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ABSTRACT 

Topic of master’s thesis: 

Development of methods and algorithms for intrusion detection and prevention 

systems based on statistical methods and sustainable machine learning 

algorithms 

The master thesis has been written on 114 pages and contains 14 tables, 56 

figures, 42 references. 

Researching vulnerabilities in intrusion detection systems (IDS/IPS) using 

algorithms based on statistical methods and machine learning is a pertinent topic due 

to the continuous rise of cyber threats, the necessity of data privacy protection, the 

application of cutting-edge technologies, and the widespread use of machine learning 

methods in the field of information security. 

The practical significance of this research lies in the following aspects: the 

findings will help identify vulnerabilities in intrusion detection systems (IDS/IPS), thus 

enhancing the overall security level of information systems; studying algorithms based 

on statistical methods and machine learning will facilitate the development of new 

methods for defense against attacks and their integration into existing IDS/IPS systems; 

the obtained results can be utilized for training information security specialists, thereby 

enhancing qualification levels and preparing personnel in this field. 

The economic efficiency of the research directions can be assessed as follows: 

the use of improved protection algorithms will mitigate cyber attack risks, data 

breaches, and other incidents, consequently reducing organizational losses associated 

with security breaches; ensuring reliable protection of information systems from 

external threats enhances organizational reputation, increases customer and partner 

trust, potentially leading to expanded business activities and attracting new clients. 

The scientific novelty proposed by this research involves refining existing 

vulnerability detection algorithms in IDS/IPS systems, based on a combination of 

statistical methods and machine learning techniques. Additionally, the feasibility of 
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applying machine learning methods to detect hidden and advanced attacks, which 

traditional IDS/IPS systems may overlook, will be explored. 

The research will utilize a wide range of data, including real cyber attack data 

for experimental testing. Previous research findings in cybersecurity and intrusion 

detection systems will also be examined. 

The object of the research is intrusion detection systems (IDS/IPS) utilizing 

algorithms based on statistical methods and machine learning techniques. The focus of 

the study is on the system itself, its components, detection algorithms, and mechanisms, 

as well as its operational principles in the context of identifying vulnerabilities and 

potential attacks. 

The subject of the research includes intrusion detection algorithms in IDS/IPS 

based on statistical methods and machine learning. 

Based on existing research and literary sources, the research objectives and goals 

have been identified. The main goal is to evaluate IDS/IPS based on statistical methods 

and machine learning. The project tasks include: 

1. Studying intrusion detection algorithms based on statistical methods and 

machine learning. 

2. Analyzing vulnerabilities in IDS/IPS systems and identifying common 

types of attacks. 

3. Studying methods to protect IDS/IPS from common attacks. 

4. Developing a test environment to research vulnerabilities in intrusion 

detection systems. 

5. Evaluating the effectiveness of intrusion detection algorithms. 

6. Comparing intrusion detection algorithms based on statistical methods 

and machine learning. 

7. Identifying the most effective intrusion detection algorithm based on 

statistical methods and machine learning. 
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INTRODUCTION 

Modern information technologies play a crucial role in ensuring the national 

security of the Russian Federation. Presidential Decree of the Russian Federation dated 

May 1, 2022, No. 250 "On Approval of the Strategy for the Development of the 

Information Society in the Russian Federation for 2022-2030" identifies one of the 

main directions for the development of the information society in Russia as ensuring 

the security of critical information infrastructure. In this context, researching 

vulnerabilities in intrusion detection systems (IDS/IPS), which are important elements 

of information system protection, becomes particularly relevant. 

Intrusion detection systems are designed to detect and prevent unauthorized 

access to information resources. However, despite their importance, these systems may 

contain various vulnerabilities that malicious actors can exploit to penetrate protected 

information systems. Researching such vulnerabilities is a necessary condition for 

increasing the effectiveness of protecting the critical information infrastructure of the 

Russian Federation. 

Studying vulnerabilities in intrusion detection systems (IDS/IPS) using 

algorithms based on statistical methods and machine learning is a topical issue due to 

the constant growth of cyber threats, the need to protect data confidentiality, the 

application of cutting-edge technologies, and the prevalence of machine learning 

methods in the field of information security. 

Conducting research to study vulnerabilities in IDS allows for identifying and 

addressing weaknesses in intrusion detection systems, thereby improving their 

effectiveness and accuracy in detecting attacks. This is particularly important in the 

face of constantly evolving cyber threats, as malicious actors continuously develop new 

methods and techniques for intrusion. 

Research on vulnerabilities in IDS also contributes to enhancing overall 

information security, as it helps detect and mitigate vulnerabilities that could be 

exploited to bypass defense systems and conduct successful cyber-attacks. 

Works by authors Le Kuang Min, Nguyen An Chuen, Nguyen Chung Thien, and 

Fan Hue Anh address the challenges of improving the effectiveness of traditional 
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methods used for detecting network anomalies in network systems. Substantial 

contributions to studying this issue were made by Glushchenko M.V., Glushchenko 

S.A., Shiryayev A.A., who examined the types and methods of intrusion detection 

systems in the information structure of enterprises. Their work reflects the nature of 

intrusion detection systems based on anomaly methods, which typically search for 

network traffic deviating from the standard network behavior model. Alshaibi A.D., 

Al-Ani M.M., Konev A.A. had a significant impact on solving the problem of this 

research. Their works contain fundamental principles of machine learning models, 

advantages, and limitations of all detection methods, providing the basis for developing 

Intrusion Detection Systems (IDS). 

The practical significance of the research lies in the following aspects: the 

research results will help identify vulnerabilities in intrusion detection systems 

(IDS/IPS), thereby enhancing the overall level of information system security; studying 

algorithms based on statistical methods and machine learning will enable the 

development of new methods for protection against attacks and their implementation 

in existing IDS/IPS systems; the obtained results can be used for training information 

security specialists, contributing to raising the qualification level and preparing 

personnel in this field. 

Modern technologies and internet infrastructure permeate all aspects of our lives, 

from banking operations to critical infrastructure systems. With the increasing number 

of devices connected to the internet and the volume of digital data, the risk of cyber-

attacks also rises. IDS/IPS play a crucial role in detecting and preventing such attacks. 

Hackers continuously refine their methods to bypass existing defense systems. 

Traditional intrusion detection approaches based on statistical methods and rules are 

becoming less effective against new and advanced threats. 

Machine learning (ML) is a powerful tool in cybersecurity, enabling threat 

detection through the analysis of large volumes of data and the identification of hidden 

patterns. However, there is a risk that attackers may also use ML to create more 

sophisticated and stealthy attacks that evade existing IDS/IPS systems. 
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Given these factors, there is an evident need to improve intrusion detection 

systems. Researching vulnerabilities in existing IDS/IPS systems based on both 

statistical methods and machine learning will help identify and address their 

weaknesses, enhancing the effectiveness of detecting and preventing cyber-attacks. 

The results of this research can be directly applied to enhancing the security of 

information systems in both corporate and government sectors, as well as in developing 

new methods for detecting and preventing cyber-attacks. 

Thus, researching vulnerabilities in intrusion detection systems (IDS/IPS) using 

algorithms based on statistical methods and machine learning is a relevant and 

important task in the field of cybersecurity, which requires further research and 

development. 

To achieve the research goals, a comprehensive approach will be used, including 

literature analysis and experimental studies. Specifically, data analysis, examination of 

machine learning algorithms, and testing on real datasets and attack simulations will 

be conducted. 

The scientific novelty offered by this research includes refining existing 

algorithms for detecting vulnerabilities in IDS/IPS systems based on a combination of 

statistical methods and machine learning. Additionally, the potential application of 

machine learning methods for detecting hidden and advanced attacks that traditional 

IDS/IPS systems may overlook will be explored. 

The research will focus on intrusion detection systems (IDS/IPS) that use 

algorithms based on statistical methods and machine learning. The study will 

concentrate on the system itself, its components, detection algorithms, and 

mechanisms, as well as its operation principles in the context of identifying 

vulnerabilities and possible attacks. 

The subject of the research is intrusion detection algorithms in IDS/IPS systems 

based on statistical methods and machine learning. 

Based on existing research and literature sources, the research goals and 

objectives have been identified. The main goal is to evaluate IDS/IPS based on 

statistical methods and machine learning. Project tasks include: 
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1. Studying intrusion detection algorithms based on statistical methods and 

machine learning. 

2. Analyzing vulnerabilities in IDS/IPS systems and identifying common 

attacks. 

3. Studying methods to protect IDS/IPS from common attacks. 

4. Developing a test environment for investigating vulnerabilities in 

intrusion detection systems. 

5. Evaluating the effectiveness of intrusion detection algorithms. 

6. Comparing intrusion detection algorithms based on statistical methods 

and machine learning. 

7. Identifying the most effective intrusion detection algorithm based on 

statistical methods and machine learning. 
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1 INTRUSION DETECTION SYSTEMS (IDS/IPS) THAT UTILIZE 

ALGORITHMS BASED ON STATISTICAL METHODS AND MACHINE 

LEARNING. 

 

1.1 Justification of the relevance of research on vulnerabilities in intrusion 

detection systems (IDS/IPS). 

 

The relevance of a systematic literature review on vulnerabilities in intrusion 

detection systems (IDS/IPS) and their widespread use for protecting various 

organizational networks has been demonstrated by several scholarly works on this 

topic. 

Glushchenko M.V., Shiryaev A.A., Glushenko S.A. [1] investigated the types 

and methods of intrusion detection systems in the information structure of enterprises. 

They found that intrusion detection systems based on anomaly detection methods 

typically search for network traffic that differs from the standard behavior model of the 

network. The main principle is that network traffic behavior during an attack 

significantly differs from normal user traffic. IDS using anomaly detection methods 

create a profile (model of normal network traffic behavior) based on the standard 

behavior of network traffic in the network. When such IDS detects differences in the 

current network traffic behavior from the saved profile, an intrusion is recorded. 

Intrusion detection systems based on anomaly detection methods are capable of 

detecting new attacks whose signatures have not yet been identified. However, it was 

also found that the main drawback of this method is false positives when network 

traffic behavior deviates from the created profile. 

Le Quang Minh, Fan Huy Anh, Nguyen Anh Chuen, Nguyen Chung Thien [2] 

concluded that traditional methods used in modern network systems to detect network 

anomalies are becoming outdated and ineffective in the face of changing hacker attacks 

and methods. In this study, the authors presented an intelligent model of an IPS/IDS 

system that combines machine learning with the development of additional updates 
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before new network attacks to improve IDS transmission systems. Thus, this helps the 

system effectively prevent attacks even with new types of hacker attacks. The authors' 

team created an IDS system based on machine learning, self-learning, and intelligent 

reasoning, where new attacks are based on collected datasets. However, the proposed 

system still has some shortcomings, such as: the dataset was built over a long period, 

there are not many updates, new forms of attack have not been added, and there is a 

lack of accuracy. 

Kumaga N.K., Grigoryevych A.V. [3] studied the design and implementation of 

an intrusion detection and prevention system "IDS/IPS" in the corporate network of 

UGTU. They found that currently, in UGTU, to ensure security or protect information, 

intermediate access tools (Proxy Server), firewalls (Firewall), and antivirus protection 

tools are used. Using only these information security mechanisms does not fully and 

effectively detect and prevent unauthorized and malicious activity in the UGTU 

network. The authors concluded that the following problems arise from this: 

1. Unauthorized access to the network and systems. 

2. Unauthorized use of IP telephony. 

3. Hacking of sites and web applications. 

4. Encryption of users' computers for ransom. 

To address these issues, the authors propose using network resources from 

external attacks and supplementing existing technologies, which will allow timely 

detection and prevention of IDS/IPS intrusions. 

A.D. Alshaibi, M.M. Al-Ani, A.A. Konev [4] conducted an extensive systematic 

literature review. They analyzed machine learning models and provided information 

about the advantages and limitations of all detection methods, laying the groundwork 

for the development of Intrusion Detection Systems (IDS). Machine learning methods 

(ANN, SVM, KBS) are widely used for developing IDS to timely and automatically 

detect and classify cyberattacks. This study provides a general overview of various 

approaches to creating machine learning algorithms, their major pros and cons, and 

helps select the appropriate algorithm based on the dimensionality and type of input 

data. 
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Currently, we observe dynamic growth in scientific activity concerning the 

vulnerability assessment of IDS/IPS. Bazhenov I.O. [5] showed that applying ready-

made intelligent attack detection tools "out of the box" to the anomaly detection task 

leads to a high number of false positives and misses attacks because network traffic is 

a stream that changes daily. Therefore, one approach to solving the attack detection 

problem is dynamic, adaptive adjustment of intelligent detectors. 

However, in the vast majority of attack detection systems, rule-based methods 

are primarily used, as the created rules provide justification for recording an attack at 

a specific moment and allow for easier system configuration, whereas intelligent attack 

detection methods, due to their complex learning algorithm, represent a black box. 

Some authors [6] examined methods and means of ensuring information security 

in a local computer network and implementing a module of an intrusion detection and 

prevention system based on it, presented in the form of a deceptive system, which 

allows combating various network threats by setting traps and falsifying system 

parameters. The flexibility of configuration is a feature of such a solution. 

Some authors [7] consider signature analysis as an effective preventive measure 

against intrusions. However, they conclude that the problem of detecting cybercrimes 

is complicated by gaps in existing legislation and that IDS/IPS systems require 

continuous improvement and modernization. 

Algorithms based on statistical methods and machine learning techniques 

significantly enhance the process of detecting new network attacks, learning to identify 

them correctly, block them, and prevent future threats. 

Analysis of related research in this area has shown an increasing number of high-

quality articles identifying practical and theoretical issues in using IDS/IPS systems. 

However, most studies still emphasize the need for continued in-depth research and 

systematic study of vulnerabilities in intrusion detection systems (IDS/IPS). 

The bibliometric indicators of the corresponding research direction are presented 

in Figures 1-3. The trends indicate a growing interest of the scientific community in 

research in this direction. 
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Figure 1 - Scientometric Indicators 

 

Figure 2 - Scientometric Indicators 

 

 

 



13 

 

Figure 3 - Scientometric Indicators 

 

 

1.2 Extraction of Data on IDS/IPS Methods Based on Statistical Methods 

and Machine Learning Techniques 

 

Inclusion Criteria for the Review: 

− Original articles and conference papers describing the study of IDS/IPS 

vulnerabilities based on statistical methods and machine learning 

techniques, research on intrusion detection algorithms, and evaluation of 

algorithm effectiveness against various typical attacks. 

− Patent documentation containing descriptions of statistical methods and 

machine learning techniques applied in IDS/IPS systems, along with 

detailed descriptions of IDS/IPS system architectures. 

Exclusion Criteria: 

− Documents and conference materials on algorithms not based on 

statistical methods and machine learning techniques; 
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− Articles and materials inaccessible via Ural Federal University's corporate 

subscription. 

Research Question for the Literature Review: What are the existing methods of 

intrusion detection systems (IDS/IPS) based on statistical methods and machine 

learning techniques? For example, XGBoost, KNN, SVM, etc.? 

Potential Users of the Results: specialists in cybersecurity and organizational 

system protection, researchers of intrusion detection systems, 

Analysis and evaluation of intrusion detection system (IDS/IPS) algorithms 

based on statistical methods and machine learning techniques. 

Practical Outcome - evaluation of the effectiveness of IDS/IPS protection 

methods based on experiments, reducing detection vulnerabilities in systems with 

algorithms based on statistical methods and machine learning techniques. 

The literature review can be applied in both industrial (practical) and scientific 

(research) environments. 

Description of the Search Process: 

1. Selected Libraries: Elsevier, eLibrary. 

2. Selected Timeframe: 2017-2023. 

3. Quality Criteria: Only articles indexed in RSCI, HAC, and Scopus. 

4. Examples of Search Queries: 
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The step-by-step process for analyzing the documentation is presented in Table 1. 

Table 1 - Publication Analysis Process 

  Elibrary Elsevier 

Step 0 - Query Found: 67 Found: 729 

Step 1 - Full-text 

Availability Check 

Available in full text: 

23 

Available in full text: 

287 

Step 2 - Title 

and Metadata Analysis 

Remaining: 11 Remaining: 184 

Step 3 - Abstract 

Analysis 

Remaining: 7 Remaining: 37 

Step 4 - Result 

Analysis 

Remaining: 4 Remaining: 10 

 

The main goal of the research is to extract methods of intrusion detection systems 

(IDS/IPS) based on statistical methods and machine learning techniques from the 

documents. 

From the IDS/IPS algorithms, it is necessary to extract models based on 

statistical methods and those related to machine learning. 

