Ministry of Science and Higher Education of the Russian Federation
Federal State Autonomous Educational Institution of Higher Education
«Ural Federal University named after the first President of Russia B.N. Yeltsin»

Engineering School of Information Technologies,
Telecommunications and Control Systems

School of Professional and Academic Education

ADMIT TO THESIS DEFENSE BEFORE THE SEC

Head of EP 09.04.03 M.A. Medvedeva

«01» June 2024

MASTER THESIS

Development of methods and algorithms for intrusion detection and prevention
systems based on statistical methods and sustainable machine learning algorithms

Research supervisor: Medvedev M.A.
Associate Professor, signature
Candidate of Economic Sciences

Research supervisor: Agbozo E.
Senior lecturer, signature
Student: Kirin E.D.
Group number RIM-210980 signature

Yekaterinburg

2024

ABSTRACT

Topic of master’s thesis:

Development of methods and algorithms for intrusion detection and prevention
systems based on statistical methods and sustainable machine learning
algorithms

The master thesis has been written on 114 pages and contains 14 tables, 56
figures, 42 references.

Researching vulnerabilities in intrusion detection systems (IDS/IPS) using
algorithms based on statistical methods and machine learning is a pertinent topic due
to the continuous rise of cyber threats, the necessity of data privacy protection, the
application of cutting-edge technologies, and the widespread use of machine learning
methods in the field of information security.

The practical significance of this research lies in the following aspects: the
findings will help identify vulnerabilities in intrusion detection systems (IDS/IPS), thus
enhancing the overall security level of information systems; studying algorithms based
on statistical methods and machine learning will facilitate the development of new
methods for defense against attacks and their integration into existing IDS/IPS systems;
the obtained results can be utilized for training information security specialists, thereby
enhancing qualification levels and preparing personnel in this field.

The economic efficiency of the research directions can be assessed as follows:
the use of improved protection algorithms will mitigate cyber attack risks, data
breaches, and other incidents, consequently reducing organizational losses associated
with security breaches; ensuring reliable protection of information systems from
external threats enhances organizational reputation, increases customer and partner
trust, potentially leading to expanded business activities and attracting new clients.

The scientific novelty proposed by this research involves refining existing
vulnerability detection algorithms in IDS/IPS systems, based on a combination of

statistical methods and machine learning techniques. Additionally, the feasibility of

applying machine learning methods to detect hidden and advanced attacks, which
traditional IDS/IPS systems may overlook, will be explored.

The research will utilize a wide range of data, including real cyber attack data
for experimental testing. Previous research findings in cybersecurity and intrusion
detection systems will also be examined.

The object of the research is intrusion detection systems (IDS/IPS) utilizing
algorithms based on statistical methods and machine learning techniques. The focus of
the study is on the system itself, its components, detection algorithms, and mechanisms,
as well as its operational principles in the context of identifying vulnerabilities and
potential attacks.

The subject of the research includes intrusion detection algorithms in IDS/IPS
based on statistical methods and machine learning.

Based on existing research and literary sources, the research objectives and goals
have been identified. The main goal is to evaluate IDS/IPS based on statistical methods
and machine learning. The project tasks include:

1. Studying intrusion detection algorithms based on statistical methods and
machine learning.

2. Analyzing vulnerabilities in IDS/IPS systems and identifying common
types of attacks.

3. Studying methods to protect IDS/IPS from common attacks.

4. Developing a test environment to research vulnerabilities in intrusion
detection systems.

5. Evaluating the effectiveness of intrusion detection algorithms.

6. Comparing intrusion detection algorithms based on statistical methods
and machine learning.

7. ldentifying the most effective intrusion detection algorithm based on

statistical methods and machine learning.

CONTENTS
INTRODUCTION ..ottt e bbb 5

1INTRUSION DETECTION SYSTEMS (IDS/IPS) THAT UTILIZE ALGORITHMS BASED ON

STATISTICAL METHODS AND MACHINE LEARNING.ccoiiiiiic e 9
1.1 Justification of the relevance of research on vulnerabilities in intrusion detection
SYSLEMS (IDS/IPS). ...ttt sttt ettt se e st e be e st e e b e et e e neesneenteeneeaneenne e 9
1.2 Extraction of Data on IDS/IPS Methods Based on Statistical Methods and Machine Learning
I g0 TSR 13
1.3 Task Formulation for Management ..o 19
Results and conclusions of the first Chapter...........cooi e 26

2 COMPARATIVE ANALYSIS OF EXISTING MACHINE LEARNING METHODS FOR

ASSESSING IDS/IPS VULNERABILITIESooviiiieict et 40
2.1 Network Anomalies and Methods for Their DeteCtion...........cccovvvivrieeiiniesiese e 40
2.2 Comparative analysis of well-known machine learning algorithms applied in IDS/IPS......... 52
Results and Conclusions 0f Chapter TWOccviieiiciice et 78

3 APPLICATION OF ADVERSARIAL LEARNING IN INTRUSION DETECTION

ALGORITHMS ...ttt ettt e s ettt e se et et e st abe e et arees 80
3.1 Adversarial Maching LEAIMNINGccuviieieeieiieieeie e see e e e see e see e esee e e sseeneesseeneeaneessens 80
3.2 Application of adversarial learning in intrusion detection algorithms to realize protection
AQAINST ATEACKSevveiteeiee e et s e et e e r e st e et e e b e e ere e e e re e reennenre s 88
Results and conclusions of the third chapter............ooo oo 107
CONCLUSION . ..ottt b ettt st et et e s et e st et eseabe st e s eneste s eneans 109
LIST OF SOURCES USED.......ooi ittt e e enae e 111

INTRODUCTION

Modern information technologies play a crucial role in ensuring the national
security of the Russian Federation. Presidential Decree of the Russian Federation dated
May 1, 2022, No. 250 "On Approval of the Strategy for the Development of the
Information Society in the Russian Federation for 2022-2030" identifies one of the
main directions for the development of the information society in Russia as ensuring
the security of critical information infrastructure. In this context, researching
vulnerabilities in intrusion detection systems (IDS/IPS), which are important elements
of information system protection, becomes particularly relevant.

Intrusion detection systems are designed to detect and prevent unauthorized
access to information resources. However, despite their importance, these systems may
contain various vulnerabilities that malicious actors can exploit to penetrate protected
information systems. Researching such vulnerabilities is a necessary condition for
increasing the effectiveness of protecting the critical information infrastructure of the
Russian Federation.

Studying vulnerabilities in intrusion detection systems (IDS/IPS) using
algorithms based on statistical methods and machine learning is a topical issue due to
the constant growth of cyber threats, the need to protect data confidentiality, the
application of cutting-edge technologies, and the prevalence of machine learning
methods in the field of information security.

Conducting research to study vulnerabilities in IDS allows for identifying and
addressing weaknesses in intrusion detection systems, thereby improving their
effectiveness and accuracy in detecting attacks. This is particularly important in the
face of constantly evolving cyber threats, as malicious actors continuously develop new
methods and techniques for intrusion.

Research on vulnerabilities in IDS also contributes to enhancing overall
information security, as it helps detect and mitigate vulnerabilities that could be
exploited to bypass defense systems and conduct successful cyber-attacks.

Works by authors Le Kuang Min, Nguyen An Chuen, Nguyen Chung Thien, and

Fan Hue Anh address the challenges of improving the effectiveness of traditional

5

methods used for detecting network anomalies in network systems. Substantial
contributions to studying this issue were made by Glushchenko M.V., Glushchenko
S.A., Shiryayev A.A., who examined the types and methods of intrusion detection
systems in the information structure of enterprises. Their work reflects the nature of
intrusion detection systems based on anomaly methods, which typically search for
network traffic deviating from the standard network behavior model. Alshaibi A.D.,
Al-Ani M.M., Konev A.A. had a significant impact on solving the problem of this
research. Their works contain fundamental principles of machine learning models,
advantages, and limitations of all detection methods, providing the basis for developing
Intrusion Detection Systems (IDS).

The practical significance of the research lies in the following aspects: the
research results will help identify vulnerabilities in intrusion detection systems
(IDS/IPS), thereby enhancing the overall level of information system security; studying
algorithms based on statistical methods and machine learning will enable the
development of new methods for protection against attacks and their implementation
in existing IDS/IPS systems; the obtained results can be used for training information
security specialists, contributing to raising the qualification level and preparing
personnel in this field.

Modern technologies and internet infrastructure permeate all aspects of our lives,
from banking operations to critical infrastructure systems. With the increasing number
of devices connected to the internet and the volume of digital data, the risk of cyber-
attacks also rises. IDS/IPS play a crucial role in detecting and preventing such attacks.

Hackers continuously refine their methods to bypass existing defense systems.
Traditional intrusion detection approaches based on statistical methods and rules are
becoming less effective against new and advanced threats.

Machine learning (ML) is a powerful tool in cybersecurity, enabling threat
detection through the analysis of large volumes of data and the identification of hidden
patterns. However, there is a risk that attackers may also use ML to create more

sophisticated and stealthy attacks that evade existing IDS/IPS systems.

Given these factors, there is an evident need to improve intrusion detection
systems. Researching vulnerabilities in existing IDS/IPS systems based on both
statistical methods and machine learning will help identify and address their
weaknesses, enhancing the effectiveness of detecting and preventing cyber-attacks.

The results of this research can be directly applied to enhancing the security of
information systems in both corporate and government sectors, as well as in developing
new methods for detecting and preventing cyber-attacks.

Thus, researching vulnerabilities in intrusion detection systems (IDS/IPS) using
algorithms based on statistical methods and machine learning is a relevant and
important task in the field of cybersecurity, which requires further research and
development.

To achieve the research goals, a comprehensive approach will be used, including
literature analysis and experimental studies. Specifically, data analysis, examination of
machine learning algorithms, and testing on real datasets and attack simulations will
be conducted.

The scientific novelty offered by this research includes refining existing
algorithms for detecting vulnerabilities in IDS/IPS systems based on a combination of
statistical methods and machine learning. Additionally, the potential application of
machine learning methods for detecting hidden and advanced attacks that traditional
IDS/IPS systems may overlook will be explored.

The research will focus on intrusion detection systems (IDS/IPS) that use
algorithms based on statistical methods and machine learning. The study will
concentrate on the system itself, its components, detection algorithms, and
mechanisms, as well as its operation principles in the context of identifying
vulnerabilities and possible attacks.

The subject of the research is intrusion detection algorithms in IDS/IPS systems
based on statistical methods and machine learning.

Based on existing research and literature sources, the research goals and
objectives have been identified. The main goal is to evaluate IDS/IPS based on

statistical methods and machine learning. Project tasks include:

. Studying intrusion detection algorithms based on statistical methods and
machine learning.

