обучения». // https://apni.ru/ URL:

https://apni.ru/article/152-integrirovannaya-idsips-model-mezhdu-otkritim

(дата обращения: 05.03.2024).

3. Кумага Н.К., Григорьевых А.В. «Проектирование и внедрение системы

обнаружения и предотвращения вторжений IDS/IPS в корпоративной сети

УГТУ». // URL: chrome-

extension://efaidnbmnnnibpcajpcglclefindmkaj/https://elib.utmn.ru/jspui/bitstre

am/ru-tsu/28957/1/miim_2023_238_242.pdf (дата обращения: 05.03.2024).

4. А.Д. Алшаиби, М.М Аль-Ани, А.А. Конев «Сравнительный анализ методов

машинного обучения, используемых в системах обнаружения вторжений

киберфизических систем». // https://cyberleninka.ru/ URL:

https://cyberleninka.ru/article/n/sravnitelnyy-analiz-metodov-mashinnogo-

obucheniya-v-zadachah-obnaruzheniya-setevyh-anomaliy (дата обращения:

07.03.2024).

5. Баженов И.О. «Методы интеллектуальных технологий в задачах

обнаружения атак в компьютерных сетях». // https://cyberleninka.ru/ URL:

https://cyberleninka.ru/article/n/issledovanie-primeneniya-neyronnyh-setey-

dlya-obnaruzheniya-nizkointensivnyh-ddos-atak-prikladnogo-urovnya (дата

обращения: 10.03.2024).

6. Basinya E.A., Lukina M.S. «Разработка модуля системы обнаружения и

предотвращения вторжений». // https://cyberleninka.ru/ URL:

112

https://cyberleninka.ru/article/n/razrabotka-modulya-sistemy-obnaruzheniya-i-

predotvrascheniya-vtorzheniy (дата обращения: 10.03.2024).

7. С. М. Трошина, Н. В. Штуллер «Система обнаружения атак». // URL:

http://lib.urfu.ru/mns-urfu/author/11203/source/rinc?page=3 (дата обращения:

10.03.2024).

8. Vinayakumar, R., Soman, K.P., Poornachandrany, P. «Applying convolutional

neural network for network intrusion detection (Conference Paper)». //

https://www.semanticscholar.org/URL:https://www.semanticscholar.org/paper/

Applying-convolutional-neural-network-for-network-Vinayakumar-

Soman/38b68ee830fa4b85a5411c8b8de36ba18da64d5a (дата обращения:

10.03.2024).

9. Azizjon, M., Jumabek, A., Kim, W., «1D CNN based network intrusion

detection with normalization on imbalanced data». //

https://www.researchgate.net/ URL:

https://www.researchgate.net/publication/339641880_1D_CNN_Based_Netwo

rk_Intrusion_Detection_with_Normalization_on_Imbalanced_Data (дата

обращения: 11.03.2024).

10. S. Mukkamala, G. Janoski, and A. Sung, «Intrusion detection using neural

networks and support vector machines». // https://www.semanticscholar.org/

URL: https://www.semanticscholar.org/paper/Intrusion-detection-using-neural-

networks-and-Mukkamala-

Janoski/159baa5ef8f325ef736ca7be12d27e8ec96d7542 (дата обращения:

11.03.2024).

11. Gharib, A., Sharafaldin, I., Lashkari, A.H., Ghorbani, A.A, «An Evaluation

Framework for Intrusion Detection Dataset». //

https://www.semanticscholar.org/ URL:

https://www.semanticscholar.org/paper/An-Evaluation-Framework-for-

Intrusion-Detection-Gharib-

Sharafaldin/11a9ae9a37ac6c96a4344b97165970fd2f594deb (дата обращения:

11.03.2024).

113

12. R. Perdisci, G. Giacinto, and W. Lee, «Using an ensemble of one-class SVMs

for network intrusion detection». // https://www.researchgate.net/ URL:

https://www.researchgate.net/publication/220765814_Using_an_Ensemble_of_

One-Class_SVM_Classifiers_to_Harden_Payload-

based_Anomaly_Detection_Systems (дата обращения: 14.03.2024).