The primary aim of data synthesis is to compare existing statistical methods and 

machine learning techniques to assess the vulnerabilities of IDS/IPS and to identify 

recommendations for addressing these vulnerabilities in IDS/IPS algorithms. 

For the search, the technical field was determined by selecting IPC indexes: 

1. G06F 21/57 - Certification or maintaining trusted computer platforms, such as 

secure booting or shutting down, version control, software system checks, secure 

updates, or vulnerability assessment [2013.01]. 

2. G06F 21/55 - Local intrusion detection or countermeasures [2013.01]. 

3. G06N 20/00 - Machine learning [2019.01]. 

4. G06F 21/00 - Devices for protecting computers, their components, programs, or 

data against unauthorized activity [2013.01]. 
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For the analysis of patent documentation, the following databases were used: 

Rospatent, Google Patents. 

We analyzed the documentation of patented tools, methods, and algorithms in 

the field of information system and data protection, the documentation of patented 

methods and algorithms for machine learning applied in the field of information 

security, and the documentation of registered software models for electronic computers 

(EC). 

The main goal is to extract from the patent documentation the machine learning 

methods and algorithms used in the field of information security, as well as the methods 

and algorithms for the functioning of intrusion detection systems (IDS/IPS) based on 

statistical methods and machine learning techniques. 

Patent Search Queries for Rospatent: 

1. Main Query Area: Intrusion Detection System OR Intrusion Prevention 

System 

Total Found: 141 

Selected Search Bases (number of documents found): 

Abstracts of Russian Inventions (RI): 25 

Applications for Russian Inventions (ZIZ): 46 

Full Texts of Russian Inventions from the Last Three Bulletins (NIZ): 45 

Formulas of Russian Utility Models (FPM): 11 

Formulas of Russian Utility Models from the Last Three Bulletins (NPM): 3 

Prospective Russian Inventions (PI): 11  

2. Main Query Area: Intrusion Prevention System OR Intrusion detection 

system 

Total Found: 13 

Selected Search Bases (number of documents found): 

Abstracts of Russian Inventions (RI): 0 

Applications for Russian Inventions (ZIZ): 0 

Full Texts of Russian Inventions from the Last Three Bulletins (NIZ): 10 
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Formulas of Russian Utility Models (FPM): 0 

Formulas of Russian Utility Models from the Last Three Bulletins (NPM): 0 

Prospective Russian Inventions (PI): 3  

3. Main Query Area: (Intrusion Prevention System OR Intrusion detection 

system OR система обнаружения вторжений) AND машинное 

обучение 

Total Found: 7 

Selected Search Bases (number of documents found): 

Abstracts of Russian Inventions (RI): 0 

Applications for Russian Inventions (ZIZ): 3 

Full Texts of Russian Inventions from the Last Three Bulletins (NIZ): 3 

Formulas of Russian Utility Models (FPM): 1 

Formulas of Russian Utility Models from the Last Three Bulletins (NPM): 0 

Prospective Russian Inventions (PI): 0  

4. Main Query Area: (Intrusion Prevention System OR Intrusion detection 

system OR система обнаружения вторжений) AND (машинное 

обучение OR статистические методы) 

Total Found: 12 

Selected Search Bases (number of documents found): 

Abstracts of Russian Inventions (RI): 1 

Applications for Russian Inventions (ZIZ): 3 

Full Texts of Russian Inventions from the Last Three Bulletins (NIZ): 6 

Formulas of Russian Utility Models (FPM): 1 

Formulas of Russian Utility Models from the Last Three Bulletins (NPM): 0 

Prospective Russian Inventions (PI): 1  

5. Main Query Area: Система обнаружения вторжений OR Система 

предотвращения вторжений AND (машинное обучение OR 

статистические методы) 

Total Found: 123 

Selected Search Bases (number of documents found): 
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Abstracts of Russian Inventions (RI): 21 

Applications for Russian Inventions (ZIZ): 38 

Full Texts of Russian Inventions from the Last Three Bulletins (NIZ): 39 

Formulas of Russian Utility Models (FPM): 11 

Formulas of Russian Utility Models from the Last Three Bulletins (NPM): 3 

Prospective Russian Inventions (PI): 11 

6. Main Query Area: машинное обучение and атаки 

Total Found: 27 

Selected Search Bases (number of documents found): 

Abstracts of Russian Inventions (RI): 3 

Applications for Russian Inventions (ZIZ): 3 

Full Texts of Russian Inventions from the Last Three Bulletins (NIZ): 21 

Formulas of Russian Utility Models (FPM): 0 

Formulas of Russian Utility Models from the Last Three Bulletins (NPM): 0 

Prospective Russian Inventions (PI): 0 

Patent Search Queries for Google Patents: 

1.  (Intrusion Prevention System) and (machine learning) and (Intrusion 

detection system) 

2. (Intrusion Prevention System) and (Intrusion detection system) and 

after:priority:20170101 

Пошаговый процесс анализа патентной документации представлен в 

таблице 2. 
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Table 2 - Patent Documentation Analysis Process. 

Step Google Patents Rospatent 

Step 0 - Query Found: 32,000 Found: 323 

Step 1 - Full-text 

Availability Check 

Remaining: 32,000 Remaining: 

300 

Step 2 - Title and 

Metadata Analysis 

Remaining: 46 Remaining: 11 

Step 3 - Abstract 

Analysis 

Remaining: 21 Remaining: 7 

Step 4 - 

Documentation Analysis 

and Data Extraction 

Remaining: 2 Remaining: 5 

 

1.3 Task Formulation for Management 

 

The object of management is intrusion detection systems at any enterprise, 

including its components, configuration parameters, as well as the processes of 

detection and response to threats. 

The subject of management is algorithms and methods of intelligent support for 

the threat detection process and ensuring the effective operation of the intrusion 

detection system. 

Within the framework of management task formulation, the aspect of efficiency 

parameters of the information system is considered. The following efficiency 

parameters have been identified: 

1. Detection Accuracy: 

− The proportion of truly detected attacks and anomalies among all detected 

events. 

− Measured by the ratio of the number of correctly classified events to the 

total number of detected events. 
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2. False Positives: 

− The proportion of events incorrectly classified as attacks or anomalies 

among all detected events. 

− Measured by the ratio of the number of false positives to the total number 

of detected events. 

3.False Negatives: 

− The proportion of actual attacks or anomalies that the system failed to 

detect among all real attacks or anomalies. 

− Measured by the ratio of the number of undetected attacks to the total 

number of real attacks. 

4. Response Time: 

− The time required for the system to detect and respond to a threat after its 

occurrence. 

− A shorter response time usually indicates a more efficient system. 

Innovation refers to the transformation of the flow of information resources. 

Let's consider this transformation through the prism of the "black box" model: 

 

Рисунок 4 – Схематическая модель «черного ящика». 

 

1. Input: Network traffic (data packets, network activity events), metadata 

about network activity (e.g., source, destination, port, protocol, etc.). 
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2. Output: Determination of whether the network activity is normal or 

abnormal (possibly indicating the type of attack), decision to block or 

allow network activity (in the case of IPS). 

3. External environment: Network infrastructure: network nodes, routers, 

switches, etc. Network protocols and standards. Network topology and 

application architecture. 

4. Feedback: In the event of detecting an attack or suspicious activity, the 

IDS/IPS system can generate notifications or alerts for the system 

administrator. In the case of blocking network activity, information about 

the system's actions may be sent back to logs or monitoring system for 

subsequent analysis or response. 

An information security system can be considered as consisting of four 

subsystems: 

1. Access control subsystem; 

2. Registration and accounting subsystem; 

3. Cryptographic subsystem; 

4. Integrity assurance subsystem. 

This research focuses on the access control subsystem. 

As a supersystem, the information security department can be considered 

responsible for the integrity of the information system and receiving reports on the 

results of the intrusion detection system's operation. The supersystem coordinates the 

subsystem's work and interacts with the external environment. 

Intrusion Detection System (IDS/IPS): This is the primary system that analyzes 

network activity, detects anomalies or potential attacks, and makes decisions about 

blocking or allowing traffic. 

In the framework of the management task formulation, answers to questions of 

the conceptual model were provided: 

1. Main function: Implementation of the continuous analysis process of 

network traffic and events to identify and prevent potential attacks and 

anomalous activity in the network. 
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2. System structure: Internal server-side and external interface parts of the 

intrusion detection and prevention system. 

Internal server-side part: 

− Sensors (data collection): Responsible for collecting and filtering network 

traffic and events. 

− Analyzers (data analysis): Apply intrusion detection algorithms to analyze 

collected data and detect anomalies. 

− Reacting devices (decision-making and response): Responsible for 

making decisions and taking actions to prevent threats. 

3. System operation direction: Improvement of the continuous detection and 

prevention process of potential attacks and anomalous activity in the 

network, thereby ensuring the necessary security and integrity of the 

information infrastructure. 

4. Goal: Ensuring the security of the organization's network infrastructure 

by detecting and blocking attempts of unauthorized access, as well as 

anomalous activity, which may indicate an attack or threat. 

Let's define some factors that influence the value of the previously highlighted 

performance indicators: 

1. Types of attacks and threats. Different types of attacks may have different 

characteristics and behavior patterns, which can affect the intrusion 

detection system's ability to identify them. 

2. Quality of training data. The quality of data used for training machine 

learning algorithms or creating attack signatures can significantly affect 

the accuracy and reliability of detection. 

3. Configuration parameters. Proper configuration of system parameters, 

such as thresholds for anomaly detection and false positive thresholds, can 

significantly affect its effectiveness. 

4. Technical architecture. The system's efficiency also depends on hardware 

and software, network architecture, and the location of sensors. 
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5. Network scale. The size and scale of the network can affect the 

performance and capabilities of the intrusion detection system. 

6. Staff training. The level of training and education of personnel responsible 

for configuring and monitoring the system can also significantly affect its 

effectiveness. 

7. Degree of integration. Integrating IDS/IPS with other security systems 

and network devices can affect its ability to respond quickly to threats and 

coordinate actions. 

The lifecycle of managing the operation algorithms of intrusion detection and 

prevention systems may include the following stages: 

1. Analysis and Planning: 

− Defining the requirements for the intrusion detection and prevention 

system. 

− Studying existing algorithms and methods for threat detection and 

prevention. 

− Planning the strategy for updating and changing algorithms according to 

security needs and requirements. 

2. Algorithm Selection: 

− Choosing the most suitable algorithms and methods for implementing the 

intrusion detection and prevention system. 

− Taking into account security requirements, performance, and other 

factors. 

3. Development and Implementation: 

− Developing and implementing the selected algorithms and methods within 

the intrusion detection and prevention system. 

− Integrating algorithms into the overall system architecture. 

− Testing and debugging new algorithms. 

4. Operation and Monitoring: 

− Deploying the system in the operational environment. 
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− Monitoring the operation of the system and intrusion detection and 

prevention algorithms. 

− Monitoring the performance and effectiveness of algorithms in real 

operational conditions. 

5. Update and Adaptation: 

− Conducting regular updates of algorithms according to changing threats 

and security requirements. 

− Adapting algorithms to new types of attacks and changes in the network 

environment. 

6. Analysis and Optimization: 

− Regularly analyzing the effectiveness and performance of algorithms. 

− Optimizing algorithm operation based on the results obtained and 

feedback from monitoring. 

7. Removal and Replacement: 

− In case of obsolescence or insufficient effectiveness of algorithms, 

removing them and replacing them with more modern or efficient 

alternatives. 

The current state of the system can be represented as follows: 

𝑆0 = {𝑃0
𝑖},  (1), 

where P0 – represents the initial values of parameters, i = 1, 2…n – denotes the 

number of parameters. 

To solve the control problem, the system must reach a final state described as: 

𝑆𝑘 = {𝑃𝑘
𝑖 }  (2), 

where Pк – represents the final values of the system parameters. 

The following parameters will be used to solve the problem: 

1. Precision - measures how much the classifier can be trusted:  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
  (3), 
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2. Recall - indicates how many items of the class "attack present" are correctly 

identified by the classifier: 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
   (4), 

 

3. F1-score - the harmonic mean between precision and recall (the closer to 1, the 

better): 

𝐹 =  
(2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙)
  (5), 

 

4. Accuracy - the proportion of correct answers by the algorithm: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
(𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
  (6), 

Notation used in the metrics formulas: 

1) TP (true positive) - the number of true positive results, 

2) TN (true negative) - the number of true negative results, 

3) FP (false positive) - the number of false alarms,  

4) FN (false negative) - the number of missed attacks.  

Goal of management (Zu): 

 𝑍𝑢 = max 𝐾  (7),  

Where maxK - represents the maximization of cases of detecting unauthorized access 

attempts, as well as anomalous activity that may indicate an attack or threat and 

ensuring the security of the network infrastructure. 

Control vector (ufunc): 

𝑢(𝑡) = [𝑢𝑓𝑢𝑛𝑐]  (8), 

where ufunc - denotes the control of operation (alteration of system operation 

algorithms). 

In the generalized model of the control system, the controlling subsystem is the 

intrusion detection system (IDS/IPS). 

The controlling subsystem establishes the parameters and rules of operation of 

the system, as well as monitors and controls its functioning. 
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The controlled subsystem, in turn, is the server part from which network traffic 

data is received into the intrusion detection system. 

The scheme of the management task is presented in Figure 5.

 

Figure 5 - Scheme of the system's management task formulation. 

Results and conclusions of the first chapter 

 

Networks play a crucial role in modern society, and cybersecurity has become a 

critically important area of research. Intrusion Detection Systems (IDS) monitor the 

operation of software in the network, but existing IDS still face challenges in increasing 

detection accuracy, reducing false alarms, and recognizing new types of attacks. To 

address these issues, many researchers focus on creating IDS that utilize machine 

learning algorithms. 

Supervised machine learning uses labeled data to train a model, which can then 

predict labels for new data. For example, a spam classifier can determine whether a 
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new email is spam or not. Unsupervised machine learning, on the other hand, works 

with unlabeled data. For instance, in clustering botnets attacking the network, they need 

to be distinguished from each other without predefined labels. Classification and 

regression analysis are examples of supervised machine learning, while clustering 

represents a form of unsupervised machine learning. 

Machine learning methods can accurately identify differences between normal 

and anomalous data and detect unknown attacks due to their generalization ability. 

Cybersecurity methods mainly include antivirus software, firewalls, and Intrusion 

Detection Systems (IDS). Among them, IDS is a type of detection system that plays a 

key role in cybersecurity by monitoring the status of software and hardware operating 

in the network. 

It is worth noting that the lack of available datasets can be the biggest challenge. 

Thus, unsupervised learning and incremental learning approaches have broad prospects 

for development. For practical IDS, interpretability is essential because interpretable 

models are more persuasive. The interpretability of models could be an important 

research direction for IDS in the future. 

In the article "Applying convolutional neural network for network intrusion 

detection (Conference Paper)" [8], the authors concluded that Convolutional Neural 

Network (CNN) architectures in deep learning have achieved significant results in 

computer vision. To transform this performance into intrusion detection (ID) in 

cybersecurity, in this document, network traffic is modeled as a time series, 

specifically, Transmission Control Protocol/Internet Protocol (TCP/IP) packets in a 

predefined time range with supervised learning methods, such as Multilayer Perceptron 

(MLP), CNN, CNN-Recurrent Neural Network (CNN-RNN), CNN-Long Short-Term 

Memory (CNN-LSTM), and CNN-Gated Recurrent Unit (GRU), using millions of 

known good and bad connection networks. 

The methodology involves measuring the effectiveness of the proposed 

approaches. The authors evaluated the most significant synthetic ID dataset, such as 

KDDCup 99. For selecting the optimal network architecture, the article conducted a 

comprehensive analysis of various MLP, CNN, CNN-RNN. 
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The models in each experiment were run for up to 1000 epochs with a learning 

rate in the range [0.01-05]. CNN and its architecture variations significantly 

outperformed classical machine learning classifiers. This was mainly because CNN has 

the ability to extract high-level feature representations, which are abstract forms of 

low-level feature sets of network traffic connections. 

Deep Neural Network (DNN) is widely used for complex systems, allowing 

abstraction of features and learning as a machine learning method. Some researchers 

[9] used deep learning methodology to develop efficient and flexible IDS using one-

dimensional Convolutional Neural Network (1D-CNN). The machine learning model 

based on 1D-CNN serialized Transmission Control Protocol/Internet Protocol 

(TCP/IP) packets in a specified time range as an intrusion internet traffic model for 

IDS, where normal and abnormal network traffic is classified and labeled for 

supervised learning in 1D-CNN. 