. Analyzing vulnerabilities in IDS/IPS systems and identifying common
attacks.

. Studying methods to protect IDS/IPS from common attacks.

. Developing a test environment for investigating vulnerabilities in
intrusion detection systems.

. Evaluating the effectiveness of intrusion detection algorithms.

. Comparing intrusion detection algorithms based on statistical methods
and machine learning.

. Identifying the most effective intrusion detection algorithm based on

statistical methods and machine learning.

1 INTRUSION DETECTION SYSTEMS (IDS/IPS) THAT UTILIZE
ALGORITHMS BASED ON STATISTICAL METHODS AND MACHINE
LEARNING.

1.1 Justification of the relevance of research on vulnerabilities in intrusion
detection systems (IDS/IPS).

The relevance of a systematic literature review on vulnerabilities in intrusion
detection systems (IDS/IPS) and their widespread use for protecting various
organizational networks has been demonstrated by several scholarly works on this
topic.

Glushchenko M.V., Shiryaev A.A., Glushenko S.A. [1] investigated the types
and methods of intrusion detection systems in the information structure of enterprises.
They found that intrusion detection systems based on anomaly detection methods
typically search for network traffic that differs from the standard behavior model of the
network. The main principle is that network traffic behavior during an attack
significantly differs from normal user traffic. IDS using anomaly detection methods
create a profile (model of normal network traffic behavior) based on the standard
behavior of network traffic in the network. When such IDS detects differences in the
current network traffic behavior from the saved profile, an intrusion is recorded.
Intrusion detection systems based on anomaly detection methods are capable of
detecting new attacks whose signatures have not yet been identified. However, it was
also found that the main drawback of this method is false positives when network
traffic behavior deviates from the created profile.

Le Quang Minh, Fan Huy Anh, Nguyen Anh Chuen, Nguyen Chung Thien [2]
concluded that traditional methods used in modern network systems to detect network
anomalies are becoming outdated and ineffective in the face of changing hacker attacks
and methods. In this study, the authors presented an intelligent model of an IPS/IDS

system that combines machine learning with the development of additional updates

before new network attacks to improve IDS transmission systems. Thus, this helps the
system effectively prevent attacks even with new types of hacker attacks. The authors'
team created an IDS system based on machine learning, self-learning, and intelligent
reasoning, where new attacks are based on collected datasets. However, the proposed
system still has some shortcomings, such as: the dataset was built over a long period,
there are not many updates, new forms of attack have not been added, and there is a
lack of accuracy.

Kumaga N.K., Grigoryevych A.V. [3] studied the design and implementation of
an intrusion detection and prevention system "IDS/IPS" in the corporate network of
UGTU. They found that currently, in UGTU, to ensure security or protect information,
intermediate access tools (Proxy Server), firewalls (Firewall), and antivirus protection
tools are used. Using only these information security mechanisms does not fully and
effectively detect and prevent unauthorized and malicious activity in the UGTU
network. The authors concluded that the following problems arise from this:

1. Unauthorized access to the network and systems.

2. Unauthorized use of IP telephony.

3. Hacking of sites and web applications.

4. Encryption of users' computers for ransom.

To address these issues, the authors propose using network resources from
external attacks and supplementing existing technologies, which will allow timely
detection and prevention of IDS/IPS intrusions.

A.D. Alshaibi, M.M. Al-Ani, A.A. Konev [4] conducted an extensive systematic
literature review. They analyzed machine learning models and provided information
about the advantages and limitations of all detection methods, laying the groundwork
for the development of Intrusion Detection Systems (IDS). Machine learning methods
(ANN, SVM, KBS) are widely used for developing IDS to timely and automatically
detect and classify cyberattacks. This study provides a general overview of various
approaches to creating machine learning algorithms, their major pros and cons, and
helps select the appropriate algorithm based on the dimensionality and type of input

data.

10

Currently, we observe dynamic growth in scientific activity concerning the
vulnerability assessment of IDS/IPS. Bazhenov 1.O. [5] showed that applying ready-
made intelligent attack detection tools "out of the box" to the anomaly detection task
leads to a high number of false positives and misses attacks because network traffic is
a stream that changes daily. Therefore, one approach to solving the attack detection
problem is dynamic, adaptive adjustment of intelligent detectors.

However, in the vast majority of attack detection systems, rule-based methods
are primarily used, as the created rules provide justification for recording an attack at
a specific moment and allow for easier system configuration, whereas intelligent attack
detection methods, due to their complex learning algorithm, represent a black box.

Some authors [6] examined methods and means of ensuring information security
in a local computer network and implementing a module of an intrusion detection and
prevention system based on it, presented in the form of a deceptive system, which
allows combating various network threats by setting traps and falsifying system
parameters. The flexibility of configuration is a feature of such a solution.

Some authors [7] consider signature analysis as an effective preventive measure
against intrusions. However, they conclude that the problem of detecting cybercrimes
is complicated by gaps in existing legislation and that IDS/IPS systems require
continuous improvement and modernization.

Algorithms based on statistical methods and machine learning techniques
significantly enhance the process of detecting new network attacks, learning to identify
them correctly, block them, and prevent future threats.

Analysis of related research in this area has shown an increasing number of high-
quality articles identifying practical and theoretical issues in using IDS/IPS systems.
However, most studies still emphasize the need for continued in-depth research and
systematic study of vulnerabilities in intrusion detection systems (IDS/IPS).

The bibliometric indicators of the corresponding research direction are presented
in Figures 1-3. The trends indicate a growing interest of the scientific community in

research in this direction.

11

120 7

110
100 i
90 - \
80 “\
E \
S 70 \
=
o \
2 60 \
wv ‘\
40 A
30 “‘\
20 \
10
0 T T T T
2018 2019 2020 2021 2022 2023 2024
Publication Year
Figure 1 - Scientometric Indicators
View: Field-Weighted Citation Impact v byyear
2.00
o
=
E
©
§ 1.50
©
©
o
E
5 1.00
s
(@]
o
v
5
0 0.50
>
ba
(]
[T
0.00
2020 2021 2022

Figure 2 - Scientometric Indicators

12

Voice/data Communication Systems

Service-oriented Deep Learning Network Routing
o

Network Intrusion Detection System Internet of Things Device

Distributed Denial of Service Learning Network .
Software-Defined Network Intrusion Detection and Prevention

Intrusion Prevention Cybercrime Transfer of Learning
Computer System Firewalls Network Security Networking

Blockchain

Cyberattack Denial of Service Attack attack Anomaly Detection
Support Vector Machine Internet O‘FThlngS Ipl?grevention System

Botnet :
® Firewall Inosine Diphosphate

Intrusion Detection:=ym=

Virual Address | nternet Protocol Eso Computer Security NetworkTraffic

Camera | nt rus i on DeteCt i on Digital Forensics

suicata [Ntrusion Prevention Systems

Honeypot : ’
Software Defined Networking — cyber Physical System

Network Intrusion Detection Transmission Control Protocol
Controller Area Network Denial of Service Security Operations Centers

Figure 3 - Scientometric Indicators

1.2 Extraction of Data on IDS/IPS Methods Based on Statistical Methods

and Machine Learning Techniques

Inclusion Criteria for the Review:

- Original articles and conference papers describing the study of IDS/IPS
vulnerabilities based on statistical methods and machine learning
techniques, research on intrusion detection algorithms, and evaluation of
algorithm effectiveness against various typical attacks.

- Patent documentation containing descriptions of statistical methods and
machine learning techniques applied in IDS/IPS systems, along with
detailed descriptions of IDS/IPS system architectures.

Exclusion Criteria:
- Documents and conference materials on algorithms not based on

statistical methods and machine learning techniques;

13

- Avrticles and materials inaccessible via Ural Federal University's corporate
subscription.

Research Question for the Literature Review: What are the existing methods of
intrusion detection systems (IDS/IPS) based on statistical methods and machine
learning techniques? For example, XGBoost, KNN, SVM, etc.?

Potential Users of the Results: specialists in cybersecurity and organizational
system protection, researchers of intrusion detection systems,

Analysis and evaluation of intrusion detection system (IDS/IPS) algorithms
based on statistical methods and machine learning techniques.

Practical Outcome - evaluation of the effectiveness of IDS/IPS protection
methods based on experiments, reducing detection vulnerabilities in systems with
algorithms based on statistical methods and machine learning techniques.

The literature review can be applied in both industrial (practical) and scientific
(research) environments.

Description of the Search Process:

1. Selected Libraries: Elsevier, eLibrary.
2. Selected Timeframe: 2017-2023.
3. Quality Criteria: Only articles indexed in RSCI, HAC, and Scopus.

4. Examples of Search Queries:

Definition of your Research Area:
(ips AND ids) AND ("machine learning" OR "intrusion

detection system” OR "neural network" OR "ids alert")

Definition of your Research Area:

(ips OR ids OR "intrusion detection” OR "machine
learning methods in intrusion detection" OR "intrusion
detection system" OR "intrusion prevention system"”
OR "intrusion prevention" OR "machine learning
methods")

14

The step-by-step process for analyzing the documentation is presented in Table 1.

Table 1 - Publication Analysis Process

Elibrary Elsevier
Step 0 - Query Found: 67 Found: 729
Step 1 - Full-text Available in full text: Available in full text:
Availability Check 23 287
Step 2 - Title Remaining: 11 Remaining: 184
and Metadata Analysis

Step 3 - Abstract Remaining: 7 Remaining: 37
Analysis

Step 4 - Result Remaining: 4 Remaining: 10
Analysis

The main goal of the research is to extract methods of intrusion detection systems
(IDS/IPS) based on statistical methods and machine learning techniques from the
documents.

From the IDS/IPS algorithms, it is necessary to extract models based on
statistical methods and those related to machine learning.

The primary aim of data synthesis is to compare existing statistical methods and
machine learning techniques to assess the vulnerabilities of IDS/IPS and to identify
recommendations for addressing these vulnerabilities in IDS/IPS algorithms.

For the search, the technical field was determined by selecting IPC indexes:

1. GO6F 21/57 - Certification or maintaining trusted computer platforms, such as
secure booting or shutting down, version control, software system checks, secure
updates, or vulnerability assessment [2013.01].

2. GO6F 21/55 - Local intrusion detection or countermeasures [2013.01].

3. GO6N 20/00 - Machine learning [2019.01].

4. GO6F 21/00 - Devices for protecting computers, their components, programs, or

data against unauthorized activity [2013.01].
15

For the analysis of patent documentation, the following databases were used:
Rospatent, Google Patents.

We analyzed the documentation of patented tools, methods, and algorithms in
the field of information system and data protection, the documentation of patented
methods and algorithms for machine learning applied in the field of information
security, and the documentation of registered software models for electronic computers
(EC).