13. Ansam Khraisat, Iqbal Gondal, Peter Vamplew & Joarder Kamruzzaman,

«Survey of intrusion detection systems: techniques, datasets and challenges». //

https://www.researchgate.net/ URL:

https://www.researchgate.net/publication/334533397_Survey_of_intrusion_det

ection_systems_techniques_datasets_and_challenges (дата обращения:

14.03.2024).

14. H. Kim and S. Kim, «Hybrid anomaly detection system for intrusion detection».

// https://www.researchgate.net/ URL:

https://www.researchgate.net/publication/259138030_A_novel_hybrid_intrusio

n_detection_method_integrating_anomaly_detection_with_misuse_detection

(дата обращения: 14.03.2024).

15. M. Mayuranathan, M. Murugan & V. Dhanakoti «Best features based intrusion

detection system by RBM model for detecting DDoS in cloud environment». //

https://www.researchgate.net/ URL:

https://www.researchgate.net/publication/337842653_Best_features_based_intr

usion_detection_system_by_RBM_model_for_detecting_DDoS_in_cloud_envi

ronment (дата обращения: 16.03.2024).

16. Alazab, M., Venkatraman, S., & Watters, P. (2016). A survey on machine

learning techniques in wireless sensor networks intrusion detection. IEEE

Communications Surveys & Tutorials, 18(2), 860-880. // URL: chrome-

extension://efaidnbmnnnibpcajpcglclefindmkaj/https://web.archive.org/web/20

170829035856id_/http://www.eng.usf.edu/~ibutun/Butun191.pdf (дата

обращения: 16.03.2024).

114

17. Описание изобретения к патенту РФ №2019126640, 22.01.2018.

Постоянное обучение для обнаружения вторжения // ЛО Пэнчэн, БРИГГС

Ривз Хопп, АХМАД Навид.

18. Описание изобретения к патенту РФ №2017125334, 17.07.2017. Система и

способ настройки систем безопасности при DDoS-атаке // Халимоненко

Александр Александрович (RU), Тихомиров Антон Владимирович (RU),

Коноплев Сергей Валерьевич (RU).

19. Описание изобретения к патенту РФ №2017101441, 17.01.2017. Способ

защиты веб-приложений при помощи интеллектуального сетевого экрана

с использованием автоматического построения моделей приложений //

Носеевич Георгий Максимович (RU), Гамаюнов Денис Юрьевич (RU),

Шерварлы Валерия Григорьевна (RU), Каюмов Эмиль Марселевич (RU).

20. Описание изобретения к патенту РФ №2005130257/09, 06.11.2003.

Системы и способы предотвращения вторжения для сетевых серверов //

СЭМПЛ Чар.

21. Описание изобретения к патенту РФ №2016137336, 19.09.2016. Система и

способ автогенерации решающих правил для систем обнаружения

вторжений с обратной связью // Кислицин Никита Игоревич (RU).

22. Описание изобретения к патенту US10778705B1, 15.09.2020. Метод

обнаружения вторжения на основе глубокого обучения, система и

компьютерная программа для веб-приложений.

23. Описание изобретения к патенту US20220124111A1, 21.04.2022, Система

обнаружения и смягчения последствий кибербезопасности с

использованием машинного обучения и расширенной кореляции данных.

24. В.П.Шкодырев, К.И. Ягафаров, В.А. Баштовенко, Е.Э. Ильина, «Обзор

методов обнаружения аномалий в потоках данных», Second Conference on

Software Engineering and Information Management, 2017.

25. Зубков Евгений Валерьевич, Белов Виктор Матвеевич «Методы

интеллектуального анализа данных и обнаружение вторжений» // Вестник

СибГУТИ. 2016. №1 (33). URL: https://cyberleninka.ru/article/n/metody-

115

intellektualnogo-analiza-dannyh-i-obnaruzhenie-vtorzheniy (дата обращения:

26.03.2024).