As a result of comparative performance research, Random Forest (RF) and 

Support Vector Machine (SVM) models based on machine learning were used in 

addition to 1D-CNN with various network parameters and architecture. In each 

experiment, the models were trained for up to 200 epochs with a learning rate of 0.0001 

on both imbalanced and balanced data. 1D-CNN and its architecture variations 

outperformed classical machine learning classifiers. 

In the article "Intrusion detection using neural networks and support vector 

machines" [10], the authors conducted experiments on two datasets - KDD Cup 1999 

and DARPA 1999, and compared the results with other intrusion detection methods 

such as Bayesian networks and decision trees. The authors proposed a Multilayer 

Perceptron (MLP) and SVM architecture for intrusion detection. The results showed 

that models based on MLP and SVM provide high intrusion detection accuracy, 

outperforming other methods. 

The ensemble feature selection method improves the quality of feature selection 

and reduces selection time. This method was proposed by foreign researchers [11], 

whose goal was to develop a new approach to feature selection for intrusion detection 

systems. Experiments were conducted on several datasets: DARPA98, KDD99, 
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ISC2012, and ADFA13, to evaluate the effectiveness of the proposed method. The 

results showed that the proposed method outperforms other feature selection methods 

in terms of accuracy, recall, and F-score metrics, while having lower computational 

complexity. 

However, it is worth noting that the authors do not consider the impact of the 

number of selected features on the performance of the intrusion detection system. 

Additionally, there was no comparison with other methods based on ensemble filters, 

which could be an interesting aspect for future research in this area. 

The "one-class SVM" algorithm (support vector machine method for anomaly 

detection) for creating an ensemble of models improves the efficiency of attack 

detection [12]. Experimental evaluation of this method was conducted on two datasets: 

KDDCup'99 and DARPA2000. The experiments showed that the proposed method 

outperforms other methods (including SVM with RBF kernel and multilayer 

perceptron). The analysis of the experiment results also helped identify which data 

characteristics affect the quality of attack detection. As a result, it was found that using 

different feature sets and tuning algorithm parameters can significantly affect the 

effectiveness of attack detection. 

The article describes an intrusion detection system, a variety of intrusion 

detection methods to combat cybersecurity threats, which can generally be divided into 

signature-based intrusion detection systems (SIDS) and anomaly-based intrusion 

detection systems (AIDS). Some authors propose using machine learning algorithms 

for network traffic classification, as well as visualizing the obtained results for 

convenient analysis [13]. Authors used Bayesian networks, decision trees, and artificial 

immune system cloning algorithms as machine learning methods. The most popular 

publicly available datasets used for IDS research were examined, and their data 

collection methods, evaluation results, and limitations were discussed. 

The testing was conducted only using DARPA/KDD99 datasets collected in 

1999 as they are publicly available, and there are no other alternative and acceptable 

datasets. It is worth noting that despite their widespread recognition as a standard, these 
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datasets no longer reflect modern "zero-day" attacks. Although the ADFA dataset 

contains many new attacks, it is still insufficient. 

The article "Hybrid anomaly detection system for intrusion detection" [14] 

describes a new hybrid approach to anomaly detection for intrusion detection systems. 

The authors propose using statistical methods such as the maximum likelihood 

algorithm and decision tree-based classifiers, combined with neural networks to create 

an effective intrusion detection system. 

The authors proposed using a variety of features, including flow information, 

ports, protocols, sessions, packet size, etc., as well as a variety of algorithms such as 

decision trees, SVM, and neural networks, to detect anomalies in network traffic. 

The authors evaluated the performance of their system on the DARPA 1998 

dataset, and the results showed that the hybrid approach outperforms individual 

methods such as SVM and neural networks in anomaly detection accuracy. 

Considering the current types of attacks, one of the main problems is the "Denial 

of Service" (DoS) and "Distributed Denial of Service" (DDoS) attacks in a cloud 

environment [15]. To address this issue, using an Intrusion Detection System (IDS) as 

a security procedure operating at the network level is proposed. Conventional IDS in 

the cloud platform leads to low detection accuracy with high computational 

complexity. M. Mayuranathan, M. Murugan, V. Dhanakoti presented an efficient 

classification model based on feature subset selection for identifying DDoS attacks 

[15]. For DDoS attack detection in IDS, feature sets with maximum detection using the 

Random Harmony Search (RHS) optimization model were selected. After selecting 

features for DDoS detection, a deep learning-based classifier model using Restricted 

Boltzmann Machines (RBM) was applied. To increase the speed of DDoS attack 

detection, a set of seven additional layers was included in the visible and hidden layers 

of RBM. 

As a result, accurate results are achieved through the optimization of 

hyperparameters of the presented deep RBM model. The probability distribution of the 

visible layer in the RBM model is replaced with a Gaussian distribution. For 

experiments, the RHS-RBM model was tested on the KDD'99 dataset. 
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Experimental results showed that the RHS-RBM model provides maximum 

accuracy - 99.92 and an F-score of 99.93. These obtained values of the RHS-RBM 

model were found to be better compared to the RBM model without using the RHS 

algorithm. 

Many foreign and domestic researchers in the field of machine learning and 

cybersecurity conduct reviews in this area. For example, the authors of the article "A 

survey on machine learning techniques in wireless sensor networks intrusion detection" 

[16] reviewed 68 studies published from 2007 to 2014. The article discusses various 

machine learning methods used for intrusion detection in wireless sensor networks, 

such as neural networks, decision trees, support vector machines, naive Bayesian 

classifiers, etc. 

One of the main conclusions of the article is that machine learning methods are 

an effective tool for intrusion detection in wireless sensor networks and can be used in 

combination with other methods to improve the efficiency of intrusion detection 

systems. It is also noted that to achieve high intrusion detection accuracy, it is necessary 

to consider the specific characteristics of wireless sensor networks, such as limited 

resources and the possibility of attacks at the physical device level. 

Computer networks are constantly threatened by malicious actors who attempt 

to gain unauthorized access to systems on them. Malicious actors constantly refine their 

attack methods, while network administrators develop new defense measures in 

response to these threats. This ongoing interaction leads to the emergence of new 

vulnerabilities and exploits, as well as the removal of ineffective attack methods. 

Network administrators must anticipate the detection of new threats and respond to 

them quickly. Identifying and blocking new exploits presents a complex challenge for 

administrators, especially if the attack targets a small number of services on the 

network or has not yet gained widespread use. 

LO Penchen, BRIGGS Reeves Hopp, AHMAD Navid patented an invention 

related to the field of network security [17]. Its technical result consists of providing 

more reliable and fast identification of new forms of attacks, increasing network 

security, and reducing processing resources used to protect the network from malicious 
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entities. The result is achieved through a method of providing security for an online 

service provided over the network, using a model with continuous learning, which 

includes collecting a set of security signals, with the set of security signals collected in 

a sliding time window; identifying whether each security signal from the set of security 

signals is malicious or harmless; creating a balanced training dataset for the sliding 

time window by: ensuring a balance of malicious signals from the set of security signals 

based on the type of attack identified for each malicious signal, ensuring a balance of 

harmless signals from the set of security signals to create a balanced training dataset 

based on the type of device from which each harmless signal is received, and ensuring 

a balance of malicious signals with harmless signals by cross-connecting malicious 

signals with harmless signals; and creating a predictive model based on the balanced 

training dataset, wherein, in response to receiving an additional security signal related 

to a new network session from the online service, the predictive model is applied to 

determine whether this additional security signal is malicious or harmless [17].  

By integrating continuous learning intrusion detection models into the network, 

the capabilities of devices and software are improved. This allows for faster and more 

reliable identification of new types of attacks, solving the problem of increasing 

network security. It also allows for more efficient use of computational resources, 

without spending them on detecting outdated attack methods, thereby reducing the load 

on the defense system against malicious actors. 

To determine whether users are harmless or malicious, or whether devices are 

harmless (not sending malicious signals) or compromised (sending malicious signals), 

various security signals from the online service are collected and fed into production 

models to generate detection results indicating whether a given session is malicious or 

harmless. Security signals such as event logs, network state traces, and system 

commands undergo analysis using production models that evaluate their 

characteristics. Feature values are determined by training production models to detect 

malicious or safe behavior. The training data sampling mechanism excludes safe 

signals received from compromised devices in real-time, leaving only malicious 

signals from compromised devices. 
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The model adjusts rules or algorithms over several cycles, changing the values 

of variables that affect the input data to more accurately match the desired outcome. 

However, due to the variability of the training dataset and its large volume, achieving 

perfect metrics such as accuracy and precision may be unattainable. 

Thus, each security signal is analyzed in a production model, which is created 

by training the model on a balanced dataset and tuned to determine whether a specific 

security signal is malicious or safe. With the active development of computer 

technology and networks, the task of detecting computer attacks and timely detecting 

cases of server infection with malicious software becomes increasingly relevant. 

Network-level intrusion detection systems (IDS) use decision rule bases. These 

rules contain criteria for analyzing communication sessions and recording information 

security events. The criteria describe the content and attributes of network connections 

that the system considers malicious within the established syntax. 

In practical application, network IDS tasks include: timely updating the decision 

rule base for more effective detection of new threats; reducing the number of type I 

errors (false positives) [21]. Kislicin N.I. considers in his patent documentation a 

method of autogenerating decision rules for intrusion detection systems with feedback, 

performed on a server, which includes at least the following steps: receiving at least 

one event from the event database formed by data received from at least one sensor; 

analyzing the received at least one event for belonging to the class of interaction with 

command and control centers of malware; extracting from at least one of the above 

events belonging to the class of interaction with command and control centers of 

malware, at least one feature used to form decision rules; forming decision rules using 

at least one of the above extracted features; saving the generated decision rules and 

providing the possibility of receiving updates to the decision rules for at least one 

sensor; sensors cyclically check the availability of updates on the central node and, if 

updates are available, receive them for use, in case of receiving updates on the sensors, 

a trigger is triggered, rebooting the decision rules [21].  

The rule generation module, capable of analyzing events received from sensors, 

receives at least one event from the event database of the central node, received from 
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at least one sensor, and analyzes it for belonging to the class of interaction with 

command and control centers of malware based on the list of identifiers of the rules of 

the module database. If the event belongs to such a class, the module extracts at least 

one feature from the event used to form decision rules. 

Various identifiers can be used as features, such as the IP address of the data 

recipient or the domain name, which can be extracted from the service headers of 

transmitted data. For example, for the HTTP protocol, the domain name can be found 

in the Host field, and for DNS, from the binary data structure according to RFC 1035. 

In the case of the TDS protocol, the domain name can be extracted from the "client 

hello" message with the SNI extension. 

After extracting features, the rule creation module checks if these characteristics 

are present in the list of allowed names. If they are present in this list, processing of 

these features is completed. 

In their invention "Deep-learning-based intrusion detection method, system and 

computer program for web applications" [22], the authors patented an invention related 

to deep learning-based intrusion detection, namely, a method for detecting whether 

traffic is a hacker attack based on a deep neural network (DNN) model after setting up 

network traffic entering the server as input data to the model. 

The authors suggest conducting analysis based on signatures as one of the 

intrusion detection methods. It represents a scheme for searching for a specific pattern 

corresponding to a known attack threat, and regular expressions are used to analyze 

strings by comparing strings with an already saved list of signatures. When a pattern 

with a specific signature is detected in the useful data packet, the strings are considered 

an attack. An accurate and limited list of signatures can reduce the number of false 

positives. Signature-based analysis methodology may be successful if up-to-date 

signature patterns are supported, however, an unknown attack, such as a zero-day 

attack (a security attack exploiting a security vulnerability before the vulnerability is 

widely known after its discovery) or the latest malware, may not be detected. 

To address the above problems, the present invention provides an effective 

intrusion detection system through the use of deep neural networks in the form of 
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complex web service protocol messages (Hypertext Transfer Protocol (HTTP)), which 

is the most common and representative for the company among various application-

level services. In particular, the present invention provides a method for detecting web 

application threats, a system, and a computer program implementing it, configured to 

identify security threats by bypassing and interfering with the signature-based security 

detection scheme. 

To achieve the above-mentioned objectives, the deep learning-based intrusion 

detection method for web applications according to the present invention includes: (a) 

inputting input data formed by preprocessing traffic data on the web server into a deep 

neural network model for intrusion detection; (b) outputting from the intrusion 

detection model information on whether intrusion is detected in the traffic data; and (c) 

generating an alarm signal when intrusion is detected. 

In their research work titled "Cybersecurity detection and mitigation system 

using machine learning and advanced data correlation" [23], the authors described 

methods related to active security risk reduction, which are detected through combined 

analysis of risky users and compromised systems, a capability currently not available 

on the market. 

Reducing attacks and risks, based on a unified view of system security as well 

as on identification and access constraints, can be achieved using a comprehensive 

Enterprise Cybersecurity Defense System (eCDS). Such an eCDS can provide the 

methods and design elements necessary to create a full-fledged system capable of 

providing active protection and mitigating unforeseen and dynamically detected 

cyberattacks. Such a system can be beneficial to organizations like PayPal™ as well as 

other individuals and corporations. 

Thus, in various implementation scenarios outlined in the study, data from 

multiple domains (such as user identity, system logs) can be integrated into a machine 

learning-based solution that can recognize anomalous attempts to access electronic 

resources. These anomalous attempts may not be recognized by a simple rule-based 

system, as they could potentially be problematic. For example, a firewall might be 

configured to allow access to certain communication ports, or a specific user might 
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have access to a wide range of files and relational databases. However, statistically 

improbable (e.g., anomalous) access attempts may still indicate a fundamental security 

issue, even if such access could be permitted within a rule-based system. 

As a result of the research, the choice of dataset for training can be highlighted. 

For training attack detection systems among the available public datasets, the 

"Intrusion Detection Evaluation Dataset" CICIDS2017 was selected. The CICIDS2017 

dataset was prepared based on the analysis of network traffic in an isolated 

environment, where the actions of 25 legitimate users as well as malicious actions of 

intruders were simulated. The dataset combines over 50 GB of "raw" data in PCAP 

format and includes 8 pre-processed files in CSV format containing annotated sessions 

with selected features observed on different days. A brief description of the files is 

presented in Table 3, and the quantitative composition of the dataset is provided in 

Table 4. 

Table 3 - Brief description of files from the dataset. 

Brief description of files from the dataset 

№ File Name Contained Attacks 

1 Monday-

WorkingHours.pcap_ISCX.csv 

Benign (обычный 

трафик) 

2 Tuesday-

WorkingHours.pcap_ISCX.csv 

Benign, FTP-Patator, SSH-

Patator 

3 Wednesday-

workingHours.pcap_ISCX.csv 

Benign, DoS GoldenEye, 

DoS Hulk, DoS Slowhttptest, 

DoS slowloris, Heartbleed 

4 Thursday-WorkingHours-

Morning-WebAttacks.pcap_ISCX.csv 

Benign, Web Attack – 

Brute Forse, Web Attack – Sql 

Injection, Web Attack - XXS 

5 Thursday-WorkingHours-

Afternoon-

Infilterations.pcap_ISCX.csv 

Benign, Infiltration 
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6 Friday-WorkingHours-

Morning.pcap_ISCX.csv 

Benign, Bot 

7 Friday-WorkingHours-

Afternoon-PortScan.pcap_ISCX.csv 

Benign, PortScan 

8 Friday-WorkingHours-

Afternoon-DDoscap_ISCX.csv 

Benign, DDoS 

 

Table 4 - Quantitative composition of the dataset. 

Quantitative composition of the dataset 

№ Record Type Number of Records 

1 BENING 2359087 

2 DoS Hulk 231072 

3 PortScan 158930 

4 DDoS 41835 

5 DoS GoldenEye 10293 

6 FTP-Patator 7938 

7 SSH-Patator 5897 

8 DoS slowloris 5796 

9 DoS Slowhttptest 5499 

10 Bot 1966 

11 Infiltration 36 

12 Heartbleed 11 

13 Web Attack – Brute Force 1507 

14 Web Attack – XSS 652 

15 Web Attack – SQL Injection 21 
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At Figure 6, a fragment from the dataset is presented. 

 

Figure 6 - Dataset for the research. 

For further analysis, the following 10 most common machine learning models 

(algorithms) were selected for comparison (abbreviations are provided in parentheses 

along with the corresponding implementation of the model from the scikit-learn 

package): 

1.  K-Nearest Neighbors (KNN, sklearn.neighbors.KNeighborsClassifier). 

2.  Support Vector Machine (SVM, sklearn.svm.SVC). 

3.  Decision Tree (CART, CART learning algorithm, 

sklearn.tree.DecisionTreeClassifier). 