The main goal is to extract from the patent documentation the machine learning
methods and algorithms used in the field of information security, as well as the methods
and algorithms for the functioning of intrusion detection systems (IDS/IPS) based on
statistical methods and machine learning techniques.

Patent Search Queries for Rospatent:

1. Main Query Area: Intrusion Detection System OR Intrusion Prevention
System
Total Found: 141
Selected Search Bases (number of documents found):
Abstracts of Russian Inventions (R1): 25
Applications for Russian Inventions (Z12): 46
Full Texts of Russian Inventions from the Last Three Bulletins (N1Z): 45
Formulas of Russian Utility Models (FPM): 11
Formulas of Russian Utility Models from the Last Three Bulletins (NPM): 3
Prospective Russian Inventions (PI): 11
2. Main Query Area: Intrusion Prevention System OR Intrusion detection
system
Total Found: 13
Selected Search Bases (number of documents found):
Abstracts of Russian Inventions (RI): 0
Applications for Russian Inventions (Z1Z2): 0

Full Texts of Russian Inventions from the Last Three Bulletins (N12): 10

16

Formulas of Russian Utility Models (FPM): 0
Formulas of Russian Utility Models from the Last Three Bulletins (NPM): 0
Prospective Russian Inventions (P1): 3
3. Main Query Area: (Intrusion Prevention System OR Intrusion detection
system OR cucrema oOHapyxkenus BTopxkeHmit) AND MammHHOE
oOyueHue
Total Found: 7
Selected Search Bases (humber of documents found):
Abstracts of Russian Inventions (R1): 0
Applications for Russian Inventions (ZIZ): 3
Full Texts of Russian Inventions from the Last Three Bulletins (N1Z): 3
Formulas of Russian Utility Models (FPM): 1
Formulas of Russian Utility Models from the Last Three Bulletins (NPM): 0
Prospective Russian Inventions (P1): 0
4. Main Query Area: (Intrusion Prevention System OR Intrusion detection
system OR cucrema oOHapyxenus BropskeHui) AND (MarmHHOE
oOyuenne OR cTaTucTHYECKHE METO/IBI)
Total Found: 12
Selected Search Bases (number of documents found):
Abstracts of Russian Inventions (RI1): 1
Applications for Russian Inventions (Z1Z): 3
Full Texts of Russian Inventions from the Last Three Bulletins (N1Z): 6
Formulas of Russian Utility Models (FPM): 1
Formulas of Russian Utility Models from the Last Three Bulletins (NPM): 0
Prospective Russian Inventions (PI): 1
5. Main Query Area: Cucrema oOHapyxenus BTopskeHuit OR Cucrema
npenoTBpamieHuss Bropkennii AND (mammuHOe 00ydenume OR
CTAaTUCTHUUYECCKUC MeTO)IBI)
Total Found: 123

Selected Search Bases (number of documents found):

17

Abstracts of Russian Inventions (RI1): 21
Applications for Russian Inventions (Z12): 38
Full Texts of Russian Inventions from the Last Three Bulletins (N1Z): 39
Formulas of Russian Utility Models (FPM): 11
Formulas of Russian Utility Models from the Last Three Bulletins (NPM): 3
Prospective Russian Inventions (P1): 11
6. Main Query Area: mamuHaHOE 00y4eHHEe and aTaku
Total Found: 27
Selected Search Bases (number of documents found):
Abstracts of Russian Inventions (RI): 3
Applications for Russian Inventions (Z12): 3
Full Texts of Russian Inventions from the Last Three Bulletins (N12): 21
Formulas of Russian Utility Models (FPM): 0
Formulas of Russian Utility Models from the Last Three Bulletins (NPM): 0
Prospective Russian Inventions (PI): 0
Patent Search Queries for Google Patents:
1. (Intrusion Prevention System) and (machine learning) and (Intrusion
detection system)
2. (Intrusion Prevention System) and (Intrusion detection system) and
after:priority:20170101
[TomraroBelii MpoLECC aHadM3a MNATEHTHOM JOKYMEHTAllUW IPEJICTaBICH B

tadmure 2.

18

Table 2 - Patent Documentation Analysis Process.

Step Google Patents Rospatent
Step 0 - Query Found: 32,000 Found: 323
Step 1 - Full-text Remaining: 32,000 Remaining:
Availability Check 300
Step 2 - Title and Remaining: 46 Remaining: 11
Metadata Analysis
Step 3 - Abstract Remaining: 21 Remaining: 7
Analysis
Step 4 - Remaining: 2 Remaining: 5

Documentation Analysis

and Data Extraction

1.3 Task Formulation for Management

The object of management is intrusion detection systems at any enterprise,
including its components, configuration parameters, as well as the processes of
detection and response to threats.

The subject of management is algorithms and methods of intelligent support for
the threat detection process and ensuring the effective operation of the intrusion
detection system.

Within the framework of management task formulation, the aspect of efficiency
parameters of the information system is considered. The following efficiency
parameters have been identified:

1. Detection Accuracy:
— The proportion of truly detected attacks and anomalies among all detected
events.
- Measured by the ratio of the number of correctly classified events to the

total number of detected events.

19

2. False Positives:
— The proportion of events incorrectly classified as attacks or anomalies
among all detected events.
— Measured by the ratio of the number of false positives to the total number
of detected events.
3.False Negatives:
- The proportion of actual attacks or anomalies that the system failed to
detect among all real attacks or anomalies.
- Measured by the ratio of the number of undetected attacks to the total
number of real attacks.
4. Response Time:
- The time required for the system to detect and respond to a threat after its
occurrence.
- A shorter response time usually indicates a more efficient system.
Innovation refers to the transformation of the flow of information resources.

Let's consider this transformation through the prism of the "black box" model:

BHenmss

cpena @
@ TIpoLecc B Bexoa @)

Bxon
CHCTEME

OOpatHast | cesish @

Pucynok 4 — CxemaTudeckasi MOJI€NIb «YEPHOTO SIIHUKA.

1. Input: Network traffic (data packets, network activity events), metadata

about network activity (e.g., source, destination, port, protocol, etc.).

20

2. Output: Determination of whether the network activity is normal or
abnormal (possibly indicating the type of attack), decision to block or
allow network activity (in the case of IPS).

3. External environment: Network infrastructure: network nodes, routers,
switches, etc. Network protocols and standards. Network topology and
application architecture.

4. Feedback: In the event of detecting an attack or suspicious activity, the
IDS/IPS system can generate notifications or alerts for the system
administrator. In the case of blocking network activity, information about
the system's actions may be sent back to logs or monitoring system for
subsequent analysis or response.

An information security system can be considered as consisting of four
subsystems:

1. Access control subsystem;

N

. Registration and accounting subsystem;
3. Cryptographic subsystem;
4. Integrity assurance subsystem.

This research focuses on the access control subsystem.

As a supersystem, the information security department can be considered
responsible for the integrity of the information system and receiving reports on the
results of the intrusion detection system's operation. The supersystem coordinates the
subsystem's work and interacts with the external environment.

Intrusion Detection System (IDS/IPS): This is the primary system that analyzes
network activity, detects anomalies or potential attacks, and makes decisions about
blocking or allowing traffic.

In the framework of the management task formulation, answers to questions of
the conceptual model were provided:

1. Main function: Implementation of the continuous analysis process of
network traffic and events to identify and prevent potential attacks and

anomalous activity in the network.

21

2. System structure: Internal server-side and external interface parts of the

intrusion detection and prevention system.
Internal server-side part:

— Sensors (data collection): Responsible for collecting and filtering network
traffic and events.

— Analyzers (data analysis): Apply intrusion detection algorithms to analyze
collected data and detect anomalies.

— Reacting devices (decision-making and response): Responsible for
making decisions and taking actions to prevent threats.

3. System operation direction: Improvement of the continuous detection and
prevention process of potential attacks and anomalous activity in the
network, thereby ensuring the necessary security and integrity of the
information infrastructure.

4. Goal: Ensuring the security of the organization's network infrastructure
by detecting and blocking attempts of unauthorized access, as well as
anomalous activity, which may indicate an attack or threat.

Let's define some factors that influence the value of the previously highlighted
performance indicators:

1. Types of attacks and threats. Different types of attacks may have different
characteristics and behavior patterns, which can affect the intrusion
detection system's ability to identify them.

2. Quality of training data. The quality of data used for training machine
learning algorithms or creating attack signatures can significantly affect
the accuracy and reliability of detection.

3. Configuration parameters. Proper configuration of system parameters,
such as thresholds for anomaly detection and false positive thresholds, can
significantly affect its effectiveness.

4. Technical architecture. The system's efficiency also depends on hardware

and software, network architecture, and the location of sensors.

22

5.

Network scale. The size and scale of the network can affect the
performance and capabilities of the intrusion detection system.

Staff training. The level of training and education of personnel responsible
for configuring and monitoring the system can also significantly affect its
effectiveness.

Degree of integration. Integrating IDS/IPS with other security systems
and network devices can affect its ability to respond quickly to threats and

coordinate actions.

The lifecycle of managing the operation algorithms of intrusion detection and

prevention systems may include the following stages:

1.

Analysis and Planning:

Defining the requirements for the intrusion detection and prevention
system.

Studying existing algorithms and methods for threat detection and
prevention.

Planning the strategy for updating and changing algorithms according to
security needs and requirements.

Algorithm Selection:

Choosing the most suitable algorithms and methods for implementing the
intrusion detection and prevention system.

Taking into account security requirements, performance, and other
factors.

Development and Implementation:

Developing and implementing the selected algorithms and methods within
the intrusion detection and prevention system.

Integrating algorithms into the overall system architecture.

Testing and debugging new algorithms.

Operation and Monitoring:

Deploying the system in the operational environment.

23

— Monitoring the operation of the system and intrusion detection and
prevention algorithms.

— Monitoring the performance and effectiveness of algorithms in real
operational conditions.

5. Update and Adaptation:

— Conducting regular updates of algorithms according to changing threats
and security requirements.

— Adapting algorithms to new types of attacks and changes in the network
environment.

6. Analysis and Optimization:

— Regularly analyzing the effectiveness and performance of algorithms.

— Optimizing algorithm operation based on the results obtained and
feedback from monitoring.

7. Removal and Replacement:

— In case of obsolescence or insufficient effectiveness of algorithms,
removing them and replacing them with more modern or efficient
alternatives.

The current state of the system can be represented as follows:
So = {P}, (1),

where Py — represents the initial values of parameters, i = 7, 2...n — denotes the

number of parameters.

To solve the control problem, the system must reach a final state described as:
Sk = {Pi) (2),

where Px — represents the final values of the system parameters.