26. Метод опорных векторов (SVM) // https://neerc.ifmo.ru/ URL:

https://neerc.ifmo.ru/wiki/index.php?title=%D0%9C%D0%B5%D1%82%D0

%BE%D0%B4_%D0%BE%D0%BF%D0%BE%D1%80%D0%BD%D1%8B

%D1%85_%D0%B2%D0%B5%D0%BA%D1%82%D0%BE%D1%80%D0%

BE%D0%B2_(SVM) (дата обращения: 29.03.2024).

27. Андреас Мюллер, Сара Гвидо Введение в машинное обучение с помощью

PYTHON. - М.,: 2016-2017. - 393 с.

28. Tianqi Chen and Carlos Guestrin. XGBoost: A Scalable Tree Boosting System.

Proceedings of the 22nd ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining (2016): 785–794.

29. Weilin Xu, Yanjun Qi and David Evans. Automatically Evading Classifiers: A

Case Study on PDF, Malware Classifiers. Network and Distributed Systems

Symposium 2016, 21–24 February 2016, San Diego, California.

30. Blaine Nelson et al. Exploiting Machine Learning to Subvert Your Spam Filter.

Proceedings of the 1st USENIX Workshop on Large-Scale Exploits and

Emergent hreats (2008): 1–9.

31. Carbon Black. Beyond the Hype: Security Experts Weigh in on Artificial

Intelligence, Machine Learning and Non-Malware Attacks (2017).

https://www.carbonblack.com/2017/03/28/beyond-hype-security-experts-

weigh-artificial-intelligence-machine-learning-non-malware-attacks/ (дата

обращения: 05.04.2024).

32. Чио К., Фримэн Д. Машинное обучение и безопасность / пер. с анг. А. В.

Снастина. – М.: ДМК Пресс, 2020. – 388 с.: ил.

33. EXPLAINING AND HARNESSING ADVERSARIAL EXAMPLES Ian J.

Goodfellow, Jonathon Shlens & Christian Szegedy Google Inc., Mountain View,

CA, Published as a conference paper at ICLR 2015.

34. Мы так и не смогли защитить свою модель машинного обучения от

состязательных атак // Хабр URL:

https://www.carbonblack.com/2017/03/28/beyond-hype-security-experts-weigh-artificial-intelligence-machine-learning-non-malware-attacks/
https://www.carbonblack.com/2017/03/28/beyond-hype-security-experts-weigh-artificial-intelligence-machine-learning-non-malware-attacks/

116

https://habr.com/ru/companies/isp_ras/articles/800751/ (дата обращения:

5.05.2024).

35. Module providing evasion attacks under a common interface. // adversarial-

robustness-toolbox URL: https://adversarial-robustness-

toolbox.readthedocs.io/en/latest/modules/attacks/evasion.html#hopskipjump-

attack (дата обращения: 10.05.2024).

36. Rong-En Fan et al. LIBLINEAR: A Library for Large Linear Classification.

Journal of Machine Learning Research 9 (2008): 1871–1874.

37. Francis Bach. Stochastic Optimization: Beyond Stochastic Gradients and

Convexity. INRIA – Ecole Normale Supérieure, Paris, France. Joint tutorial with

Suvrit Sra, MIT – NIPS, 2016.

38. EXPLAINING AND HARNESSING ADVERSARIAL EXAMPLES Ian J.

Goodfellow, Jonathon Shlens & Christian Szegedy Google Inc., Mountain View,

CA, Published as a conference paper at ICLR 2015.

39. Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, Ananthram Swami.

Distillation as a Defense to Adversarial Perturbations against Deep Neural

Networks.

40. Иман Шарафальдин, Араш Хабиби Лашкари и Али А. Горбани, «На пути

к созданию нового набора данных для обнаружения вторжений и

характеристике трафика вторжений», 4-я Международная конференция по

безопасности и конфиденциальности информационных систем (ICISSP),

Португалия, январь 2018 г.

41. Kahraman Kostas. Anomaly Detection in Networks Using Machine Learning.

2018 (error was found in assessing the importance of features) [Kostas2018].

42. Ger, Alex & Goryunov, M. & Matskevich, A. & Rybolovlev, Dmitry &

Nikolskaya, Anastasiya. (2024). Adversarial Attacks Against a Machine

Learning Based Intrusion Detection System. 10.48612/jisp/eatr-5pxb-akt8.