4.  Random Forest (RF, sklearn.ensemble.RandomForestClassifier). 

5.  AdaBoost (AdaBoost, sklearn.ensemble.AdaBoostClassifier). 

6.  Logistic Regression (LR, sklearn.linear_model.LogisticRegression). 

7.  Naive Bayes (NB, sklearn.naive_bayes.GaussianNB). 

8.  Linear Discriminant Analysis (LDA, 

sklearn.discriminant_analysis.LinearDiscriminantAnalysis). 

9.  Quadratic Discriminant Analysis (QDA, 

sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis). 

10.  Multi-layer Perceptron (MLP, sklearn.neural_network.MLPClassifier). 

From the literature review on vulnerability research of intrusion detection 

systems (IDS/IPS) based on statistical methods and machine learning methods, the 

following conclusions can be drawn: 

1. Analyzing intrusion detection algorithms such as XGBoost, KNN, SVM, and 

others reveals the diversity of approaches to cybersecurity problem-solving. 

Assessing the effectiveness of these algorithms across various types of 

attacks demonstrates the potential for enhancing the detection and prevention 

of new network threats. 
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2. Research into scientific papers and patents indicates the ongoing 

development of intrusion detection methods based on statistical techniques 

and machine learning, emphasizing the relevance and significance of this 

topic for cybersecurity. 

3. The objective of evaluating IDS/IPS based on statistical methods and 

machine learning is to enhance the level of protection for information 

systems against cyberattacks. Investigating vulnerabilities in IDS/IPS 

systems and identifying common attack types helps to better understand 

weaknesses in existing systems and develop more reliable defense 

mechanisms. 

4. The project tasks, such as algorithm analysis, test environment development, 

algorithm effectiveness assessment, and approach comparison, provide a 

deep understanding of cybersecurity issues and identify the most effective 

protection methods. The research findings can be utilized by cybersecurity 

professionals to enhance intrusion detection systems in both industrial and 

academic settings. 

Thus, the analysis of intrusion detection algorithms based on statistical methods 

and machine learning indicates a low level of research depth in the subject matter and 

the potential for significant improvement in cybersecurity through the application of 

modern methods and technologies. 
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2 COMPARATIVE ANALYSIS OF EXISTING MACHINE LEARNING 

METHODS FOR ASSESSING IDS/IPS VULNERABILITIES 

2.1 Network Anomalies and Methods for Their Detection 

2.1.1 Types of Network Anomalies 

 

Currently, one of the actively developing and demanded directions in the field 

of information security is the detection of attacks and prevention of intrusions by 

malicious actors into computer systems and corporate networks. To achieve this, a 

range of specialized algorithms and tools are applied, using behavior models and 

signature methods to detect known and unknown attacks and identify anomalous 

activities. This approach is highly effective in detecting insider attacks and "zero-day" 

attacks. 

An anomaly is a deviation or divergence from a rule, so anything deviating or 

diverging from what is correct or normal is considered anomalous. 

When detecting a network anomaly, in order to make decisions about further 

actions, it is necessary to carefully study its nature, potential danger, and possible 

consequences, i.e., to solve a classification problem. In this work, a generalized 

approach to the classification of network anomalies is proposed (Figure 7). 
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Figure 7 – generalized approach to the classification of network anomalies 

 

 

As the main classification features, the following are used:  

1. Source type; 

2. Cause of occurrence; 

3. Area (location) of occurrence; 

4. Manifestation method; 

5. Nature of changes. 

In this regard, for identifying potential network attacks, the most significant 

features would include the source of occurrence, the area of manifestation, and the 

nature of traffic changes. Table 4 presents a description of the relationship between 

anomalies classified by the cause of occurrence and the nature of network traffic 

changes. 
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Table 4 - Description of network traffic anomalies. 

Type and cause 

of network 

anomaly 

Description Traffic change characteristics 

Alpha 

Anomaly 

Extremely high point-to-

point traffic level 

Spike in traffic representation in 

bytes/s, packets/s for a dominating 

source-destination flow. Duration 

around 10 minutes. 

DoS-, DDoS- Distributed denial-of-service 

attack on a single victim 

Spike in traffic representation in 

packets/s, flows/s, from multiple 

sources to a single destination address. 

Overload Unusually high demand on a 

single network resource or 

service 

Spike in traffic per flows/s to a 

dominating IP address and port. 

Typically a short-term anomaly. 

Network/Port 

Scanning 

Network scanning for 

specific open ports or host 

scanning for all ports to 

identify vulnerabilities 

Spike in traffic per flows/s, with 

multiple packets in streams originating 

from a single dominating IP address. 

Worm Activity Malicious software capable 

of self-propagation across 

networks and exploiting OS 

vulnerabilities 

Spike in traffic without a dominating 

destination address, but always with one 

or several dominating destination ports. 

Point-to-

Multipoint 

Content distribution from one 

server to multiple users 

Spike in bytes from a main source to 

multiple destinations, to a well-known 

port. 

Outages Network disruptions causing 

a drop in traffic between a 

source and destination pair 

Decrease in packet, flow, and byte 

traffic typically down to zero. May be 

long-term and include all traffic flows 

from or to a single router. 

Flow switching Unusual switching of traffic 

flows from one incoming 

router to another 

Drop in bytes or packets in one traffic 

flow and an increase in another. May 

involve multiple traffic flows. 

 

2.1.2 Methods of anomaly detection 

 

Passive Network Monitoring: The computer network includes sensors that 

collect data from the network and evaluate it. In this scenario, there are two 

possibilities. The collected data may be intended directly for the sensors (for example, 

events sent via the SNMP protocol), or it may be a copy of the production traffic 

occurring in the network regardless of whether a sensor is connected or not. 
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Active Network Monitoring: The network may also contain sensors that generate 

additional traffic, which they send through the network. This traffic can be used to 

continuously determine the availability or general parameters of the tested services, 

network lines, and devices. 

Accordingly, methods of anomaly detection in these categories can be divided 

into four broad groups: behavioral methods, machine learning methods, computational 

intelligence methods, and knowledge-based methods.  

 

Figure 8 - Anomaly Detection Methods 

2.1.2.1 Behavioral Methods 

 

Wavelet transformation of a one-dimensional signal involves decomposing it 

into a basis constructed from a soliton-like function (wavelet) with certain properties, 

using scale changes and translations. Performing wavelet transformation allows for a 

clearer distinction of the signal component with greater amplitude and reduces the 

influence of small amplitudes, which mostly represent noise components of the signal. 

Statistical analysis is a part of behavioral methods for intrusion detection and is 

based on comparing the current state of the network with predefined features 

characterizing the normal state of the network. The major challenge lies in attacks with 
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anomalous behavior in the header of selected packet telecommunications traffic. The 

application of statistical analysis methods is the most common way to implement 

anomaly detection technology. 

For real-time analysis of anomalous intrusions, the following current statistical 

characteristics are calculated: sample mean, sample variance, skewness coefficient, and 

kurtosis coefficient. The detection process occurs in two stages. In the first stage, 

training is performed, assuming the absence of anomalous outliers in the observed 

interval. During this period, the threshold for anomaly detection is determined based 

on a specified probability of Type I error. The key moment for accurate detection is the 

correct selection of the training segment, where the threshold level is established. Then, 

according to the proposed methodology, a decision is made about the presence or 

absence of an attack by analyzing data in a sequentially shifting window. At each 

window position, the analysis is based on a sequential data analysis. 

Statistical analysis methods can be divided into two main groups:  

1. Parametric methods: Assume that normal data is generated by a parametric 

distribution with parameters θ and probability density function P(x,θ), where x 

is the observation. An anomaly is the inverse function of the distribution. These 

methods are often based on Gaussian or regression models, as well as their 

combinations. 

2. Non-parametric methods: It is assumed that the model structure is not 

predefined, but is determined from the provided data. This category includes 

methods based on histograms or kernel functions. 

Anomaly detection systems based on the concept of "entropy" analyze network 

flows rather than individual network packets. Network flows represent one-way 

metadata about packets with the same source and destination IP addresses, ports, and 

IP protocol type. It is important to note that all network activity at OSI model levels 3 

and above is reduced to flows, including not only TCP connections but also stateless 
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protocols such as UDP and ICMP. The advantages of using the concept of flows 

include the following: 

− They require minimal resources for usage and storage, facilitating 

analysis. 

− They pose fewer problems with confidentiality and protection of personal 

data. 

− Access to the necessary information in the network is easily organized, for 

example, through Cisco NetFlow, sFlow, or IPFIX. 

Spectral methods find data approximation using a combination of attributes that 

capture most of the variability in the data. This methodology is based on the assumption 

that data can be embedded in a lower-dimensional subspace where normal states and 

anomalies manifest differently. Spectral methods are often used in conjunction with 

other algorithms for data preprocessing. Modifications of spectral methods are 

investigated in the work by V.P. Shkodyrev, K.I. Yagafarov, V.A. Bashtovenko [24]. 

Fractal analysis methods allow timely detection of anomalous traffic. The main 

parameter of fractal analysis is the Hurst exponent (scaling exponent). It is most 

commonly used in time series analysis. The larger the delay between two identical pairs 

of values in a time series, the smaller the Hurst exponent. The hypothesis is advanced 

that to find the Hurst exponent, it is sufficient to know whether the process under study 

is stationary or not. The choice of algorithm for further computation of this exponent 

depends on this. It should be noted that there are few practical experiments aimed at 

studying the fractal properties of traffic. 

All statistical analysis methods have similar drawbacks. Firstly, malicious 

software adapts to the behavior of ordinary users, which reduces the effectiveness of 

statistical methods. Secondly, it is difficult to establish a threshold that allows for 

effective detection of anomalies and intrusions with minimal false positives. In 

addition, statistical methods require complete information about the processes taking 

place, which is challenging in conditions of limited data. 
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2.1.2.2 Machine Learning Methods 

 

The reason for using machine learning is that it can help automate threat 

processing and continuously update the system by analyzing threats and recognizing 

them. In other words, the software learns to recognize traffic patterns in order to 

classify different events and either reject or allow traffic. 

Machine learning is the ability of a program or system to learn and improve its 

functions based on the tasks assigned. Unlike statistical methods, which focus on 

understanding the process itself, machine learning involves creating a system that 

evolves based on accumulated knowledge. Machine learning-based systems can adjust 

their data processing strategy in response to new information. However, machine 

learning methods require significant computational resources, and adapting them to 

specific domains can be challenging. The ML approach typically consists of the 

following stages: 

− Defining class attributes (features) and the classes themselves in the 

training data. 

− Determining a subset of attributes needed for classification (i.e., 

dimensionality reduction). 

− Training the model using training data. 

− Using the trained model to classify unknown data in testing mode. 

Depending on the type of data classes used to implement the algorithm, anomaly 

detection methods can be performed in one of the following three modes: 

1. Supervised anomaly detection: This method requires a training set that fully 

represents the system and includes instances of both normal and anomalous data 

classes. The algorithm operates in two stages: training and recognition. During 

training, a model is built, which is then used to compare unlabeled instances. In 

most cases, it is assumed that the data does not change its statistical 

characteristics; otherwise, there is a need to modify the classifier. 

2. Semi-Supervised anomaly detection: In this approach, the original data 

represents only the normal class. After being trained on one class, the system 
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can determine whether new data belongs to it, thereby identifying anomalies. 

Algorithms operating in semi-supervised mode do not require information about 

the anomalous class of instances, making them more widely applicable and 

capable of detecting deviations without predefined information about them. 

3. Unsupervised anomaly detection: This method is applied when there is no prior 

information about the data. Unsupervised anomaly detection algorithms assume 

that anomalous instances occur much less frequently than normal ones. Data is 

processed, and the most distant points are identified as anomalies. This 

methodology requires access to the entire dataset and cannot be applied in real-

time mode. 

Decision trees are a non-parametric supervised learning method used for 

classification and regression tasks. The main goal is to create a model that predicts the 

value of the target variable using simple decision rules derived from the features of the 

data. Decision trees can be considered as piecewise-constant approximations. 

A Bayesian network is a graphical model representing probabilistic 

dependencies between a set of variables, allowing for probabilistic inference using 

these variables. It consists of two main components: a graphical structure that defines 

dependencies and independencies between random variables representing the domain, 

and a set of probability distributions defining the strength of dependencies encoded in 

the graphical structure. In the context of anomaly detection, Bayesian networks are 

used to estimate the probability of an observation belonging to one of the normal or 

anomalous classes. The simplest implementation of this approach is the naive Bayes 

approach. 

A clustering algorithm involves grouping similar instances into clusters and does 

not require knowledge of the properties of potential anomalies. Anomalies detection 

can be based on the following assumptions: - Normal data instances belong to a data 

cluster, while anomalies do not belong to any of the clusters. However, this formulation 

may encounter a problem of defining precise cluster boundaries. Hence, another 

assumption follows: - Normal data are closer to the center of the cluster, while 

anomalies are significantly farther away. In cases where anomalous instances are not 
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singular, they can also form clusters. Thus, their detection is based on the following 

assumptions: 

−  Normal data form large dense clusters, while anomalies form small and 

sparse ones. 

−  Normal objects are close to the cluster center, while anomalies are distant 

from the center. 

−  Normal objects belong to large, dense clusters, while anomalies belong to 

small and sparse ones. 

One of the simplest implementations of the clustering-based approach is the k-

means algorithm. 

2.1.2.3 Methods of artificial intelligence 

 

Methods of computational intelligence include the use of artificial neural 

networks, immune networks, genetic and swarm algorithms, support vector machines, 

and other approaches for intrusion detection. Except for the support vector machine 

method, all these methods are based on "peeking" at the chains of actions of living 

beings (individual organisms or populations) and translating them into a mathematical 

language. In other words, machines implement algorithms that simulate phenomena of 

living nature, which react more flexibly to the environment and execute faster 

computationally. 

Neural networks can make inferences about new objects based on incomplete 

data, classifying them into appropriate attack categories. Similar to living beings, they 

can both make mistakes and correctly guess, depending on the quality of training and 

the training dataset. The ability to self-learn eliminates the need for constant signature 

updates, reduces the system's response time to network anomalies, and allows 

processing a larger volume of traffic, thereby increasing the level of information 

security. 

More complex, though similar, method is artificial immune networks (AINs), 

based on the human immune system. Typically, algorithms such as negative selection 

and clonal selection are used for their training. The immune system is a distributed 
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multilevel defense mechanism against foreign microorganisms, viruses, and pathogens. 

Each level of immunity performs its type of defense reaction, and the higher the level, 

the higher the specificity of the response. 

The negative selection algorithm is based on the mechanism of T-lymphocyte 

maturation in the thymus. Input data for this algorithm is a set of strings composed of 

characters from a specific alphabet (e.g., numbers or letters). 

The clonal selection algorithm, belonging to the class of evolutionary 

algorithms, is used to solve optimization problems. The key concept of this algorithm 

is affinity, which in immunology means the degree of compatibility between two cells, 

and in mathematical implementation, it represents the value of the optimized function. 

During the algorithm's operation, a population of antibodies P is generated, 

representing a set of randomly created arguments of the optimized function. Then, the 

affinity of each antibody is calculated. After that, each antibody is cloned, and the 

higher its affinity, the more clones are created. Then, each antibody (including clones) 

undergoes mutation, with the lower the affinity of the antibody, the more mutations 

occur. Mutation involves introducing random changes into the elements of the 

antibody. After mutation, the affinity of each antibody is recalculated, and as a result, 

n antibodies with the best affinity are selected. These antibodies are added to the 

memory cell pool M. Then, n worst antibodies from the initial population P are replaced 

by antibodies from M. In the proposed approach, the clonal selection algorithm is used 

to improve the quality of attack detection and reduce the level of false positives. 

The support vector machine (SVM) method is applied for anomaly detection in 

systems where normal behavior is represented by only one class. This method defines 

the boundary of the region where the instances of normal data are located. For each 

examined instance, it is determined whether it is in a certain region. If the instance is 

outside the region, it is identified as anomalous. 
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2.1.2.4 Knowledge-based methods 

 

Knowledge-based methods include approaches that utilize predefined facts, 

inference rules, and pattern matching to detect anomalies (attacks) based on an 

embedded search mechanism. Search procedures may involve pattern matching, 

regular expressions, state transition analysis, and other methods. These methods are so 

named because systems employing them operate with a knowledge base containing 

descriptions of known attacks. 

The knowledge base serves as a repository with expert-contributed records 

supporting data processing logic and interpretation and includes a logical inference 

subsystem. 