The following parameters will be used to solve the problem:

1. Precision - measures how much the classifier can be trusted:

),

TP
(TP+FP)

Precision =

24

2. Recall - indicates how many items of the class "attack present" are correctly

identified by the classifier:

TP
(TP+FN)

Recall =

(4),

3. F1-score - the harmonic mean between precision and recall (the closer to 1, the
better):

(2*Precision*Recall)
F= (5),

(Precision+Recall)

4. Accuracy - the proportion of correct answers by the algorithm:

(6),

(TP+TN)
(TP+TN+FP+FN)

Accuracy =

Notation used in the metrics formulas:
1) TP (true positive) - the number of true positive results,
2) TN (true negative) - the number of true negative results,
3) FP (false positive) - the number of false alarms,
4) FN (false negative) - the number of missed attacks.
Goal of management (Zu):
Z, = max K (7),
Where maxK - represents the maximization of cases of detecting unauthorized access
attempts, as well as anomalous activity that may indicate an attack or threat and
ensuring the security of the network infrastructure.
Control vector (Usunc):
u(t) = [Upunc] (®).
where ugnc - denotes the control of operation (alteration of system operation
algorithms).
In the generalized model of the control system, the controlling subsystem is the
intrusion detection system (IDS/IPS).
The controlling subsystem establishes the parameters and rules of operation of

the system, as well as monitors and controls its functioning.

25

The controlled subsystem, in turn, is the server part from which network traffic
data is received into the intrusion detection system.

The scheme of the management task is presented in Figure 5.

Cucrema

Goal of management: Zu = maxK

A

Subject of management

A

[aHHble u(t) = [usunc]

A 4

object of management

S(t) = ({Pi}, ...)

y

External environment

f(t)

Figure 5 - Scheme of the system's management task formulation.

Results and conclusions of the first chapter

Networks play a crucial role in modern society, and cybersecurity has become a
critically important area of research. Intrusion Detection Systems (IDS) monitor the
operation of software in the network, but existing IDS still face challenges in increasing
detection accuracy, reducing false alarms, and recognizing new types of attacks. To
address these issues, many researchers focus on creating IDS that utilize machine
learning algorithms.

Supervised machine learning uses labeled data to train a model, which can then

predict labels for new data. For example, a spam classifier can determine whether a

26

new email is spam or not. Unsupervised machine learning, on the other hand, works
with unlabeled data. For instance, in clustering botnets attacking the network, they need
to be distinguished from each other without predefined labels. Classification and
regression analysis are examples of supervised machine learning, while clustering
represents a form of unsupervised machine learning.

Machine learning methods can accurately identify differences between normal
and anomalous data and detect unknown attacks due to their generalization ability.
Cybersecurity methods mainly include antivirus software, firewalls, and Intrusion
Detection Systems (IDS). Among them, IDS is a type of detection system that plays a
key role in cybersecurity by monitoring the status of software and hardware operating
in the network.

It is worth noting that the lack of available datasets can be the biggest challenge.
Thus, unsupervised learning and incremental learning approaches have broad prospects
for development. For practical IDS, interpretability is essential because interpretable
models are more persuasive. The interpretability of models could be an important
research direction for IDS in the future.

In the article "Applying convolutional neural network for network intrusion
detection (Conference Paper)" [8], the authors concluded that Convolutional Neural
Network (CNN) architectures in deep learning have achieved significant results in
computer vision. To transform this performance into intrusion detection (ID) in
cybersecurity, in this document, network traffic is modeled as a time series,
specifically, Transmission Control Protocol/Internet Protocol (TCP/IP) packets in a
predefined time range with supervised learning methods, such as Multilayer Perceptron
(MLP), CNN, CNN-Recurrent Neural Network (CNN-RNN), CNN-Long Short-Term
Memory (CNN-LSTM), and CNN-Gated Recurrent Unit (GRU), using millions of
known good and bad connection networks.

The methodology involves measuring the effectiveness of the proposed
approaches. The authors evaluated the most significant synthetic ID dataset, such as
KDDCup 99. For selecting the optimal network architecture, the article conducted a

comprehensive analysis of various MLP, CNN, CNN-RNN.

27

The models in each experiment were run for up to 1000 epochs with a learning
rate in the range [0.01-05]. CNN and its architecture variations significantly
outperformed classical machine learning classifiers. This was mainly because CNN has
the ability to extract high-level feature representations, which are abstract forms of
low-level feature sets of network traffic connections.

Deep Neural Network (DNN) is widely used for complex systems, allowing
abstraction of features and learning as a machine learning method. Some researchers
[9] used deep learning methodology to develop efficient and flexible IDS using one-
dimensional Convolutional Neural Network (1D-CNN). The machine learning model
based on 1D-CNN serialized Transmission Control Protocol/Internet Protocol
(TCP/IP) packets in a specified time range as an intrusion internet traffic model for
IDS, where normal and abnormal network traffic is classified and labeled for
supervised learning in 1D-CNN.

As a result of comparative performance research, Random Forest (RF) and
Support Vector Machine (SVM) models based on machine learning were used in
addition to 1D-CNN with various network parameters and architecture. In each
experiment, the models were trained for up to 200 epochs with a learning rate of 0.0001
on both imbalanced and balanced data. 1D-CNN and its architecture variations
outperformed classical machine learning classifiers.

In the article "Intrusion detection using neural networks and support vector
machines" [10], the authors conducted experiments on two datasets - KDD Cup 1999
and DARPA 1999, and compared the results with other intrusion detection methods
such as Bayesian networks and decision trees. The authors proposed a Multilayer
Perceptron (MLP) and SVM architecture for intrusion detection. The results showed
that models based on MLP and SVM provide high intrusion detection accuracy,
outperforming other methods.

The ensemble feature selection method improves the quality of feature selection
and reduces selection time. This method was proposed by foreign researchers [11],
whose goal was to develop a new approach to feature selection for intrusion detection
systems. Experiments were conducted on several datasets: DARPA98, KDD99,

28

ISC2012, and ADFAL3, to evaluate the effectiveness of the proposed method. The
results showed that the proposed method outperforms other feature selection methods
in terms of accuracy, recall, and F-score metrics, while having lower computational
complexity.

However, it is worth noting that the authors do not consider the impact of the
number of selected features on the performance of the intrusion detection system.
Additionally, there was no comparison with other methods based on ensemble filters,
which could be an interesting aspect for future research in this area.

The "one-class SVM" algorithm (support vector machine method for anomaly
detection) for creating an ensemble of models improves the efficiency of attack
detection [12]. Experimental evaluation of this method was conducted on two datasets:
KDDCup'99 and DARPA2000. The experiments showed that the proposed method
outperforms other methods (including SVM with RBF kernel and multilayer
perceptron). The analysis of the experiment results also helped identify which data
characteristics affect the quality of attack detection. As a result, it was found that using
different feature sets and tuning algorithm parameters can significantly affect the
effectiveness of attack detection.

The article describes an intrusion detection system, a variety of intrusion
detection methods to combat cybersecurity threats, which can generally be divided into
signature-based intrusion detection systems (SIDS) and anomaly-based intrusion
detection systems (AIDS). Some authors propose using machine learning algorithms
for network traffic classification, as well as visualizing the obtained results for
convenient analysis [13]. Authors used Bayesian networks, decision trees, and artificial
immune system cloning algorithms as machine learning methods. The most popular
publicly available datasets used for IDS research were examined, and their data
collection methods, evaluation results, and limitations were discussed.

The testing was conducted only using DARPA/KDD99 datasets collected in
1999 as they are publicly available, and there are no other alternative and acceptable

datasets. It is worth noting that despite their widespread recognition as a standard, these

29

datasets no longer reflect modern “zero-day" attacks. Although the ADFA dataset
contains many new attacks, it is still insufficient.

The article "Hybrid anomaly detection system for intrusion detection™ [14]
describes a new hybrid approach to anomaly detection for intrusion detection systems.
The authors propose using statistical methods such as the maximum likelihood
algorithm and decision tree-based classifiers, combined with neural networks to create
an effective intrusion detection system.

The authors proposed using a variety of features, including flow information,
ports, protocols, sessions, packet size, etc., as well as a variety of algorithms such as
decision trees, SVM, and neural networks, to detect anomalies in network traffic.

The authors evaluated the performance of their system on the DARPA 1998
dataset, and the results showed that the hybrid approach outperforms individual
methods such as SVM and neural networks in anomaly detection accuracy.

Considering the current types of attacks, one of the main problems is the "Denial
of Service" (DoS) and "Distributed Denial of Service" (DDoS) attacks in a cloud
environment [15]. To address this issue, using an Intrusion Detection System (IDS) as
a security procedure operating at the network level is proposed. Conventional IDS in
the cloud platform leads to low detection accuracy with high computational
complexity. M. Mayuranathan, M. Murugan, V. Dhanakoti presented an efficient
classification model based on feature subset selection for identifying DDoS attacks
[15]. For DDoS attack detection in IDS, feature sets with maximum detection using the
Random Harmony Search (RHS) optimization model were selected. After selecting
features for DDoS detection, a deep learning-based classifier model using Restricted
Boltzmann Machines (RBM) was applied. To increase the speed of DDoS attack
detection, a set of seven additional layers was included in the visible and hidden layers
of RBM.

As a result, accurate results are achieved through the optimization of
hyperparameters of the presented deep RBM model. The probability distribution of the
visible layer in the RBM model is replaced with a Gaussian distribution. For
experiments, the RHS-RBM model was tested on the KDD'99 dataset.

30

Experimental results showed that the RHS-RBM model provides maximum
accuracy - 99.92 and an F-score of 99.93. These obtained values of the RHS-RBM
model were found to be better compared to the RBM model without using the RHS
algorithm.

Many foreign and domestic researchers in the field of machine learning and
cybersecurity conduct reviews in this area. For example, the authors of the article "A
survey on machine learning techniques in wireless sensor networks intrusion detection"
[16] reviewed 68 studies published from 2007 to 2014. The article discusses various
machine learning methods used for intrusion detection in wireless sensor networks,
such as neural networks, decision trees, support vector machines, naive Bayesian
classifiers, etc.

One of the main conclusions of the article is that machine learning methods are
an effective tool for intrusion detection in wireless sensor networks and can be used in
combination with other methods to improve the efficiency of intrusion detection
systems. It is also noted that to achieve high intrusion detection accuracy, it is necessary
to consider the specific characteristics of wireless sensor networks, such as limited
resources and the possibility of attacks at the physical device level.

Computer networks are constantly threatened by malicious actors who attempt
to gain unauthorized access to systems on them. Malicious actors constantly refine their
attack methods, while network administrators develop new defense measures in
response to these threats. This ongoing interaction leads to the emergence of new
vulnerabilities and exploits, as well as the removal of ineffective attack methods.
Network administrators must anticipate the detection of new threats and respond to
them quickly. Identifying and blocking new exploits presents a complex challenge for
administrators, especially if the attack targets a small number of services on the
network or has not yet gained widespread use.