The signature-based method can protect against viral or hacker attacks if the 

attack signature is already known and entered into the system's attack detection 

database (AD). However, during the first encounter with an unknown virus, when the 

attack signature is absent from the database, a signature-based AD will fail to recognize 

the threat and consider it legitimate. Such vulnerabilities are referred to as zero-day 

vulnerabilities. This approach, akin to virus detection technologies, enables the system 

to detect all known attacks but is incapable of recognizing new, as yet unknown types 

of attacks. 

This method is straightforward to implement and forms the basis of most 

intrusion detection systems. However, administrators encounter several challenges 

when operating such systems. The first challenge lies in creating a mechanism for 

describing signatures, that is, a language for describing attacks. The second problem, 

related to the first, is correctly describing the attack to capture all possible variations. 

 

2.1.3 Network traffic analysis 

 

The most likely way for attackers to penetrate infrastructure is through 

interception via the network environment, which is a system of connections between 

nodes for data transmission. Network security involves a wide range of measures to 
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protect computer networks and endpoints from malicious activities, misuse, and critical 

failures. 

Network firewalls are perhaps the most widely known network security tools, 

which use access strategies and unauthorized traffic filtering between devices in the 

network environment. However, network security is not limited solely to the use of 

network firewalls. 

Due to the variety of potential threats and the multitude of possible attacks, the 

network security model is a complex system. Administrators need to counter attacks 

from different directions and not rely solely on one component to ensure security. The 

interaction between clients and the network begins with access control, which is an 

authorization method that allows administrators to control user, role, or device access 

to various parts of the network. 

Intrusion detection systems operate within the network and are used to detect 

attempts or successful attacks through passive observation. Intrusion prevention 

systems (IPS) are an evolution of intrusion detection systems (IDS), allowing 

interception and analysis of traffic between the source and destination for automatic 

anomaly detection. Intercepting and analyzing network packets in real-time, known as 

sniffing, is considered a critical requirement for intrusion detection and prevention 

systems as it provides access to the content and data passing through the network, 

helping to identify threats. 

Considering the possibility that attackers can bypass access control measures and 

evade detection by intrusion detection systems, it is important to anticipate the 

likelihood of network infiltration. Well-designed systems should be prepared to detect 

insider attacks. Administrators need to actively use network activity monitoring and 

logging tools to expand visibility on servers and between them. Restricting protection 

only at the perimeter is insufficient, as attackers who overcome this barrier often 

succeed. Proper network segmentation can limit damage. 

Micro-segmentation is the practice of dividing the network into different 

sections based on the functionality of each element. When properly configured, micro-

segmentation simplifies network structure and security strategy management. 
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However, its effectiveness depends on clearly defined infrastructure change processes. 

Changes in the network must be accurately reflected in the micro-segmentation 

schemes, which can be a challenging task. Nevertheless, network segmentation allows 

administrators to strictly control and manage different routes between nodes A and B, 

and provides an extended visibility area for applying data analysis methods to detect 

attacks. 

Intercepting data transmitted over the network is a key method for recording 

network activity for subsequent online and offline analysis. Similar to a surveillance 

camera at a crossroads to monitor traffic, packet analyzers (sniffers) intercept and 

record traffic on the network. Network activity logs are useful not only for security 

incident investigation but also for debugging, performance monitoring, and network 

operations control. Positioned at strategic points in the network and properly 

configured packet analyzers can become an important tool for creating detailed data 

sets that provide a comprehensive view of what is happening on the network. 

2.2 Comparative analysis of well-known machine learning algorithms 

applied in IDS/IPS. 

The machine learning algorithm operates by processing the training dataset and 

creating a model. The model, in turn, uses new data for predictions, maintaining the 

format of the training data. All machine learning algorithms comprise three key 

components: a model family, which defines possible model variations; a loss function, 

which numerically evaluates the quality of models; and an optimization procedure, 

which selects the best model from the given family. 

After setting constraints on the selection of forecasting algorithms in a specific 

parameterized family, it is necessary to choose the optimal algorithm for the training 

dataset. However, how can one ensure that the best algorithm is chosen? The best 

algorithm should optimize the numerical metric computed based on the studied data. 

This metric is called the objective function. In the context of machine learning, the 

objective function is also referred to as the cost function or loss function, as it helps 

quantitatively assess the "cost" of incorrect predictions or associated losses. 
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From a mathematical perspective, the loss function is a function that maps pairs 

of values (predicted label, truth label) to a number. The goal of the machine learning 

algorithm is to find such model parameters that minimize the loss function, which is 

obtained by processing the training data. An optimization algorithm is used to 

implement the search process. 

Optimization algorithms are divided into two main groups: 

1. First-order optimization algorithms - they use the first derivative of the objective 

function with respect to the model parameters for its optimization. Gradient 

descent methods are the most common type of such algorithms. They are used 

to find the minimum or maximum value of the objective function by computing 

the gradient of the function, i.e., partial derivatives with respect to each 

parameter. The gradient determines the direction in which parameter values 

should be adjusted to achieve the most optimal result provided by the function. 

2. Second-order algorithms, also known as second-order methods, use the second 

derivatives of the objective function for optimization. Unlike first-order 

algorithms, they have a higher convergence rate and can successfully solve 

saddle point problems. However, second-order methods typically require more 

computational resources and may be slower compared to first-order algorithms. 

The choice of a suitable optimization algorithm depends on the size of the 

dataset, the type of learning task, and the requirements for the necessary resources. 

The first-order optimization algorithm group includes: 

1. LIBLINEAR [27] - the default solver for linear classification in the scikit-learn 

library. This algorithm is not very efficient for large datasets, so the scikit-learn 

documentation recommends using Stochastic Average Gradient (SAG) or 

SAGA (an improved version of SAG) methods, which perform better with large 

datasets. 

2. Stochastic Gradient Descent (SGD) - a simple and efficient optimization 

algorithm that updates parameters for each individual training data instance. The 

stochastic nature of gradient descent means that this algorithm is more likely to 
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find new and possibly better local minima compared to the standard gradient 

descent method. 

3. AdaGrad, AdaDelta, and Adam (Adaptive Moment Estimation) - these 

algorithms allow for the separation and adaptation of learning rates for each 

parameter and solve some tasks with other simpler gradient descent algorithms. 

As in many areas of data science, there is no universally ideal optimization 

algorithm. Determining the best algorithm for specific tasks often requires trial and 

error. Selection criteria include not only convergence and speed but also other factors. 

It is often customary to start with the default or most reasonable option and gradually 

improve it. 

Ensemble learning involves combining multiple classifiers to create a more 

complex and often more effective classifier. Combining decision trees into ensembles 

is a widely used method for creating high-quality classifiers. These ensembles are often 

referred to as decision forests. The most common types in practice are random forests 

and gradient-boosted decision trees. 

Random forests consist of simple ensembles of multiple decision trees, which 

typically contain tens to thousands of such trees. The presence of multiple decision 

trees in the forest leads to a high degree of similarity between trees and a large number 

of repeated splits in the trees, especially for features that are the most stringent 

predictors of the dependent variable. The algorithm for constructing a random forest 

solves this problem. 

Gradient-boosted decision trees (GBDT) apply more complex combinations of 

predictions from individual decision trees. When using the gradient boosting 

methodology, several weak learners are selectively combined by performing gradient 

descent optimization in the loss function to obtain a much more powerful learning 

model. 

GBDT has been enhanced to improve performance, enhance generalization, and 

create more efficient models. Some of these improvements are highlighted below: 
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1. Setting artificial constraints for trees (e.g., limiting tree depth, maximum number 

of nodes, or minimum number of elements in a node) helps limit the capabilities 

of trees without compromising their learnability. 

2. Sometimes decision trees added at early stages of training gradient-boosted 

ensembles may have a greater impact on the overall prediction than those added 

later. This can lead to model imbalance, reducing the benefits of ensembling. To 

address this issue, a weighted assessment of each tree's contribution is applied 

to slow down the learning process. A "shrinkage" technique is also used to 

reduce the influence of individual trees, allowing later trees to improve the 

model. 

3. Properties of random forests, which are based on stochastic processes, can be 

combined with gradient boosting methodology by applying data subsampling 

before building trees and by thinning the feature set before using it for branching. 

4. To prevent overfitting, widely used regularization methods such as L1 and L2 

regularization are applied to balance the learning weights. 

XGBoost is a widely used gradient boosting method for decision trees that 

delivers outstanding results when working with large volumes of data while 

maintaining the ability to scale correctly [28]. It serves as the foundation for many 

innovative ideas in machine learning and has attracted attention from the community 

as a reliable solution for creating decision tree ensembles. However, GBDT is more 

prone to overfitting compared to regular random forests and is more difficult to 

parallelize due to its additive training, which depends on the results of each tree when 

updating the gradient for the next one. 

Based on the original typical scheme (Figure 9), the following action plan can 

be developed for the development of an attack detection system, which complements 

the signature analyzer to increase the overall efficiency of the system, especially 

regarding previously unknown attacks: 

1. Selecting a dataset for training the computer attack detection system. 

2. Preprocessing the data. 

3. Sampling against class imbalance. 
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4. Assessing feature importance and selection. 

5. Reducing the feature space. 

6. Choosing a model. 

7. Tuning and training the model. 

8. Testing and validation. 

 

Figure 9 - Typical Supervised Learning Scheme by Sebastian Raschka 

(licensed under CCA 4.0) 
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2.2.1 Selecting a dataset for training the computer attack detection system 

 

Some of the available datasets suffer from a lack of diversity and traffic volume, 

some do not cover the variety of known attacks, while others anonymize packet 

payload data, which may not reflect current trends. Some also lack feature sets and 

metadata. For training the attack detection system among the available public datasets 

(DARPA1998, KDD1999, ISCX2012, ADFA2013, and others), one of the current and 

comprehensive ones was chosen - the "Intrusion Detection Evaluation Dataset" 

CICIDS2017. Developed by the Canadian Institute for Cybersecurity. 

The CICIDS2017 dataset is prepared based on the analysis of network traffic in 

an isolated environment, where the actions of 25 legitimate users and malicious actions 

of intruders were modeled. 

The CICIDS2017 dataset contains safe and modern common attacks that 

resemble real-world data (PCAP). It also includes the results of network traffic analysis 

using CICFlowMeter with flow marking based on timestamps, source and destination 

IP addresses, source and destination ports, protocols, and attacks (CSV files). 

Creating realistic background traffic was the main priority for the developers 

when creating this dataset. They used their proposed B-profile system (Sharafaldin et 

al., 2016) to profile the abstract behavior of human interactions and generate 

naturalistic background traffic. For this dataset, abstract behavior of 25 users was 

constructed based on HTTP, HTTPS, FTP, SSH, and email protocols. 

The dataset combines over 50 GB of "raw" data in PCAP format and includes 8 

preprocessed CSV files containing labeled sessions with selected features on different 

observation days. The comma-separated values (CSV) format in this dataset is a 

standard way of representing data for analytical research. 

A brief description of the files and the quantitative composition of the dataset 

are presented in the tables and figures below. 

 

 

 



58 

Table 5 - Brief Description of Files in the Dataset 

Brief Description of Files in the Dataset 

№ File Name Contained Attacks 

1 Monday-

WorkingHours.pcap_ISCX.csv 

Benign  

2 Tuesday-

WorkingHours.pcap_ISCX.csv 

Benign, FTP-Patator, SSH-

Patator 

3 Wednesday-

workingHours.pcap_ISCX.csv 

Benign, DoS GoldenEye, DoS 

Hulk, DoS Slowhttptest, DoS 

slowloris, Heartbleed 

4 Thursday-WorkingHours-Morning-

WebAttacks.pcap_ISCX.csv 

Benign, Web Attack – Brute 

Forse, Web Attack – Sql 

Injection, Web Attack - XXS 

5 Thursday-WorkingHours-Afternoon-

Infilterations.pcap_ISCX.csv 

Benign, Infiltration 

6 Friday-WorkingHours-

Morning.pcap_ISCX.csv 

Benign, Bot 

7 Friday-WorkingHours-

Afternoon-PortScan.pcap_ISCX.csv 

Benign, PortScan 

8 Friday-WorkingHours-

Afternoon-DDoscap_ISCX.csv 

Benign, DDoS 
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Table 6 - Quantitative Composition of the Dataset 

Quantitative Composition of the Dataset 

№ Record Type Number of Records 

1 BENING 2359087 

2 DoS Hulk 231072 

3 PortScan 158930 

4 DDoS 41835 

5 DoS GoldenEye 10293 

6 FTP-Patator 7938 

7 SSH-Patator 5897 

8 DoS slowloris 5796 

9 DoS Slowhttptest 5499 

10 Bot 1966 

11 Infiltration 36 

12 Heartbleed 11 

13 Web Attack – Brute Force 1507 

14 Web Attack – XSS 652 

15 Web Attack – SQL 

Injection 

21 
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Figure 10 – A Fragment of the Dataset in Tabular Format

 

Figure 11 – A Fragment of the Dataset Loaded in Google Colab 

Complete and well-prepared data are essential for building a good classifier. In 

reviews of the CICIDS2017 dataset (Intrusion2017, Panigrahi2018, Sharafaldin2018), 

some researchers noted issues with class imbalance, complex file structure, and 

missing values. These aspects can generally be considered non-critical. 

 

2.2.2 Data Preprocessing 

 

It is important to note that in the study by Kahraman Kostas, "Anomaly 

Detection in Networks Using Machine Learning," discrepancies in results were found 

by other authors when using the selected CICIDS2017 dataset. 
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To reduce computation time, a subset named "WebAttacks" with a single class 

of attacks (web attacks - Brute Force, XSS, SQL Injection) was used in the training set 

based on processing the file Thursday-WorkingHours-Morning-

WebAttacks.pcap_ISCX.csv from the CICIDS2017 dataset. The WebAttacks set 

includes 458,968 records, of which 2,180 pertain to web attacks, while the rest pertain 

to normal traffic. 

This decision simplifies the task and reduces the quality of the final conclusions 

- the multiclass classification was reduced to binary, and the size of the training set was 

reduced. 

This subset is publicly available in the repository and was prepared through the 

following data preprocessing steps: 

1. Exclusion of the "Fwd Header Length.1" feature (the "Fwd Header Length" and 

"Fwd Header Length.1" features are identical). 

2. Removal of records with null values in the "Flow ID" session identifier (out of 

458,968 records, 170,366 records remained after removal). 

3. Replacement of non-numeric values of the "Flow Bytes/s" and "Flow Packets/s" 

features with -1. 

4. Replacement of undefined (NaN) and infinite values with -1. 

5. Conversion of string values of the "Flow ID," "Source IP," "Destination IP," and 

"Timestamp" features to numeric values using label encoding. 

6. Encoding of responses in the training set according to the rule: 0 - "no attack," 1 

- "attack present." 

 

2.2.3 Sampling Against Class Imbalance 

 

The prepared "WebAttacks" subset is imbalanced: out of a total of 170,366 

records, the "no attack" class constitutes 168,186 records, while the "attack present" 

class constitutes 2,180 records (Figure 12). 
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Figure 12– Number of Records in the Imbalanced "WebAttacks" Subset. 

To address the class imbalance, the random sampling method (undersampling) 

was employed, which involves removing randomly selected instances of the 

"BENIGN" class. The target ratio of the number of instances between the "BENIGN" 

class and the "ATTACK" class is 70% (5087 records) / 30% (2180 records). 

 

Figure 13 - Formation of the balanced dataset df_balanced. 

 

Figure 14 - Dataset df_balanced. 
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2.2.4 Feature Space Reduction 

Results of feature importance assessment and selection for the dataset we are 

investigating were found in publicly available repositories, which formed the basis for 

further research (Figure 15). 

 

Figure 15 - Final results of significance analysis (top 20 features). 

For further analysis, a correlation matrix with linear correlation coefficients 

(Pearson correlation coefficients) calculated for all pairs of the top twenty most 

significant features was used. It is presented in Figure 16. The color saturation of the 

fill is proportional to the correlation coefficient value. 

 

Figure 16 - Correlation Analysis 
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Figure 17 - Results of the Correlation Analysis of the Twenty Most 

Significant Features 

 

The correlation analysis revealed a strong dependence between pairs of features 

(unnecessary features for training can be excluded): 

1. "Average Packet Size" and "Packet Length Mean". 

2. "Subflow Fwd Bytes" and "Total Length of Fwd Packets". 

3. "Fwd Packet Length Mean" and "Avg Fwd Segment Size". 

4. "Flow Duration" and "Fwd IAT Total". 

5. "Flow Packets/s" and "Fwd Packets/s". 

6. "Flow IAT Max" and "Fwd IAT Max". 