LO Penchen, BRIGGS Reeves Hopp, AHMAD Navid patented an invention
related to the field of network security [17]. Its technical result consists of providing
more reliable and fast identification of new forms of attacks, increasing network

security, and reducing processing resources used to protect the network from malicious

31

entities. The result is achieved through a method of providing security for an online
service provided over the network, using a model with continuous learning, which
includes collecting a set of security signals, with the set of security signals collected in
a sliding time window; identifying whether each security signal from the set of security
signals is malicious or harmless; creating a balanced training dataset for the sliding
time window by: ensuring a balance of malicious signals from the set of security signals
based on the type of attack identified for each malicious signal, ensuring a balance of
harmless signals from the set of security signals to create a balanced training dataset
based on the type of device from which each harmless signal is received, and ensuring
a balance of malicious signals with harmless signals by cross-connecting malicious
signals with harmless signals; and creating a predictive model based on the balanced
training dataset, wherein, in response to receiving an additional security signal related
to a new network session from the online service, the predictive model is applied to
determine whether this additional security signal is malicious or harmless [17].

By integrating continuous learning intrusion detection models into the network,
the capabilities of devices and software are improved. This allows for faster and more
reliable identification of new types of attacks, solving the problem of increasing
network security. It also allows for more efficient use of computational resources,
without spending them on detecting outdated attack methods, thereby reducing the load
on the defense system against malicious actors.

To determine whether users are harmless or malicious, or whether devices are
harmless (not sending malicious signals) or compromised (sending malicious signals),
various security signals from the online service are collected and fed into production
models to generate detection results indicating whether a given session is malicious or
harmless. Security signals such as event logs, network state traces, and system
commands undergo analysis using production models that evaluate their
characteristics. Feature values are determined by training production models to detect
malicious or safe behavior. The training data sampling mechanism excludes safe
signals received from compromised devices in real-time, leaving only malicious

signals from compromised devices.

32

The model adjusts rules or algorithms over several cycles, changing the values
of variables that affect the input data to more accurately match the desired outcome.
However, due to the variability of the training dataset and its large volume, achieving
perfect metrics such as accuracy and precision may be unattainable.

Thus, each security signal is analyzed in a production model, which is created
by training the model on a balanced dataset and tuned to determine whether a specific
security signal is malicious or safe. With the active development of computer
technology and networks, the task of detecting computer attacks and timely detecting
cases of server infection with malicious software becomes increasingly relevant.

Network-level intrusion detection systems (IDS) use decision rule bases. These
rules contain criteria for analyzing communication sessions and recording information
security events. The criteria describe the content and attributes of network connections
that the system considers malicious within the established syntax.

In practical application, network IDS tasks include: timely updating the decision
rule base for more effective detection of new threats; reducing the number of type |
errors (false positives) [21]. Kislicin N.I. considers in his patent documentation a
method of autogenerating decision rules for intrusion detection systems with feedback,
performed on a server, which includes at least the following steps: receiving at least
one event from the event database formed by data received from at least one sensor;
analyzing the received at least one event for belonging to the class of interaction with
command and control centers of malware; extracting from at least one of the above
events belonging to the class of interaction with command and control centers of
malware, at least one feature used to form decision rules; forming decision rules using
at least one of the above extracted features; saving the generated decision rules and
providing the possibility of receiving updates to the decision rules for at least one
sensor; sensors cyclically check the availability of updates on the central node and, if
updates are available, receive them for use, in case of receiving updates on the sensors,
a trigger is triggered, rebooting the decision rules [21].

The rule generation module, capable of analyzing events received from sensors,

receives at least one event from the event database of the central node, received from

33

at least one sensor, and analyzes it for belonging to the class of interaction with
command and control centers of malware based on the list of identifiers of the rules of
the module database. If the event belongs to such a class, the module extracts at least
one feature from the event used to form decision rules.

Various identifiers can be used as features, such as the IP address of the data
recipient or the domain name, which can be extracted from the service headers of
transmitted data. For example, for the HTTP protocol, the domain name can be found
in the Host field, and for DNS, from the binary data structure according to RFC 1035.
In the case of the TDS protocol, the domain name can be extracted from the "client
hello™ message with the SNI extension.

After extracting features, the rule creation module checks if these characteristics
are present in the list of allowed names. If they are present in this list, processing of
these features is completed.

In their invention "Deep-learning-based intrusion detection method, system and
computer program for web applications” [22], the authors patented an invention related
to deep learning-based intrusion detection, namely, a method for detecting whether
traffic is a hacker attack based on a deep neural network (DNN) model after setting up
network traffic entering the server as input data to the model.

The authors suggest conducting analysis based on signatures as one of the
intrusion detection methods. It represents a scheme for searching for a specific pattern
corresponding to a known attack threat, and regular expressions are used to analyze
strings by comparing strings with an already saved list of signatures. When a pattern
with a specific signature is detected in the useful data packet, the strings are considered
an attack. An accurate and limited list of signatures can reduce the number of false
positives. Signature-based analysis methodology may be successful if up-to-date
signature patterns are supported, however, an unknown attack, such as a zero-day
attack (a security attack exploiting a security vulnerability before the vulnerability is
widely known after its discovery) or the latest malware, may not be detected.

To address the above problems, the present invention provides an effective
intrusion detection system through the use of deep neural networks in the form of

34

complex web service protocol messages (Hypertext Transfer Protocol (HTTP)), which
Is the most common and representative for the company among various application-
level services. In particular, the present invention provides a method for detecting web
application threats, a system, and a computer program implementing it, configured to
identify security threats by bypassing and interfering with the signature-based security
detection scheme.

To achieve the above-mentioned objectives, the deep learning-based intrusion
detection method for web applications according to the present invention includes: (a)
inputting input data formed by preprocessing traffic data on the web server into a deep
neural network model for intrusion detection; (b) outputting from the intrusion
detection model information on whether intrusion is detected in the traffic data; and (c)
generating an alarm signal when intrusion is detected.

In their research work titled "Cybersecurity detection and mitigation system
using machine learning and advanced data correlation™ [23], the authors described
methods related to active security risk reduction, which are detected through combined
analysis of risky users and compromised systems, a capability currently not available
on the market.

Reducing attacks and risks, based on a unified view of system security as well
as on identification and access constraints, can be achieved using a comprehensive
Enterprise Cybersecurity Defense System (eCDS). Such an eCDS can provide the
methods and design elements necessary to create a full-fledged system capable of
providing active protection and mitigating unforeseen and dynamically detected
cyberattacks. Such a system can be beneficial to organizations like PayPal™ as well as
other individuals and corporations.

Thus, in various implementation scenarios outlined in the study, data from
multiple domains (such as user identity, system logs) can be integrated into a machine
learning-based solution that can recognize anomalous attempts to access electronic
resources. These anomalous attempts may not be recognized by a simple rule-based
system, as they could potentially be problematic. For example, a firewall might be

configured to allow access to certain communication ports, or a specific user might

35

have access to a wide range of files and relational databases. However, statistically
Improbable (e.g., anomalous) access attempts may still indicate a fundamental security
Issue, even if such access could be permitted within a rule-based system.

As a result of the research, the choice of dataset for training can be highlighted.
For training attack detection systems among the available public datasets, the
"Intrusion Detection Evaluation Dataset" CICIDS2017 was selected. The CICIDS2017
dataset was prepared based on the analysis of network traffic in an isolated
environment, where the actions of 25 legitimate users as well as malicious actions of
intruders were simulated. The dataset combines over 50 GB of "raw" data in PCAP
format and includes 8 pre-processed files in CSV format containing annotated sessions
with selected features observed on different days. A brief description of the files is
presented in Table 3, and the quantitative composition of the dataset is provided in
Table 4.

Table 3 - Brief description of files from the dataset.

Brief description of files from the dataset

Ne File Name Contained Attacks

1 Monday- Benign (0ObraHBII
WorkingHours.pcap_ISCX.csv TpauK)

2 Tuesday- Benign, FTP-Patator, SSH-
WorkingHours.pcap_ISCX.csv Patator

3 Wednesday- Benign, DoS GoldenEye,
workingHours.pcap_ISCX.csv DoS Hulk, DoS Slowhttptest,

DoS slowloris, Heartbleed

4 Thursday-WorkingHours- Benign, Web Attack —

Morning-WebAttacks.pcap _ISCX.csv | Brute Forse, Web Attack — Sql
Injection, Web Attack - XXS

5 Thursday-WorkingHours- Benign, Infiltration

Afternoon-

Infilterations.pcap_ISCX.csv

36

6 Friday-WorkingHours- Benign, Bot
Morning.pcap_ISCX.csv
7 Friday-WorkingHours- Benign, PortScan
Afternoon-PortScan.pcap_ISCX.csv
8 Friday-WorkingHours- Benign, DDoS
Afternoon-DDoscap ISCX.csv

Table 4 - Quantitative composition of the dataset.

Quantitative composition of the dataset
Ne Record Type Number of Records
1 BENING 2359087
2 DoS Hulk 231072
3 PortScan 158930
4 DDoS 41835
5 DoS GoldenEye 10293
6 FTP-Patator 7938
7 SSH-Patator 5897
8 DoS slowloris 5796
9 DoS Slowhttptest 5499
10 Bot 1966
11 Infiltration 36
12 Heartbleed 11
13 Web Attack — Brute Force 1507
14 Web Attack — XSS 652
15 Web Attack — SQL Injection 21

37

At Figure 6, a fragment from the dataset is presented.

6.0 0
190.857143.

Figure 6 - Dataset for the research.

For further analysis, the following 10 most common machine learning models
(algorithms) were selected for comparison (abbreviations are provided in parentheses
along with the corresponding implementation of the model from the scikit-learn
package):

1. K-Nearest Neighbors (KNN, sklearn.neighbors.KNeighborsClassifier).

2. Support Vector Machine (SVM, sklearn.svm.SVC).

3. Decision Tree (CART, CART learning algorithm,
sklearn.tree.DecisionTreeClassifier).

Random Forest (RF, sklearn.ensemble.RandomForestClassifier).
AdaBoost (AdaBoost, sklearn.ensemble.AdaBoostClassifier).
Logistic Regression (LR, sklearn.linear_model.LogisticRegression).

Naive Bayes (NB, sklearn.naive_bayes.GaussianNB).

©© N o g b

Linear Discriminant Analysis (LDA,
sklearn.discriminant_analysis.LinearDiscriminantAnalysis).

9. Quadratic Discriminant Analysis (QDA,

sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis).

10. Multi-layer Perceptron (MLP, sklearn.neural _network.MLPClassifier).

From the literature review on vulnerability research of intrusion detection
systems (IDS/IPS) based on statistical methods and machine learning methods, the
following conclusions can be drawn:

1. Analyzing intrusion detection algorithms such as XGBoost, KNN, SVM, and
others reveals the diversity of approaches to cybersecurity problem-solving.
Assessing the effectiveness of these algorithms across various types of
attacks demonstrates the potential for enhancing the detection and prevention

of new network threats.

38

2. Research into scientific papers and patents indicates the ongoing
development of intrusion detection methods based on statistical techniques
and machine learning, emphasizing the relevance and significance of this
topic for cybersecurity.

3. The objective of evaluating IDS/IPS based on statistical methods and
machine learning is to enhance the level of protection for information
systems against cyberattacks. Investigating vulnerabilities in IDS/IPS
systems and identifying common attack types helps to better understand
weaknesses in existing systems and develop more reliable defense
mechanisms.

4. The project tasks, such as algorithm analysis, test environment development,
algorithm effectiveness assessment, and approach comparison, provide a
deep understanding of cybersecurity issues and identify the most effective
protection methods. The research findings can be utilized by cybersecurity
professionals to enhance intrusion detection systems in both industrial and
academic settings.

Thus, the analysis of intrusion detection algorithms based on statistical methods

and machine learning indicates a low level of research depth in the subject matter and
the potential for significant improvement in cybersecurity through the application of

modern methods and technologies.

39

2 COMPARATIVE ANALYSIS OF EXISTING MACHINE LEARNING
METHODS FOR ASSESSING IDS/IPS VULNERABILITIES

2.1 Network Anomalies and Methods for Their Detection

2.1.1 Types of Network Anomalies

Currently, one of the actively developing and demanded directions in the field
of information security is the detection of attacks and prevention of intrusions by
malicious actors into computer systems and corporate networks. To achieve this, a
range of specialized algorithms and tools are applied, using behavior models and
signature methods to detect known and unknown attacks and identify anomalous
activities. This approach is highly effective in detecting insider attacks and "zero-day"
attacks.

An anomaly is a deviation or divergence from a rule, so anything deviating or
diverging from what is correct or normal is considered anomalous.

When detecting a network anomaly, in order to make decisions about further
actions, it is necessary to carefully study its nature, potential danger, and possible
consequences, i.e., to solve a classification problem. In this work, a generalized

approach to the classification of network anomalies is proposed (Figure 7).

40

Ownbrwm
KOHOUIYPUPOBAHMUA

—-I Yazsumoctu u cbown NO |

— [porpammmuo-annapTHoe

obecnevyenve — MpobBnemb!
I L] npoussogurensuocrn

1 310YMbIWNEHHMK | 0BopyA0BaHMA

UcTounmnk

—i Monb3osarens | = Annaparisie
HEeUCNPaBHOCTH

CnyyaitHoe OTKNOHEHMe OT
WTATHOTO pexuma paboTbl -—I Bpegonockoe NO |

MNpuumna -
BO3HUKHOBEHUA

Hapywenwne BesonacHocTi _I CereBoe CKaHMpOBaHue

BHYTPU cermenTa cen _I Cetesbie MOAUPHKATOPLI I
none3oBarens

- MapwpyTr3aTopbi 1 —I Dos u DDos-ataxu]
Obnactb MEXCeTesblie 3KpPaHbl

HHUKH HUA
SoSHMKHODE BHyTpeHHue, noKanbHble

cepsepa

L Cepsepa B ceTH MHTEpHeT

Cetesan aHoManus

OTxNtOMEeHUe U OTKA3
ceTeBoro 06opyAoBaHUa

Cnoco6 Mepe3sarpy3ka ceTesoro
NPOABNEHUA 060pyA0BaHUA M CEPBUCOB

U3meHenue Tpadpuka

Bbibpoc 8 Tpadumke ot
AoMUHUpYytowero IP-agpeca

Xapaxtep Boibpoc 8 Tpadmke Ges
U3MEHEeHWI _— AomuHupyoulero IP-agpeca
Tpaduka

Napgenue Tpadumka Ao HyNA

Nagenne Tpaduka 8 oAHOM
NOTOKE M BLIBPOC B APYrOM

Figure 7 — generalized approach to the classification of network anomalies

As the main classification features, the following are used:
1. Source type;

2. Cause of occurrence;

3. Area (location) of occurrence;

4. Manifestation method;

5. Nature of changes.

In this regard, for identifying potential network attacks, the most significant
features would include the source of occurrence, the area of manifestation, and the
nature of traffic changes. Table 4 presents a description of the relationship between
anomalies classified by the cause of occurrence and the nature of network traffic
changes.

41

Table 4 - Description of network traffic anomalies.

Type and cause | Description Traffic change characteristics
of network
anomaly
Alpha Extremely high point-to- | Spike in traffic representation in
Anomaly point traffic level bytes/s, packets/s for a dominating
source-destination flow. Duration
around 10 minutes.
DoS-, DDoS- | Distributed denial-of-service | Spike in traffic representation in
attack on a single victim packets/s, flows/s, from multiple
sources to a single destination address.
Overload Unusually high demand on a | Spike in traffic per flows/s to a
single network resource or | dominating IP address and port.
service Typically a short-term anomaly.
Network/Port | Network scanning for | Spike in traffic per flows/s, with
Scanning specific open ports or host | multiple packets in streams originating
scanning for all ports to | from asingle dominating IP address.
identify vulnerabilities
Worm Activity | Malicious software capable | Spike in traffic without a dominating
of self-propagation across | destination address, but always with one
networks and exploiting OS | or several dominating destination ports.
vulnerabilities
Point-to- Content distribution from one | Spike in bytes from a main source to
Multipoint server to multiple users multiple destinations, to a well-known
port.
Outages Network disruptions causing | Decrease in packet, flow, and byte

a drop in traffic between a
source and destination pair

traffic typically down to zero. May be
long-term and include all traffic flows
from or to a single router.

Flow switching

Unusual switching of traffic
flows from one incoming
router to another

Drop in bytes or packets in one traffic
flow and an increase in another. May
involve multiple traffic flows.

2.1.2 Methods of anomaly detection

Passive Network Monitoring: The computer network includes sensors that

collect data from the network and evaluate it. In this scenario, there are two

possibilities. The collected data may be intended directly for the sensors (for example,

events sent via the SNMP protocol), or it may be a copy of the production traffic

occurring in the network regardless of whether a sensor is connected or not.

42

Active Network Monitoring: The network may also contain sensors that generate
additional traffic, which they send through the network. This traffic can be used to
continuously determine the availability or general parameters of the tested services,

network lines, and devices.

Accordingly, methods of anomaly detection in these categories can be divided
into four broad groups: behavioral methods, machine learning methods, computational

intelligence methods, and knowledge-based methods.

MeToasl odHapy#eHWA aHOMAaNKA

MoB&nsHUECKHE | MeTons mMawmHKoro MeTo/Ibl BaIYHCTMTENEHOMD | MeTok! Ha OCHOBE
METObI ofyueHna WHTENNekTa 3HaHMI
= : i NepessA R CUrHATYpHBIA |
x] > e e | sl
PELLEHMIA Hemponiae Cote € METON
p| CTETUCTIUECKIR .| Baiecosckue FeHeTWYeCKMe |, JKCnepTHeIE |,
HErat " CETH anropuTMel [MOSENN
| BalecoBckui LAy HHbIE B KoHeudeie
v MeToq CHCTEMEI B SETOMATE
p| CMEETDAMBHEIA | MeTog rnasHsix MeTon onopHeix | TR
A " KoMmoHeHT ESXTOpOB il
.| OpakransHLm o Anroputm Poneesle
ananua “| knacTepWIaLMi anropuTMul
KnacTepHelA o ANMopUTMb TMOpuaHele |
aHanuz "l perpecciu METOOI

Figure 8 - Anomaly Detection Methods
2.1.2.1 Behavioral Methods

Wavelet transformation of a one-dimensional signal involves decomposing it
into a basis constructed from a soliton-like function (wavelet) with certain properties,
using scale changes and translations. Performing wavelet transformation allows for a
clearer distinction of the signal component with greater amplitude and reduces the

influence of small amplitudes, which mostly represent noise components of the signal.

Statistical analysis is a part of behavioral methods for intrusion detection and is
based on comparing the current state of the network with predefined features

characterizing the normal state of the network. The major challenge lies in attacks with

43

anomalous behavior in the header of selected packet telecommunications traffic. The
application of statistical analysis methods is the most common way to implement

anomaly detection technology.

For real-time analysis of anomalous intrusions, the following current statistical
characteristics are calculated: sample mean, sample variance, skewness coefficient, and
kurtosis coefficient. The detection process occurs in two stages. In the first stage,
training is performed, assuming the absence of anomalous outliers in the observed
interval. During this period, the threshold for anomaly detection is determined based
on a specified probability of Type I error. The key moment for accurate detection is the
correct selection of the training segment, where the threshold level is established. Then,
according to the proposed methodology, a decision is made about the presence or
absence of an attack by analyzing data in a sequentially shifting window. At each

window position, the analysis is based on a sequential data analysis.
Statistical analysis methods can be divided into two main groups:

1. Parametric methods: Assume that normal data is generated by a parametric
distribution with parameters 6 and probability density function P(x,0), where x
Is the observation. An anomaly is the inverse function of the distribution. These
methods are often based on Gaussian or regression models, as well as their

combinations.

2. Non-parametric methods: It is assumed that the model structure is not
predefined, but is determined from the provided data. This category includes
methods based on histograms or kernel functions.

Anomaly detection systems based on the concept of "entropy" analyze network
flows rather than individual network packets. Network flows represent one-way
metadata about packets with the same source and destination IP addresses, ports, and
IP protocol type. It is important to note that all network activity at OSI model levels 3

and above is reduced to flows, including not only TCP connections but also stateless

44

protocols such as UDP and ICMP. The advantages of using the concept of flows
include the following:
— They require minimal resources for usage and storage, facilitating
analysis.
— They pose fewer problems with confidentiality and protection of personal
data.
— Access to the necessary information in the network is easily organized, for
example, through Cisco NetFlow, sFlow, or IPFIX.

Spectral methods find data approximation using a combination of attributes that
capture most of the variability in the data. This methodology is based on the assumption
that data can be embedded in a lower-dimensional subspace where normal states and
anomalies manifest differently. Spectral methods are often used in conjunction with
other algorithms for data preprocessing. Modifications of spectral methods are
investigated in the work by V.P. Shkodyrev, K.I. Yagafarov, V.A. Bashtovenko [24].