 

2.2.5 Model Selection 

 

At this stage, a comparison of the previously selected 10 most common machine 

learning models was conducted. Let's consider the models identified during the 

literature review and frequently used by various researchers. 

The quality of classifier responses (models) was compared using the following 

metrics: 

1. Accuracy 

2. Precision 

3. Recall 
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4. F1-score 

The evaluation of model performance was conducted on the balanced and 

preprocessed subset of web attacks (WebAttacks) from the CICIDS2017 dataset (with 

a ratio of normal to abnormal traffic of 70% / 30%, using 20 most significant features) 

using two approaches - with stratification and cross-validation, and without 

stratification but with cross-validation. The evaluation results are presented below in 

Tables 7 and 8. 

Table 7 - Evaluation of model performance on the balanced and preprocessed 

subset of web attacks (WebAttacks) from the CICIDS2017 dataset. 

Without stratification train-test split 

Model Acc Pr Recall F1 Execution 

KNN 0.966 0.936 0.951 0.969 1.02 s 

SVM 0.703 0.618 0.032 0.603 46.60 s 

CART 0.965 0.928 0.957 0.964 0.54 s 

RF 0.968 0.959 0.911 0.963 0.42 s 

ABoost 0.974 0.966 0.947 0.971 8.02 s 

LR 0.956 0.970 0.880 0.947 3.14 s 

NB 0.735 0.532 0.990 0.775 0.20 s 

LDA 0.933 0.909 0.862 0.940 0.65 s 

QDA 0.866 0.706 0.656 0.866 0.21 s 

MLP 0.942 0.874 0.920 0.964 77.35 s 
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Table 8 - Evaluation of model performance on the balanced and preprocessed subset 

of web attacks (WebAttacks) from the CICIDS2017 dataset. 

With stratification on train-test split 

Model Acc Pr Recall F1 Execution 

KNN 0.971 0.943 0.957 0.968 1.38 s 

SVM 0.702 0.558 0.025 0.603 33.90 s 

CART 0.971 0.953 0.953 0.964 0.68 s 

RF 0.971 0.974 0.938 0.965 0.63 s 

ABoost 0.970 0.976 0.947 0.971 11.28 s 

LR 0.961 0.969 0.898 0.952 3.23 s 

NB 0.736 0.532 0.990 0.775 0.18 s 

LDA 0.939 0.915 0.879 0.940 0.94 s 

QDA 0.924 0.935 0.814 0.949 0.30 s 

MLP 0.948 0.907 0.923 0.941 21.77 s 

 

Так, as expected, the models (algorithms) KNN, CART, RF, AdaBoost, and LR 

demonstrated the best results. The most optimal model considering the combination of 

the above parameters is the RandomForestClassifier (RF). 

It's worth noting that this algorithm, due to quasi-optimal hyperparameter tuning, 

showed different results for some researchers: Kahraman Kostas' study resulted in 

Recall 0.94 and F1-score 0.94, while the authors of the CICIDS2017 dataset reported 

Recall 0.97 and F1-score 0.97. 

For intrusion detection algorithms, it's not common to use XGBoost and 

XGBoost with Principal Component Analysis (PCA). 

XGBoost is a machine learning algorithm based on decision tree and gradient 

boosting framework. It was developed as a research project at the University of 

Washington. Tianqi Chen and Carlos Guestrin presented their work at the SIGKDD 

conference in 2016, making a significant impact in the machine learning community. 

Since its introduction, this algorithm has not only been leading in Kaggle competitions 

but has also been the foundation of several industry-leading applications. This has led 

to the formation of a community of data analysis experts contributing to XGBoost 
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open-source projects, with approximately 350 contributors and 3,600 commits on 

GitHub. 

Features of the framework include: 

1. Wide applicability: it can be used for regression, classification, ranking, and 

custom prediction tasks. 

2. Compatibility: Works on Windows, Linux, and OS X. 

3. Language support: Supports most major programming languages such as C++, 

Python, R, Java, Scala, and Julia. 

4. Cloud integration: Supports AWS, Azure, and Yarn clusters, and integrates 

well with Flink and Spark. 

XGBoost is based on the gradient boosting method of decision trees, which is 

used for classification and regression tasks. This method creates a prediction model as 

an ensemble of weak models, usually decision trees. Training occurs sequentially, 

where each new model predicts the deviations of the previous ensemble on the training 

set. By adding the predictions of a new tree to the predictions of the trained ensemble, 

the average deviation of the model can be reduced, which is the target of the 

optimization problem. Adding new trees allows reducing the model's error until the 

"early stopping" criteria are met (forms of regularization used to prevent overfitting 

when training the model with an iterative method like gradient descent; with such 

methods, the model is updated after each iteration to better fit the training data, and up 

to a certain point, this also improves the model's performance on data not in the training 

set, but after that point, the improvement in fitting the training data occurs at the 

expense of increasing generalization error). 

Let's consider a visual illustration of boosting in Figure 18. It shows the behavior 

of the model at a single point in an abstract linear regression task. Suppose the first 

model of the ensemble, F, always outputs the sample mean of the predicted value, f0. 

Such a prediction is quite rough, so the mean squared deviation at the selected point 

will be quite large. To correct this, we train a model Δ1, which will "adjust" the 

prediction of the previous ensemble F0. Thus, we obtain an ensemble F1, the prediction 

of which will be the sum of the predictions of models f0 and Δ1. Continuing this 
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sequence, we arrive at an ensemble F4, the prediction of which is the sum of predictions 

f0, Δ1, Δ2, Δ3, Δ4, and precisely predicts the value of the given target. 

 

Figure 18 - Boosting Illustration. 

XGBoost supports integration with libraries such as scikit-learn, offering 

regularization capabilities. It supports three main forms of gradient boosting: 

- Standard gradient boosting with the ability to adjust the learning rate. 

- Stochastic gradient boosting with the ability to sample rows and columns 

of the dataset. 

- Regularized gradient boosting with L1 and L2 regularization. 

The implementation of the algorithm is designed for efficiency in computational 

resources such as time and memory. The project's goal was to maximize the utilization 

of available resources for model training. Some key implementation features of the 

algorithm include various strategies for handling missing data, a block structure to 

support parallelization of tree training, and support for continuing training to fine-tune 

on new data. 

Let's examine the behavior of the XGBClassifier algorithm from the XGBoost 

library. When configuring a classification model in Python, you can use the 

`classification_report()` function from the sklearn library to generate three 

performance metrics for the algorithm (see Figure 19). 
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Figure 19 - classification_report() for XGBClassifier. 

 

Let's highlight the final key indicators of the algorithm (Figure 20): 

 

Figure 20 - Key indicators of the XGBClassifier algorithm. 

It is also proposed to consider the behavior of the XGBClassifier algorithm using 

Principal Component Analysis (PCA) for signal decomposition into components, using 

the PCA module from the sklearn.decomposition package. The performance indicators 

of the algorithm are shown below in Figure 21. 
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Figure 21 - classification_report() for XGBClassifier rotated. 

 

Let's highlight the final key performance indicators of the above-mentioned 

algorithm (Figure 22):  

 

Figure 22 - Key Performance Indicators of the XGBClassifier Rotated 

Algorithm. 

Also, an evaluation of the algorithms was conducted using stratification. To 

summarize the obtained results of the proposed and previously compared algorithms, 

let's present them in Table 9. 
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Table 9 - Evaluation of Model Performance on the Balanced and Preprocessed Subset 

of WebAttacks in the CICIDS2017 Dataset. 

With stratification on train-test split 

Model Acc Pr Recall F1 Execution 

KNN 0.971 0.943 0.957 0.968 1.38 s 

SVM 0.702 0.558 0.025 0.603 33.90 s 

CART 0.971 0.953 0.953 0.964 0.68 s 

RF 0.971 0.974 0.938 0.965 0.63 s 

ABoost 0.970 0.976 0.947 0.971 11.28 s 

LR 0.961 0.969 0.898 0.952 3.23 s 

NB 0.736 0.532 0.990 0.775 0.18 s 

LDA 0.939 0.915 0.879 0.940 0.94 s 

QDA 0.924 0.935 0.814 0.949 0.30 s 

MLP 0.948 0.907 0.923 0.941 21.77 s 

XGBoost 0.976 0.971 0.963 0.976  

XGBoost 

Rotated 

0.971 0.957 0.957 0.976  

 

Practical results have been obtained regarding the performance of 12 models, 

from which the best ones need to be selected. 

In this study, a multi-criteria evaluation matrix is used, where each parameter is 

assigned a specific "weight", and models are rated on a scale from 1 to 3, where 1 - 

unsatisfactory, 2 - satisfactory, and 3 - good. This method minimizes the likelihood of 

error and provides a clear assessment of priority mathematics. Parameters such as 

algorithm accuracy (Accuracy) and precision (Precision) are assigned a weight of 0.3, 

while the others are assigned 0.2 each. 

Thanks to this method, we can consider multiple selection parameters present in 

the study to evaluate the models. Table 10 shows the final evaluation results of the 

models, from which it can be concluded that the Adaptive Boosting over Decision Tree 

(AdaBoost, sklearn.ensemble.AdaBoostClassifier) and XGBoost gradient boosting 

algorithms can be considered suitable for solving the stated tasks. 
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Table 10 - Multi-criteria evaluation of models. 

Model Acc Pr Recall F1 Result 

  0,3 0,3 0,2 0,2 max=3 

KNN 3 1 3 2 2,2 

SVM 1 2 1 1 1,3 

CART 3 2 3 2 2,5 

RF 3 3 3 2 2,8 

ABoost 3 3 2 2 2,6 

LR 2 2 1 2 1,8 

NB 1 1 3 1 1,4 

LDA 2 1 1 1 1,3 

QDA 2 1 1 1 1,3 

MLP 2 1 2 1 1,5 

XGBoost 3 3 3 3 3 

XGBoost Rotated 3 2 3 3 2,7 

 

According to the obtained results, RF and XGBoost gradient boosting algorithm 

can be considered suitable for solving the stated tasks. 

Considering the comparison conducted, the authors of the study suggest 

considering two types of algorithms: 

1. Combining neural networks with traditional machine learning methods, such as 

RandomForestClassifier (using neural networks for feature selection together 

with RandomForestClassifier for classification). 

2. VotingClassifier model containing RandomForestClassifier and XGBClassifier 

(an intrusion detection system model based on the VotingClassifier ensemble 

model containing random forest and XGBClassifier models). 

Let's consider each of them in more detail. 

Combining a neural network with a Random Forest classifier for tabular data 

classification can be useful for extracting complex features using a neural network and 
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then using these features for a more interpretable or robust classifier, such as Random 

Forest. 

The algorithm of the approach looks as follows: 

1. Training a neural network to extract features: train a neural network to extract 

features from tabular data. Instead of using the network output for classification, 

take the intermediate layer containing useful data representations (features). 

2. Using these features to train Random Forest: use the extracted features to train 

the Random Forest model. 

The RF algorithm itself will work as follows (Figure 23): 

 

 

Figure 23 - RF Architecture. 

 

For the classification task, a majority voting solution is chosen, while for 

regression, it's the average. 

This approach combines the advantages of neural networks for extracting 

complex features and the stability of Random Forests for final classification. 

Feature extraction from tabular data is the process of transforming raw data into 

a format better suited for analysis and modeling. It's a crucial step in machine learning 
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as the right features can significantly improve model performance. In the context of 

tabular data, feature extraction can involve various techniques such as: 

1. Direct use of features. With well-prepared data, original features can be 

directly used for model training. 

2. Creating new features. Generating new features based on existing data. This 

can include mathematical transformations or aggregations. 

3. Feature selection. Choosing the most important features from the dataset using 

feature selection methods. 

4. Applying complex models for automatic feature extraction. Utilizing complex 

models like neural networks to automatically extract complex features from the data. 

When we talk about feature extraction using a neural network, we mean using 

the intermediate layers of the network to create new data representations. These 

representations can capture higher-level information than the original features. The 

intermediate outputs of the network can be used as new features for other models, such 

as Random Forest. 

Now, let's consider the second algorithm – VotingClassifier. 

In machine learning, an ensemble of models refers to a combination of several 

learning algorithms that, when working together, allow for building a more effective 

and accurate model. The goal of ensemble methods is to combine predictions from 

multiple base estimators, built with a specified learning algorithm, to improve 

generalization/reliability compared to a single estimator. 

VotingClassifier is a machine learning model that is trained on an ensemble of 

multiple models and predicts the result (class) based on their highest probability of the 

selected class as the output. It simply aggregates the results of each classifier passed 

into the voting classifier and predicts the output class based on the majority of the votes. 

The idea is that instead of creating individually conceptually different machine 

learning classifier models and determining accuracy for each of them, we create a 

single model that is trained using these models and predicts the output based on their 

aggregate majority votes for each output class. The aggregate solution often provides 

better generalization and predictive performance than individual models. 
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The scikit-learn library provides a convenient implementation of the voting 

classifier, allowing for easy integration and experimentation with various models in a 

unified environment. This approach is particularly useful when working with different 

data patterns and provides more reliable predictions, making it a valuable tool in a 

machine learning practitioner's toolkit. 

Analyzing the behavior of the VotingClassifier model, which contains Random 

Forest and XGBClassifier, both of which were discussed earlier, is proposed. The 

architecture of this algorithm is presented in Figure 24. 

 

Figure 24 - Architecture of the VotingModel (RF + XGB). 

 

We'll cover some practical aspects of implementing the two proposed methods. 

Each algorithm was trained on a balanced and preprocessed subset of 

WebAttacks web attack data from the CICIDS2017 dataset (with a normal to anomaly 

RF XGB 

Selected feature set 

P1 P2 

A 
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traffic ratio of 70% / 30%, using the 10 most significant features selected after the 

earlier conducted correlation analysis). 

Categorical labels were transformed into numerical form using a simple label 

encoding: "1" for samples with attacks and "0" for samples without attacks (see Figure 

25). 

 

Figure 25 - Preparation of features and labels for model training. 

 

The neural network for feature extraction consists of several fully connected 

layers with ReLU activation (Figure 26). 

 

 

Figure 26 - Creating a neural network model for feature extraction.. 

 

The feature extraction model outputs data from the last hidden layer of the neural 

network (Figure 27). 
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Figure 27 - Feature Extraction. 

Hyperparameter tuning for the RandomForestClassifier was conducted. 

GridSearchCV was employed to search for the best hyperparameters of the 

RandomForestClassifier model. GridSearchCV utilizes cross-validation for a more 

reliable model evaluation and hyperparameter search, which can help improve the 

model's performance (Figure 28). 

 

Figure 28 - Applying GridSearchCV for RF. 

Next, the Random Forest model is trained on the extracted features, and the 

accuracy is evaluated on the test data. The evaluation results are presented below in 

Figure 29. 

 

Figure 29 - Evaluation Metrics of the RF Model with Feature Extraction Neural 

Network Combination. 
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For the VotingClassifier model, hyperparameter tuning of the 

RandomForestClassifier was also conducted using GridSearchCV. The model 

evaluation results are presented in Figure 30. 

 

 

Figure 30 - Evaluation Metrics of the VotingClassifier Model. 

 

Let's summarize the obtained results in tabular form (Table 11). 

Table 11 - Evaluation of the Proposed Algorithms. 

 VotingClassifier (Random 

Forest + XGBClassifier) 

RF + neural network 

Metrics of Model 

Performance 

Values of Metrics 

Confusion_matrix array([[1280,    1], 

       [  44,  492]]) 

array([[1269,   12], 

       [  17,  519]]) 

Accuracy 0.976 0.988 

Precision 1.0 0.981 

Recall 0.918 0.978 

F1 0.957 0.979 

 

 

Results and Conclusions of Chapter Two 

Thus, an approach to classifying network anomalies has been proposed, their 

main features have been identified, and the main methods of their detection have been 

structured. Intrusion detection methods are divided into four major groups: behavioral 
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methods, machine learning methods, computational intelligence methods, and 

knowledge-based methods. 

The general principles of operation of each group of methods have been carefully 

described, along with their advantages, disadvantages, and better utilization options for 

each method. 

In practical comparisons of known machine learning algorithms used in IDS/IPS, 

the best results were expectedly demonstrated by models (algorithms) RF, XGBoost, 

and XGBoost Rotated. 

The most optimal combination of the above parameters is the 

RandomForestClassifier (RF). For training intrusion detection systems among 

available public datasets, one of the relevant and comprehensive datasets - "Intrusion 

Detection Evaluation Dataset" CICIDS2017 was chosen, which contains safe and 

modern common attacks resembling real-world data. 

The performance metrics of the XGBClassifier and XGBClassifier with the 

application of principal component analysis (PCA) were also evaluated. 

According to the obtained results, the gradient boosting algorithm (a machine 

learning algorithm based on decision tree and utilizing the gradient boosting 

framework) can be considered a suitable algorithm for solving the posed tasks. 

Two algorithms were proposed - VotingClassifier (Random Forest + 

XGBClassifier) and RF + neural network for feature extraction. The second approach 

showed a higher accuracy metric (0.988), while the first one showed a precision metric 

(1.0) when trained on the same balanced and preprocessed subset of web attack data 

(WebAttacks dataset of CICIDS2017) with a normal to anomalous traffic ratio of 70% 

/ 30%, utilizing 10 most significant features selected after a previously conducted 

correlation analysis. 
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3 APPLICATION OF ADVERSARIAL LEARNING IN INTRUSION 

DETECTION ALGORITHMS 

3.1 Adversarial Machine Learning 

 

Machine learning systems can become targets of malicious attacks just like 

vulnerabilities in a firewall can be exploited to gain access to a web server. Therefore, 

before implementing such systems in the realm of security, it is necessary to carefully 

examine their weaknesses and understand how susceptible they are to attacks. 

Adversarial machine learning is the study of vulnerabilities in machine learning 

systems in hostile environments. Many researchers in the fields of security and 

machine learning have demonstrated research results on various attacks against 

antivirus programs [28], spam filters [29], and so forth. Developers of machine learning 

systems are responsible for preventing attacks and creating means of protection in case 

of threats to data confidentiality, national security, and human lives.  

Some researchers still realize that modern AI-driven security solutions are 

significantly underdeveloped and have defects [30].  

The implementation of the concept of adversarial machine learning is difficult 

because most machine learning models operate as black boxes. This means that users 

and specialists cannot precisely understand how models make their predictions due to 

the lack of transparency in the internal processes of detectors and classifiers. Without 

explanations about the decisions made, it is difficult for people to determine when a 

system is being influenced by malicious actors. This creates doubts about the reliability 

of machine learning systems and leads to resistance to their deployment as primary 

decision-making tools in the field of security. 

Machine learning methodologies are typically developed with preliminary 

assumptions about data stability, feature independence, and low stochasticity 

(randomness) [31]. Adversaries violate any assumptions made by specialists until they 

compute the path into the system with the least resistance. 
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In fact, when an algorithm is trained on training data, it operates with a limited 

amount of information, which represents only a portion of the entire theoretical space 

of possible variations. When the model is tested in laboratory conditions or in real-

world practice, the test dataset may contain elements that were not present in the 

training data. These missing elements are referred to as the "adversarial space."  

Malicious actors can exploit these areas of adversarial space to deceive machine 

learning algorithms. However, an even more serious threat arises when adversaries can 

interfere with the process of training models and invalidate assumptions about the 

stability of the data used in machine learning. Since statistical learning models rely on 

the provided data, vulnerabilities in such systems naturally arise due to mismatches in 

this data. It is important for specialists to ensure that the data used for training 

accurately reflects the real distribution to the extent possible. At the same time, it is 

crucial to continuously monitor various attack methods to enable the development of 

more robust algorithms and systems.  

The goal of this section is to assess the stability of the developed model against 

adversarial attacks - how difficult (or easy) it will be for a malicious actor to "trick" the 

system. Adversarial attacks ("adversarial" or "hostile") encompass all known attacks 

on machine learning models that can be implemented both during the model training 

stage and during its operation. 

Let us highlight the main types of adversarial attacks, as visualized in Figure 31: 

1) Poisoning attack (poisoning attack), when an attacker affects the training data 

during the training phase and, for example, adds incorrectly labeled examples, which 

leads to model errors during the exploitation phase. 

2) Membership inference attack, where an attacker attempts to infer a set of 

training data while violating its privacy (such attacks are especially dangerous for 

personal data - facial recognition, medical records, financial transactions, etc.). 

3) Model extraction attack (model extraction attack), when an attacker, not 

knowing the target model, tries to “steal features” of the model. 

4) Evasion attack, when an attacker selects input data at the exploitation stage so 

that the model gives an incorrect response. 
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Figure 31 - The main types of adversarial attacks. 

 

According to adversa.ai rankings, one of the most common and easy to 

understand attacks is the evasion attack (Figure 32). It requires only a basic 

understanding of the target system, so evasion attacks can be considered one of the 

most dangerous attacks. In the following we will consider this type of adversarial 

attack. 
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Figure 32 - Ranking of the most common adversarial attacks according to adversa.ai 

 

Some machine learning models routinely misclassify adversarial examples - 

input data generated by applying small but intentionally worst-case perturbations to 

examples in the dataset, so that the distorted input data causes the model to produce an 

incorrect answer with high confidence. Early attempts to explain this phenomenon 

focused on nonlinearity and overtraining [32]. 

In the paper “EXPLAINING AND HARNESSING ADVERSARIAL 

EXAMPLE” [32], published in 2015 at a conference, showed an example of an evasion 

attack, where a mask invisible to the human eye is superimposed on an image of a 

panda, and the recognition model starts to make the mistake of calling the panda a 

gibbon (Figure 33). The paper also proposed an efficient way to generate adversarial 

examples, the “Fast Gradient Sign Method” (FGSM). It is this publication that is 

usually associated with a sharp increase in interest in adversarial attacks. 
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Figure 33 - An example of an evasion attack. 

 

Existing algorithms for generating adversarial examples (adversarial attacks) 

generally involve two steps:  

(1) - selecting the direction of the attack. The sensitivity of the model F to 

changes in the values of individual attributes is evaluated.  

(2) - perturbation formation. The obtained knowledge is used to generate a 

perturbation that affects the classification of the sample X. If the model F misclassifies 

the result X + δX instead of the original class, it means that an adversarial example has 

been found. Otherwise, the above steps are repeated, e.g., already for the example X + 

δX. 

The operation of the evasion attack is shown in general in Figure 34. 

 

Figure 34 - Evasion attack steps in the general case [32]. 
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Let us turn to the table with adversarial attacks contained in the most cited studies 

in recent years (Figure 35). 

 

Figure 35 - Adversarial attacks and example implementations [33]. 

 

Every evasion attack uses special methods to create adversarial examples, which 

can be seen as masks or data changes (e.g., in the case of the above example with the 

panda image - how to find the hidden mask in the image?). Each of the attacks 

presented in the table has its own unique way of creating adversarial examples. 

White-box attacks use knowledge of the internals of the target model to create 

adversarial examples that fool the model. Neural networks and decision trees use 

different methods to find such examples. Whereas black box attacks have no 

information about the internals of the target model. Most studies focus on white-box 

attacks, but some authors also investigate the transition from white-box to black-box 

attacks using the adversarial example portability property. This property allows 

adversarial examples to retain their effectiveness when used against other models. 

Implementing a black-box attack involves training a “replacement model,” creating 
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adversarial examples for that model, and applying them to the original model. Although 

rigorous evidence and explanations for portability have not yet been established, 

numerous studies have confirmed this property on a variety of datasets. 

Since the random forest model is widely used as a classifier, it is important to 

investigate its robustness to adversarial attacks. However, it is known that classical 

black-box attacks do not take into account the specificity of solver trees. In the case of 

ensembles of decision trees, it is impossible to apply typical white-box attacks that are 

successfully used against neural networks. This is because the loss function in a random 

forest model is usually a discontinuous piecewise defined function for which no 

gradient exists, making it difficult or impossible to apply gradient-based attacks to such 

models. 

Because of these factors, the design of intrusion detection systems that utilize 

machine learning techniques must pay special attention to the study of attacks that 

target specific models, such as ensembles of decision trees (in particular, the “random 

forest”). 

Since adversarial distortion attacks rely on the use of gradient lifting to find 

instances of the adversarial space, the general idea of defending machine learning 

models against such attacks is to make it more difficult for the adversary to gain 

information about the gradients of the model's decision surface. 

Traditional methods for improving the robustness of machine learning models, 

such as weight reduction, generally do not provide practical protection against 

malicious examples. To date, only two methods have shown some significant 

protection. 

Adversarial training is one possible method of defense against distortion attacks. 

If a machine learning model is trained on malicious examples, it can minimize the 

adversarial space available to attackers. This defense method tries to cover all possible 

input variants for the classifier, while using data samples that belong to a theoretical 

input space that is not covered by the original training data distribution. Models trained 

in this way should ideally not be fooled by malicious examples known to them, but can 

this method allow defeating an attacker at his own game? - is an open question. 
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Adversarial learning has shown good results in studies by experts, but it does not 

solve the problem completely, as the success of this defense method depends on a 

constant race between the attacking and defending parties.  

Therefore, it is infeasible to cover all possible input variants, and an experienced 

attacker with sufficient computational resources will most likely always be able to find 

malicious examples that were not used to train the model. 

Another technique for defending against distortion attacks is defensive 

distillation. 

Distillation was originally developed to reduce the size of neural network models 

and reduce the computational resource requirements so that they can run on resource-

constrained devices such as mobile devices. This was achieved by training an 

optimized model using replacement of categorical class labels from the original dataset 

with probabilistic outcome vectors on a simpler model. The resulting model had a 

smoother decision surface, which in turn made it more difficult for attackers to obtain 

the desired gradient.  

However, like adversarial learning, distillation only slows down and complicates 

the process of detecting and exploiting adversarial spaces, so it only provides some 

protection against attackers with limited computational resources. 

Defensive distillation is a technique originally developed to make neural 

networks more resilient to attacks using machine learning techniques. However, in the 

context of XGBoost or other tree-busting algorithms, this technique is not directly 

applicable due to differences in the architecture and operating principles of these 

models. 

Applying this technique to algorithms such as random forests requires some 

adaptation, as the architecture and operating principles of these models are significantly 

different. In addition, this method can be computationally expensive. 

Using defensive distillation for random forests is an experimental technique and 

requires careful testing and tuning. Alternative methods for improving robustness, such 

as regularization and the use of ensembles, may also be useful and easier to implement. 
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It is difficult to defend against distortion attacks because of the problem of 

imperfect learning, where statistical processes cannot capture all possible inputs 

needed for correct classification. In most cases, machine learning models perform very 

well, but only work with a small number of all possible inputs they may encounter. 

Developing a strategy capable of providing a defense against a powerful and 

adaptive attacker is an important area of research for machine learning practitioners. 

Adversarial examples show that many state-of-the-art machine learning 

algorithms can be hacked in unconventional ways. These machine learning failures 

demonstrate that even simple algorithms can behave quite differently than their 

designers intended. 

3.2 Application of adversarial learning in intrusion detection algorithms to 

realize protection against attacks 

This subsection implements adversarial learning defense against evasion attacks 

targeting ML-based IDSs. 

The implementation consists of two main steps: 

1. Evasion attack execution: creating adversarial patterns for the model; 

2. Adversarial learning: extending the original dataset with correctly labeled 

adversarial samples and training a new and adversarial resistant model on the new 

training set. 

A brief description of the implementation of the main steps: 

1. Searching for adversarial samples: 

− Each model is trained on the CICIDS2017 dataset (in the web attacks 

subset: web_attacks_balanced.csv). 

− The performance of the models is evaluated on the test set. 

− For all samples that are correctly labeled as an attack by the model, the 

value of the “Total Forward Packet Length” function changes within the 

specified range. 
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− If the model changes its prediction for a sample with a changed “Total 

Fwd Packet Length” function, that sample is adversarial (i.e., it misleads 

the model). 

− A second test set with adversarial samples is generated. The performance 

of the model is evaluated on this test set. The performance is expected to 

decrease: even one adversarial sample provides an opportunity for an 

attack. 

2. Defense against evasion attack: 

− Adversarial samples are labeled as “attacking” and added to the original 

training and test sets. 

− A new model is trained on a new training set. 

− The performance of the adversarially trained model is evaluated on the 

new test set. The performance is expected to be close to that of the original 

model before the attack, since the addition of adversarial samples 

increases the robustness of the model to adversarial attacks. 

We will show some aspects of the practical implementation of the evasion attack 

on the previously proposed models by the authors. Let us consider VoitingModel as an 

example. 

In order to implement the evasion attack, we first need to modify the feature 

“Total Length of Fwd Packets” (index 5 in the list of selected features) with the check 

of non-zero values of the feature for samples with the type “attack” (Figure 36). 

 

Figure 36- Checking for non-zero values of a trait. 

 

The evasion_attack function finds adversarial samples for the given samples. It 

returns a copy of the given feature matrix with the found adversarial samples that 

replaced the original ones in the matrix and the indices of these samples (Figure 37). 
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The function works as follows: 

− all samples that are correctly labeled by the model as an attack are 

processed; 

− for these samples, the value of the “Total Length of Fwd Packets” feature 

is changed in the range [initial value, initial value + 500); 

− if the model changes its prediction for a sample with the “Total Length of 

Fwd Packets” trait changed, that sample is adversarial. The function 

outputs the index and the new value of “Total Packet Length Fwd” of that 

sample. 

 

Figure 37 - Evasion_attack function. 

 

It was found that the found adversarial samples for the original samples are under 

the following indices (Figure 38). 
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Figure 38 - Adversarial sample indices. 

 

The difference of predictions with the example of the original sample and its 

adversarial replacement is presented in Figure 39. 

 

 

Figure 39 - Difference between an example of the original design and its 

adversarial replacement. 

 

Thus, the adversarial sample misleads the model, i.e., the classifier changes its 

response (for the sample with index 140) from “1” (there is an attack) to “0” (no attack).  

Note that the retrieved pattern retains its attackability and is, in fact, an effective 

adversarial pattern: we can increase the value of the “Total Packet Length Fwd” feature 

by augmenting the payload with zeros/spaces/etc. 
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Let us specify the model evaluation metrics for the test data with adversarial 

samples added. 

 

Figure 40- VoitingModel evaluation metrics after the implementation of an 

evasion attack. 

For example, some performance metrics deteriorate after the attack because 

adversarial samples added to the test set mislead the model. 

An evasion attack was also implemented on the RF + neural network algorithm. 

The evaluation results of this model for the test data with adversarial samples added 

are shown in Figure 41. 

 

Figure 41 - RF + NN evaluation metrics after implementing the evasion attack. 

 

To protect the model from a realized evasion attack, we need to find adversarial 

samples for the entire dataset and perform adversarial training with them, augmenting 

the original dataset with adversarial samples that are correctly labeled as “attack”.  

The post-defense VotingModel (XGB + RF) evaluation metrics are summarized in 

Figure 42. 
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Figure 42 - VotingModel (XGB + RF) evaluation metrics after defense by 

adversarial learning. 

 

The same process of implementing defense with adversarial learning was 

performed with the second RF model. The post-protection RF model evaluation metrics 

are shown in Figure 43. 

 

 

Figure 43 - Metrics for evaluating the RF model after defense by adversarial 

learning. 

 

To draw conclusions, we summarize the results in a summary table (Table 12). 
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Table 12 - Performance metrics of the proposed models. 

Model name Model evaluation metrics 

Before attack After attack After defense 

VotingModel (XGB 

+ RF) 

Accuracy = 0.976 

Precision = 1.0 

Recall = 0.918 

F1 = 0.957 

Accuracy = 0.961 

Precision = 1.0 

Recall = 0.870 

F1 = 0.931 

Accuracy = 0.976 

Precision = 0.985 

Recall = 0.933 

F1 = 0.958 

RF + NN Accuracy = 0.988 

Precision = 0.982 

Recall = 0.978 

F1 = 0.980 

Accuracy = 0.984 

Precision = 0.981 

Recall = 0.965 

F1 = 0.973 

Accuracy = 0.980 

Precision = 0.965 

Recall = 0.970 

F1 = 0.967 

 

Thus, the evaluation metrics of the models are almost restored to the values that 

were before the evasion attack. 

Hence, it can be concluded that the implemented adversarial learning defense 

improves the robustness of the proposed models against adversarial attacks. 

Next, an experiment was conducted by implementing iterative adversarial 

learning with HopSkipJump attack, which is a powerful black-box evasion attack, and 

two models, VotingClassifier (Random Forest + XGBClassifier) and RF model with 

feature extraction with NN using CICIDS2017 dataset. 

The hypothesis here is that adversarial learning will then be able to improve the 

robustness to repeated adversarial attacks. This hypothesis is further disproved by the 

results. 

Let us re-emphasize the main aspects of the raw data used. The CICIDS2017 

dataset is prepared by the Canadian Cybersecurity Institute by analyzing network 

traffic in an isolated environment in which the actions of 25 legitimate users as well as 

malicious actions of intruders were simulated. 