Fractal analysis methods allow timely detection of anomalous traffic. The main
parameter of fractal analysis is the Hurst exponent (scaling exponent). It is most
commonly used in time series analysis. The larger the delay between two identical pairs
of values in a time series, the smaller the Hurst exponent. The hypothesis is advanced
that to find the Hurst exponent, it is sufficient to know whether the process under study
Is stationary or not. The choice of algorithm for further computation of this exponent
depends on this. It should be noted that there are few practical experiments aimed at
studying the fractal properties of traffic.

All statistical analysis methods have similar drawbacks. Firstly, malicious
software adapts to the behavior of ordinary users, which reduces the effectiveness of
statistical methods. Secondly, it is difficult to establish a threshold that allows for
effective detection of anomalies and intrusions with minimal false positives. In
addition, statistical methods require complete information about the processes taking

place, which is challenging in conditions of limited data.

45

2.1.2.2 Machine Learning Methods

The reason for using machine learning is that it can help automate threat
processing and continuously update the system by analyzing threats and recognizing
them. In other words, the software learns to recognize traffic patterns in order to
classify different events and either reject or allow traffic.

Machine learning is the ability of a program or system to learn and improve its
functions based on the tasks assigned. Unlike statistical methods, which focus on
understanding the process itself, machine learning involves creating a system that
evolves based on accumulated knowledge. Machine learning-based systems can adjust
their data processing strategy in response to new information. However, machine
learning methods require significant computational resources, and adapting them to
specific domains can be challenging. The ML approach typically consists of the
following stages:

— Defining class attributes (features) and the classes themselves in the
training data.

— Determining a subset of attributes needed for classification (i.e.,
dimensionality reduction).

— Training the model using training data.

— Using the trained model to classify unknown data in testing mode.

Depending on the type of data classes used to implement the algorithm, anomaly
detection methods can be performed in one of the following three modes:

1. Supervised anomaly detection: This method requires a training set that fully
represents the system and includes instances of both normal and anomalous data
classes. The algorithm operates in two stages: training and recognition. During
training, a model is built, which is then used to compare unlabeled instances. In
most cases, it is assumed that the data does not change its statistical
characteristics; otherwise, there is a need to modify the classifier.

2. Semi-Supervised anomaly detection: In this approach, the original data
represents only the normal class. After being trained on one class, the system

46

can determine whether new data belongs to it, thereby identifying anomalies.

Algorithms operating in semi-supervised mode do not require information about

the anomalous class of instances, making them more widely applicable and

capable of detecting deviations without predefined information about them.

3. Unsupervised anomaly detection: This method is applied when there is no prior
information about the data. Unsupervised anomaly detection algorithms assume
that anomalous instances occur much less frequently than normal ones. Data is
processed, and the most distant points are identified as anomalies. This
methodology requires access to the entire dataset and cannot be applied in real-
time mode.

Decision trees are a non-parametric supervised learning method used for
classification and regression tasks. The main goal is to create a model that predicts the
value of the target variable using simple decision rules derived from the features of the
data. Decision trees can be considered as piecewise-constant approximations.

A Bayesian network is a graphical model representing probabilistic
dependencies between a set of variables, allowing for probabilistic inference using
these variables. It consists of two main components: a graphical structure that defines
dependencies and independencies between random variables representing the domain,
and a set of probability distributions defining the strength of dependencies encoded in
the graphical structure. In the context of anomaly detection, Bayesian networks are
used to estimate the probability of an observation belonging to one of the normal or
anomalous classes. The simplest implementation of this approach is the naive Bayes
approach.

A clustering algorithm involves grouping similar instances into clusters and does
not require knowledge of the properties of potential anomalies. Anomalies detection
can be based on the following assumptions: - Normal data instances belong to a data
cluster, while anomalies do not belong to any of the clusters. However, this formulation
may encounter a problem of defining precise cluster boundaries. Hence, another
assumption follows: - Normal data are closer to the center of the cluster, while

anomalies are significantly farther away. In cases where anomalous instances are not

47

singular, they can also form clusters. Thus, their detection is based on the following
assumptions:
— Normal data form large dense clusters, while anomalies form small and
sparse ones.
— Normal objects are close to the cluster center, while anomalies are distant
from the center.
— Normal objects belong to large, dense clusters, while anomalies belong to
small and sparse ones.
One of the simplest implementations of the clustering-based approach is the k-
means algorithm.

2.1.2.3 Methods of artificial intelligence

Methods of computational intelligence include the use of artificial neural
networks, immune networks, genetic and swarm algorithms, support vector machines,
and other approaches for intrusion detection. Except for the support vector machine
method, all these methods are based on "peeking" at the chains of actions of living
beings (individual organisms or populations) and translating them into a mathematical
language. In other words, machines implement algorithms that simulate phenomena of
living nature, which react more flexibly to the environment and execute faster
computationally.

Neural networks can make inferences about new objects based on incomplete
data, classifying them into appropriate attack categories. Similar to living beings, they
can both make mistakes and correctly guess, depending on the quality of training and
the training dataset. The ability to self-learn eliminates the need for constant signature
updates, reduces the system's response time to network anomalies, and allows
processing a larger volume of traffic, thereby increasing the level of information
security.

More complex, though similar, method is artificial immune networks (AINS),
based on the human immune system. Typically, algorithms such as negative selection

and clonal selection are used for their training. The immune system is a distributed

48

multilevel defense mechanism against foreign microorganisms, viruses, and pathogens.
Each level of immunity performs its type of defense reaction, and the higher the level,
the higher the specificity of the response.

The negative selection algorithm is based on the mechanism of T-lymphocyte
maturation in the thymus. Input data for this algorithm is a set of strings composed of
characters from a specific alphabet (e.g., numbers or letters).

The clonal selection algorithm, belonging to the class of evolutionary
algorithms, is used to solve optimization problems. The key concept of this algorithm
Is affinity, which in immunology means the degree of compatibility between two cells,
and in mathematical implementation, it represents the value of the optimized function.
During the algorithm's operation, a population of antibodies P is generated,
representing a set of randomly created arguments of the optimized function. Then, the
affinity of each antibody is calculated. After that, each antibody is cloned, and the
higher its affinity, the more clones are created. Then, each antibody (including clones)
undergoes mutation, with the lower the affinity of the antibody, the more mutations
occur. Mutation involves introducing random changes into the elements of the
antibody. After mutation, the affinity of each antibody is recalculated, and as a result,
n antibodies with the best affinity are selected. These antibodies are added to the
memory cell pool M. Then, n worst antibodies from the initial population P are replaced
by antibodies from M. In the proposed approach, the clonal selection algorithm is used
to improve the quality of attack detection and reduce the level of false positives.

The support vector machine (SVM) method is applied for anomaly detection in
systems where normal behavior is represented by only one class. This method defines
the boundary of the region where the instances of normal data are located. For each
examined instance, it is determined whether it is in a certain region. If the instance is

outside the region, it is identified as anomalous.

49

2.1.2.4 Knowledge-based methods

Knowledge-based methods include approaches that utilize predefined facts,
inference rules, and pattern matching to detect anomalies (attacks) based on an
embedded search mechanism. Search procedures may involve pattern matching,
regular expressions, state transition analysis, and other methods. These methods are so
named because systems employing them operate with a knowledge base containing
descriptions of known attacks.

The knowledge base serves as a repository with expert-contributed records
supporting data processing logic and interpretation and includes a logical inference
subsystem.

The signature-based method can protect against viral or hacker attacks if the
attack signature is already known and entered into the system's attack detection
database (AD). However, during the first encounter with an unknown virus, when the
attack signature is absent from the database, a signature-based AD will fail to recognize
the threat and consider it legitimate. Such vulnerabilities are referred to as zero-day
vulnerabilities. This approach, akin to virus detection technologies, enables the system
to detect all known attacks but is incapable of recognizing new, as yet unknown types
of attacks.

This method is straightforward to implement and forms the basis of most
intrusion detection systems. However, administrators encounter several challenges
when operating such systems. The first challenge lies in creating a mechanism for
describing signatures, that is, a language for describing attacks. The second problem,

related to the first, is correctly describing the attack to capture all possible variations.

2.1.3 Network traffic analysis

The most likely way for attackers to penetrate infrastructure is through
interception via the network environment, which is a system of connections between

nodes for data transmission. Network security involves a wide range of measures to

50

protect computer networks and endpoints from malicious activities, misuse, and critical
failures.

Network firewalls are perhaps the most widely known network security tools,
which use access strategies and unauthorized traffic filtering between devices in the
network environment. However, network security is not limited solely to the use of
network firewalls.

Due to the variety of potential threats and the multitude of possible attacks, the
network security model is a complex system. Administrators need to counter attacks
from different directions and not rely solely on one component to ensure security. The
interaction between clients and the network begins with access control, which is an
authorization method that allows administrators to control user, role, or device access
to various parts of the network.

Intrusion detection systems operate within the network and are used to detect
attempts or successful attacks through passive observation. Intrusion prevention
systems (IPS) are an evolution of intrusion detection systems (IDS), allowing
interception and analysis of traffic between the source and destination for automatic
anomaly detection. Intercepting and analyzing network packets in real-time, known as
sniffing, is considered a critical requirement for intrusion detection and prevention
systems as it provides access to the content and data passing through the network,
helping to identify threats.

Considering the possibility that attackers can bypass access control measures and
evade detection by intrusion detection systems, it is important to anticipate the
likelihood of network infiltration. Well-designed systems should be prepared to detect
insider attacks. Administrators need to actively use network activity monitoring and
logging tools to expand visibility on servers and between them. Restricting protection
only at the perimeter is insufficient, as attackers who overcome this barrier often
succeed. Proper network segmentation can limit damage.

Micro-segmentation is the practice of dividing the network into different
sections based on the functionality of each element. When properly configured, micro-

segmentation simplifies network structure and security strategy management.

o1

However, its effectiveness depends on clearly defined infrastructure change processes.
Changes in the network must be accurately reflected in the micro-segmentation
schemes, which can be a challenging task. Nevertheless, network segmentation allows
administrators to strictly control and manage different routes between nodes A and B,
and provides an extended visibility area for applying data analysis methods to detect
attacks.

Intercepting data transmitted over the network is a key method for recording
network activity for subsequent online and offline analysis. Similar to a surveillance
camera at a crossroads to monitor traffic, packet analyzers (sniffers) intercept and
record traffic on the network. Network activity logs are useful not only for security
incident investigation but also for debugging, performance monitoring, and network
operations control. Positioned at strategic points in the network and properly
configured packet analyzers can become an important tool for creating detailed data

sets that provide a comprehensive view of what is happening on the network.