Each record in the CICIDS2017 dataset represents a network session and is 

characterized by 84 attributes, such as source and destination IP addresses of the data 

stream (“Source IP” and “Destination IP”), data flow rate (“Flow Bytes/s”), and so on. 
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Among the 14 types of attacks presented in the dataset, in this study, we consider 

only web-based attacks. The training subsample contains 4 classes: “BENIGN” 

(background traffic without attacks, 5087 records), “Web Attack - Brute Force” (1507 

records), “Web Attack - Sql Injection” (21 records), “Web Attack - XSS” (652 

records). 

Note that the task of detecting network attacks on the CICIDS2017 dataset is 

currently only addressed in 5 papers. In total, the task of “Network Intrusion Detection” 

on different datasets combines 34 articles, and in total there are more than 100000 

articles published on paperswithcode.com.  

We implement iterative adversarial learning using HopSkipJump attack, which 

is a powerful black-box evasion attack, and the above models. 

The implementation of the experiment is 10 iterations of the Hop Skip Jump 

attack followed by defense by adversarial learning. This experiment verifies the 

conclusions of one of the papers (“The Limitations of Deep Learning in Adversarial 

Settings”), in which it was demonstrated that the model's resistance to adversarial 

attacks increased after adversarial learning: the repeated attack of the neural network 

using the JSMA algorithm lost effectiveness; in particular, the number of adversarial 

examples found decreased from 18000 to 9000. 

We use an implementation of the adversarial evasion attack HSJA from the ART 

library: art.attacks.evasion.HopSkipJump. 

Let's first look at the VotingClassifier (Random Forest + XGBClassifier) model. 

Let's highlight some implementation details. 

For convenience, we first defined a classifier class (Figure 44), which will allow 

us to use the same training code with different classifiers if necessary in the future. It 

provides the necessary functionality: creating, fitting, saving, loading a model; 

predicting labels; creating adversarial samples for the original samples. 
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Figure 44 - class Classifier. 

 

The key function is generate_hsja_samples - creates adversarial samples for 

given initial samples using the HopSkipJump attack. It uses the HSJA l2 version 

implemented in the Adversarial Robustness Toolbox library [34]. 

The evaluation metrics are accuracy, precision, recall, f1_score. 

A function is defined that retrains the model using the adversarial samples 

generated (Figure 45). This step is performed at each iteration of adversarial learning. 
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Figure 45 - Retrain_model function. 

 

Next, an iterative adversarial learning algorithm (function adversarial_training) 

is defined that performs adversarial training of the given model for a given number of 

iterations using HSJA (Figures 46, 47). 

 

 

Figure 46 - Part of the adversarial_training function. 
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Figure 47 - Part of the adversarial_training function. 

 

Based on the results of the correlation analysis in Chapter 2 of this study, the 

following features were excluded from the feature space: “Packet Length Mean”, 

“Subflow Fwd Bytes”, “Avg Fwd Segment Size”, “Fwd IAT Total”, “Fwd Packets/s”, 

“Fwd IAT Max”. After excluding the features with the lowest significance, the feature 

space was reduced to a union of 10 features (Figure 48): 

1. “Average Packet Size”, the average length of the data field of a TCP/IP packet 

(hereafter referred to as packet length). 

2. “Flow Bytes/s”, the data flow rate. 

3. “Max Packet Length”, the maximum packet length. 

4. “Fwd Packet Length Mean”, the average length of packets transmitted in the 

forward direction. 

5. “Fwd IAT Min”, the minimum forward inter-packet interval time (IAT, inter-

arrival time) value. 

6. “Total Length of Fwd Packets”, the total length of packets transmitted in the 

forward direction. 

7. “Fwd IAT Std”, the standard deviation of the inter-packet interval value in the 

forward direction of packets. 

8. “Flow IAT Mean”, the average value of the inter-packet interval. 

9. “Fwd Packet Length Max”, the maximum length of the packet transmitted in the 

forward direction. 

10. “Fwd Header Length”, the total header length of packets transmitted in the 

forward direction. 
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Figure 48 - 10 most important features. 

 

Training of the model using the previously allocated Classifier class (Figure 49). 

 

Figure 49 - VotingClassifier training. 

 

A total of 10 iterations were performed. At each iteration, adversarial examples 

are searched for the available test sample using HSJA (Figure 50). Adversarial 

learning on the original model for a given number of iterations took a significant 

amount of time due to the performance of the available hardware. The time cost may 

vary depending on the power of computing resources. 
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Figure 50 - Implementation of iterative adversarial learning. 

   

 At each iteration, adversarial examples are searched for in the available test 

sample using HSJA, after which the found adversarial examples are labeled and added 

to the original sample. The original sample is divided into training sample (75%) and 

test sample (25%), after which the model is retrained and the quality is evaluated on 

the test sample. An example of iteration output is shown in Figure 51. 

 

 

Figure 51 - Output of the results for the 10th iteration. 
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The results for 10 iterations of adversarial learning are presented in Table 13. 

Table 13 - Results for 10 iterations of adversarial learning with VotingModel and HSJA 

attack. 

No. of 

iterations 

Generation time, 

sec 

Metrics before protection Metrics after protection 

1 937.8 Accuracy=0.715 

Precision=0.648 

Recall=0.715 

F1=0.630 

Accuracy=0.871 

Precision=0.870 

Recall=0.871 

F1=0.870 

2 1044,9 Accuracy=0.761 

Precision=0.747 

Recall=0.761 

F1=0.723 

Accuracy=0.864 

Precision=0.859 

Recall=0.864 

F1=0.860 

3 1273.8 Accuracy=0.702 

Precision=0.657 

Recall=0.702 

F1=0.658 

Accuracy=0.863 

Precision=0.863 

Recall=0.863 

F1=0.862 

4 2115.5 Accuracy=0.460 

Precision=0.556 

Recall=0.460 

F1=0.480 

Accuracy=0.869 

Precision=0.868 

Recall=0.869 

F1=0.868 

5 1881.2 Accuracy=0.591 

Precision=0.571 

Recall=0.591 

F1=0.504 

Accuracy=0.873 

Precision=0.869 

Recall=0.873 

F1=0.870 

6 2268.6 Accuracy=0.560 

Precision=0.505 

Recall=0.560 

F1=0.489 

Accuracy=0.875 

Precision=0.873 

Recall=0.875 

F1=0.874 
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Continuation of Table 13. 

No. of 

iterations 

Generation 

time, sec 

Metrics before 

protection 

Metrics after protection 

7 2820.1 Accuracy=0.478 

Precision=0.437 

Recall=0.478 

F1=0.369 

Accuracy=0.870 

Precision=0.867 

Recall=0.870 

F1=0.869 

8 3401.6 Accuracy=0.437 

Precision=0.413 

Recall=0.437 

F1=0.335 

Accuracy=0.882 

Precision=0.880 

Recall=0.882 

F1=0.881 

9 4165.0 Accuracy=0.404 

Precision=0.328 

Recall=0.404 

F1=0.336 

Accuracy=0.890 

Precision=0.888 

Recall=0.890 

F1=0.888 

10 5235.6 Accuracy=0.357 

Precision=0.285 

Recall=0.357 

F1=0.288 

Accuracy=0.910 

Precision=0.906 

Recall=0.910 

F1=0.907 

 

Using a pre-written function we output the following statistics (Figure 52): 

− ratio of adversarial samples generated to original samples per iteration; 

− number of adversarial samples generated per iteration; 

− average time for the generation algorithm to process one original sample 

per iteration; 

− total generation time per iteration; 

− performance metrics per iteration for two cases: after attack and after 

defense. 

Graphs of the obtained results are shown below in Figures 52 - 56. 
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Figure 52- Ratio of adversarial samples generated to original samples per iteration. 

 

Figure 53 - Number of adversarial samples generated per iteration. 



104 

 

Figure 54 - Average time for the generation algorithm to process one initial sample 

per iteration. 

 

Figure 55 - Total generation time per iteration. 
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Figure 56 - Performance metrics per iteration for two cases: after attack and 

after defense. 

The results for 10 iterations of adversarial learning for the second model are 

presented in Table 14.  

Table 14 - Results for 10 iterations of adversarial learning with RF and HSJA attack. 

No. of 

iterations 

Generation 

time, sec 

Metrics before 

protection 

Metrics after protection 

1 920.6 Accuracy=0.767 

Precision=0.649 

Recall=0.718 

F1=0.620 

Accuracy=0.880 

Precision=0.820 

Recall=0.876 

F1=0.867 

2 1024.4 Accuracy=0.771 

Precision=0.758 

Recall=0.789 

F1=0.747 

Accuracy=0.869 

Precision=0.860 

Recall=0.865 

F1=0.867 
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Continuation of Table 14. 

No. of 

iterations 

Generation 

time, sec 

Metrics before 

protection 

Metrics after protection 

3 1120.8 Accuracy=0.710 

Precision=0.689 

Recall=0.789 

F1=0.710 

Accuracy=0.898 

Precision=0.870 

Recall=0.893 

F1=0.867 

4 2328.1 Accuracy=0.510 

Precision=0.569 

Recall=0.501 

F1=0.509 

Accuracy=0.879 

Precision=0.868 

Recall=0.879 

F1=0.868 

5 1671.5 Accuracy=0.610 

Precision=0.574 

Recall=0.610 

F1=0.508 

Accuracy=0.886 

Precision=0.870 

Recall=0.886 

F1=0.871 

6 2427.7 Accuracy=0.590 

Precision=0.510 

Recall=0.590 

F1=0.497 

Accuracy=0.879 

Precision=0.875 

Recall=0.879 

F1=0.880 

7 2910.6 Accuracy=0.490 

Precision=0.443 

Recall=0.481 

F1=0.402 

Accuracy=0.881 

Precision=0.867 

Recall=0.881 

F1=0.869 

8 3076.2 Accuracy=0.511 

Precision=0.503 

Recall=0.498 

F1=0.489 

Accuracy=0.892 

Precision=0.880 

Recall=0.892 

F1=0.880 

9 4792.4 Accuracy=0.501 

Precision=0.487 

Recall=0.471 

F1=0.407 

Accuracy=0.904 

Precision=0.897 

Recall=0.901 

F1=0.891 

10 5932.3 Accuracy=0.453 

Precision=0.397 

Recall=0.401 

F1=0.305 

Accuracy=0.927 

Precision=0.911 

Recall=0.927 

F1=0.910 



107 

Results and conclusions of the third chapter 

The robustness of the developed models to adversarial attacks was assessed, i.e. 

how difficult or easy it would be for an attacker to “cheat” the system. 

Of the main types of adversarial attacks used was the implementation of an 

evasion attack, in which an attacker selects input data during the exploitation phase so 

that the model gives an incorrect response. 

Since the random forest model is widely used as a classifier, it is important to 

investigate its robustness to adversarial attacks. However, it is known that classical 

black-box attacks do not take into account the specificity of solver trees. In the case of 

ensembles of decision trees, it is impossible to apply typical white-box attacks that are 

successfully used against neural networks.  

Because of these factors, when developing intrusion detection systems that 

utilize machine learning techniques, special attention should be paid to studying attacks 

that target specific models, such as ensembles of decision trees. 

Traditional methods for improving the robustness of machine learning models, 

such as weight reduction, generally do not provide practical protection against 

malicious examples. To date, only two methods have shown some significant 

protection - adversarial training and defensive distillation. 

Adversarial training has shown good results in studies by experts, but it does not 

solve the problem completely, because the success of this defense method depends on 

a constant race between the attacking and defending parties.  

It is difficult to defend against distortion attacks because of the problem of 

imperfect learning, where statistical processes cannot capture all possible inputs 

needed for correct classification.  

Developing a strategy that can defend against a powerful and adaptive attacker 

is an important research area for machine learning practitioners. 

Adversarial examples show that many modern machine learning algorithms can 

be hacked in unconventional ways. These machine learning failures demonstrate that 

even simple algorithms can behave quite differently than their designers intended.  
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A two-step defense against evasion attacks using adversarial learning has been 

implemented - performing an evasion attack (creating adversarial samples for the 

model) and adversarial learning (expanding the original dataset with correctly labeled 

adversarial samples and training a new and adversarial-resistant model on the new 

training set). 

For example, some performance metrics have been shown to deteriorate after the 

attack is implemented because adversarial samples added to the test set mislead the 

model. However, after the adversarial training is implemented, they are almost restored 

to the values they were before the evasion attack. 

Hence, it can be concluded that the implemented defense with adversarial 

learning improves the robustness of the proposed models against adversarial attacks. 

An experiment with the implementation of iterative adversarial learning using 

the HopSkipJump attack and the two models considered: the VotingClassifier (Random 

Forest + XGBClassifier) and the RF model with feature extraction with NN, disproved 

the hypothesis that adversarial learning in this case will be able to increase the 

robustness to repeated adversarial attacks.  

Thus, according to the results, the following conclusions can be drawn after 

conducting this experiment with the models: 

1. The performance metrics shift to the worse side after the attack. 

Adversarial learning after the attack effectively protects the model by recovering the 

values of the metrics. However, the model remains vulnerable to repeated attacks 

thereafter: that is, the defense only works against those generated adversarial examples 

that we correctly labeled and then added to the dataset. A new iteration of the attack 

can still generate effective adversarial examples. 

2. The dataset is expanded at each iteration, which may increase the number 

of adversarial subsamples generated, but also increases the ratio of adversarial samples 

to original samples. 

3. Adversarial learning did not improve the robustness of the considered 

models to repeated HSJA attacks. 
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CONCLUSION 

 

Thus, as a result of this work, the goal was achieved and the objectives were 

solved.  

Two algorithms were proposed, VotingClassifier (Random Forest + 

XGBClassifier) and RF + neural network for feature extraction. The latter approach 

showed a higher Accuracy metric (0.988) and the former showed a higher Precision 

metric (1.0) when trained on the same balanced and preprocessed subsample of 

WebAttacks web attacks of the CICIDS2017 dataset (70% / 30% ratio of normal to 

abnormal traffic, 10 most significant features selected after the correlation analysis 

performed earlier).  

The robustness of the developed models to adversarial attacks was assessed, i.e. 

how difficult or easy it would be for an attacker to “trick” the system 

The obtained results indicate the necessity of training the proposed machine 

learning model on the dataset obtained from the analysis of network traffic in the 

protected network. Otherwise, when using a pre-trained model, it is mandatory to 

match the physical structure of the protected network and the network in which the 

model was trained, as well as the settings of network equipment. At the stage of 

collecting and preparing the training sample, it is necessary to avoid imbalanced 

distribution of normal and abnormal records, which may cause overtraining of the 

model and/or a sharp increase in the number of false positives of the classifier. 

It is difficult to defend against distortion attacks due to the problem of imperfect 

learning, where statistical processes cannot capture all possible inputs needed for 

correct classification. Developing a strategy that can provide defense against a 

powerful and adaptive attacker is an important research area for machine learning 

practitioners. 

Adversarial learning has shown good results in the research of experts, but it is 

worth noting that it does not solve the problem completely, as the success of this 

defense method depends on a constant race between the attacking and defending 

parties. 
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Adversarial examples show that many modern machine learning algorithms can 

be hacked in unconventional ways. These machine learning failures demonstrate that 

even simple algorithms can behave quite differently than their designers intended. 

Reducing performance requirements is possible through the use of “layered” 

classifiers that combine fast, low-performance models at the preprocessing stage and 

efficient, computationally complex models at higher levels. 

Implementation of the proposed solutions in real-time (near-real-time) systems 

implies efficient processing and analysis of high-speed data streams in high-power 

feature space conditions and is possible only in the presence of a high-performance 

hardware and software platform. 

These circumstances together with the known results of research in the subject 

area allow us to conclude that it is possible to use machine learning methods to search 

for anomalies and detect computer attacks. 

It should be noted that a promising direction for further research is the 

development of algorithms for detecting computer attacks based on the use of features 

independent of the physical structure of the network and the settings of the equipment 

used, as well as the use of deep learning neural networks (deep learning), which 

demonstrate better results than other methods in solving a wide range of problems. 

In addition, an important aspect of the development of this topic is the study of 

ways to increase the resistance of machine learning algorithms to attacks, as well as 

the development of methods for detecting anomalies in real time, taking into account 

the specifics of modern threats and methods of their covert manifestation. 

Thus, the study of intrusion detection system (IDS/IPS) vulnerabilities in 

algorithms based on statistical and machine learning methods requires a comprehensive 

approach that includes both theoretical research and experimental studies on real data 

sets. Only such an approach will make it possible to develop effective and reliable 

methods for protecting information systems from modern cyber threats. This topic 

represents an urgent and important challenge in the field of cybersecurity, which 

requires further research and development. 
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