2.2 Comparative analysis of well-known machine learning algorithms
applied in IDS/IPS.

The machine learning algorithm operates by processing the training dataset and
creating a model. The model, in turn, uses new data for predictions, maintaining the
format of the training data. All machine learning algorithms comprise three key
components: a model family, which defines possible model variations; a loss function,
which numerically evaluates the quality of models; and an optimization procedure,
which selects the best model from the given family.

After setting constraints on the selection of forecasting algorithms in a specific
parameterized family, it is necessary to choose the optimal algorithm for the training
dataset. However, how can one ensure that the best algorithm is chosen? The best
algorithm should optimize the numerical metric computed based on the studied data.
This metric is called the objective function. In the context of machine learning, the
objective function is also referred to as the cost function or loss function, as it helps

quantitatively assess the "cost" of incorrect predictions or associated losses.

52

From a mathematical perspective, the loss function is a function that maps pairs
of values (predicted label, truth label) to a number. The goal of the machine learning
algorithm is to find such model parameters that minimize the loss function, which is
obtained by processing the training data. An optimization algorithm is used to
implement the search process.

Optimization algorithms are divided into two main groups:

1. First-order optimization algorithms - they use the first derivative of the objective
function with respect to the model parameters for its optimization. Gradient
descent methods are the most common type of such algorithms. They are used
to find the minimum or maximum value of the objective function by computing
the gradient of the function, i.e., partial derivatives with respect to each
parameter. The gradient determines the direction in which parameter values
should be adjusted to achieve the most optimal result provided by the function.

2. Second-order algorithms, also known as second-order methods, use the second
derivatives of the objective function for optimization. Unlike first-order
algorithms, they have a higher convergence rate and can successfully solve
saddle point problems. However, second-order methods typically require more
computational resources and may be slower compared to first-order algorithms.
The choice of a suitable optimization algorithm depends on the size of the

dataset, the type of learning task, and the requirements for the necessary resources.

The first-order optimization algorithm group includes:

1. LIBLINEAR [27] - the default solver for linear classification in the scikit-learn
library. This algorithm is not very efficient for large datasets, so the scikit-learn
documentation recommends using Stochastic Average Gradient (SAG) or
SAGA (an improved version of SAG) methods, which perform better with large
datasets.

2. Stochastic Gradient Descent (SGD) - a simple and efficient optimization
algorithm that updates parameters for each individual training data instance. The

stochastic nature of gradient descent means that this algorithm is more likely to

53

find new and possibly better local minima compared to the standard gradient

descent method.

3. AdaGrad, AdaDelta, and Adam (Adaptive Moment Estimation) - these
algorithms allow for the separation and adaptation of learning rates for each
parameter and solve some tasks with other simpler gradient descent algorithms.
As in many areas of data science, there is no universally ideal optimization

algorithm. Determining the best algorithm for specific tasks often requires trial and
error. Selection criteria include not only convergence and speed but also other factors.
It is often customary to start with the default or most reasonable option and gradually
improve it.

Ensemble learning involves combining multiple classifiers to create a more
complex and often more effective classifier. Combining decision trees into ensembles
Is a widely used method for creating high-quality classifiers. These ensembles are often
referred to as decision forests. The most common types in practice are random forests
and gradient-boosted decision trees.

Random forests consist of simple ensembles of multiple decision trees, which
typically contain tens to thousands of such trees. The presence of multiple decision
trees in the forest leads to a high degree of similarity between trees and a large number
of repeated splits in the trees, especially for features that are the most stringent
predictors of the dependent variable. The algorithm for constructing a random forest
solves this problem.

Gradient-boosted decision trees (GBDT) apply more complex combinations of
predictions from individual decision trees. When using the gradient boosting
methodology, several weak learners are selectively combined by performing gradient
descent optimization in the loss function to obtain a much more powerful learning
model.

GBDT has been enhanced to improve performance, enhance generalization, and

create more efficient models. Some of these improvements are highlighted below:

54

1. Setting artificial constraints for trees (e.g., limiting tree depth, maximum number
of nodes, or minimum number of elements in a node) helps limit the capabilities
of trees without compromising their learnability.

2. Sometimes decision trees added at early stages of training gradient-boosted
ensembles may have a greater impact on the overall prediction than those added
later. This can lead to model imbalance, reducing the benefits of ensembling. To
address this issue, a weighted assessment of each tree's contribution is applied
to slow down the learning process. A "shrinkage" technique is also used to
reduce the influence of individual trees, allowing later trees to improve the
model.

3. Properties of random forests, which are based on stochastic processes, can be
combined with gradient boosting methodology by applying data subsampling
before building trees and by thinning the feature set before using it for branching.

4. To prevent overfitting, widely used regularization methods such as L1 and L2
regularization are applied to balance the learning weights.

XGBoost is a widely used gradient boosting method for decision trees that
delivers outstanding results when working with large volumes of data while
maintaining the ability to scale correctly [28]. It serves as the foundation for many
innovative ideas in machine learning and has attracted attention from the community
as a reliable solution for creating decision tree ensembles. However, GBDT is more
prone to overfitting compared to regular random forests and is more difficult to
parallelize due to its additive training, which depends on the results of each tree when
updating the gradient for the next one.

Based on the original typical scheme (Figure 9), the following action plan can
be developed for the development of an attack detection system, which complements
the signature analyzer to increase the overall efficiency of the system, especially
regarding previously unknown attacks:

1. Selecting a dataset for training the computer attack detection system.

2. Preprocessing the data.

3. Sampling against class imbalance.

55

o N o g &

Assessing feature importance and selection.
Reducing the feature space.

Choosing a model.

Tuning and training the model.

Testing and validation.

Supervised
Learning

‘ Missing Data ‘

Pre-Processing

Sampling

‘ Feature Scaling] Pre-Processing ® | Test Dataset ” New Data

@ Final Model

Evaluation

Learning Algoerithm
Training

‘ Feature Extraction ‘

‘ Feature Selection ‘

‘ Dimensionality Reduction

Prediction

Cross Validation
Refinement

Hyperparameter
Optimization

‘ Performance Metrics ‘

Post-Processing

Y

Final Classification/
Regression Model

‘ Modsl Sslsction ‘

Sebastian Raschka 2014

Figure 9 - Typical Supervised Learning Scheme by Sebastian Raschka
(licensed under CCA 4.0)

56

2.2.1 Selecting a dataset for training the computer attack detection system

Some of the available datasets suffer from a lack of diversity and traffic volume,
some do not cover the variety of known attacks, while others anonymize packet
payload data, which may not reflect current trends. Some also lack feature sets and
metadata. For training the attack detection system among the available public datasets
(DARPA1998, KDD1999, ISCX2012, ADFA2013, and others), one of the current and
comprehensive ones was chosen - the "Intrusion Detection Evaluation Dataset”
CICIDS2017. Developed by the Canadian Institute for Cybersecurity.

The CICIDS2017 dataset is prepared based on the analysis of network traffic in
an isolated environment, where the actions of 25 legitimate users and malicious actions
of intruders were modeled.

The CICIDS2017 dataset contains safe and modern common attacks that
resemble real-world data (PCAP). It also includes the results of network traffic analysis
using CICFlowMeter with flow marking based on timestamps, source and destination
IP addresses, source and destination ports, protocols, and attacks (CSV files).

Creating realistic background traffic was the main priority for the developers
when creating this dataset. They used their proposed B-profile system (Sharafaldin et
al., 2016) to profile the abstract behavior of human interactions and generate
naturalistic background traffic. For this dataset, abstract behavior of 25 users was
constructed based on HTTP, HTTPS, FTP, SSH, and email protocols.

The dataset combines over 50 GB of "raw" data in PCAP format and includes 8
preprocessed CSV files containing labeled sessions with selected features on different
observation days. The comma-separated values (CSV) format in this dataset is a
standard way of representing data for analytical research.

A brief description of the files and the quantitative composition of the dataset

are presented in the tables and figures below.

S7

Table 5 - Brief Description of Files in the Dataset

Brief Description of Files in the Dataset
Ne File Name Contained Attacks
1 Monday- Benign
WorkingHours.pcap _ISCX.csv
2 Tuesday- Benign, FTP-Patator, SSH-
WorkingHours.pcap_ISCX.csv Patator
3 Wednesday- Benign, DoS GoldenEye, DoS
workingHours.pcap_ISCX.csv Hulk, DoS Slowhttptest, DoS
slowloris, Heartbleed
4 Thursday-WorkingHours-Morning- Benign, Web Attack — Brute
WebAttacks.pcap _ISCX.csv Forse, Web Attack — Sq
Injection, Web Attack - XXS
5 Thursday-WorkingHours-Afternoon- Benign, Infiltration
Infilterations.pcap_ISCX.csv
6 Friday-WorkingHours- Benign, Bot
Morning.pcap_ISCX.csv
7 Friday-WorkingHours- Benign, PortScan
Afternoon-PortScan.pcap_ISCX.csv
8 Friday-WorkingHours- Benign, DDoS
Afternoon-DDoscap ISCX.csv

58

Table 6 - Quantitative Composition of the Dataset

Quantitative Composition of the Dataset

Ne Record Type Number of Records

1 BENING 2359087

2 DoS Hulk 231072

3 PortScan 158930

4 DDoS 41835

5 DoS GoldenEye 10293

6 FTP-Patator 7938

7 SSH-Patator 5897

8 DosS slowloris 5796

9 DoS Slowhttptest 5499

10 Bot 1966

11 Infiltration 36

12 Heartbleed 11

13 Web Attack — Brute Force 1507

14 Web Attack — XSS 652

15 Web Attack - SQL 21
Injection

59

Flow IC * |Source * |Source *

62015 1261 518850
58525 1261 16641.0
13764 1256 1559540
33749 1256 157440
34500 1256 28467.0
3611 1256 60422.0
41742 1258 49412.0
75605 1263 88.0

71450 1267 52360.0
69780 1265 58702.0
49745 1258 494380
75608 1267 491810
71459 1263 445.0

75683 1268 10290

Destini * | Destini *

1599 53.0
1599 53.0
1599 53.0
1599 53.0
1599 53.0
1599 53.0
1599 135.0
1603 491750
1599 389.0
1599 53.0
1599 88.0
1599 88.0
1603 49155.0

1599 49671.0 6

Protoce *

181 769780 20 20
181 781200 2.0 20
181 205.0 20 20

1811690 20 20
1812970 20 20

181 1640 20 20
182 23241857.230 140
18220 30 00

182 1140 20 20
1821650 20 20
182 501.0 70 40
1829430 90 60
182 650 30 20
182 26261439 21.0 140

Timest * Flow D * TotalF * Total B * Total L * TotallL *

780 206.0
780 2060
640 1580
1020 2240
1020 2240
640 158.0
20540 21280
180 00
4140 3260
1020 2240
28280 2868.0
31080 3004.0
180 120

37200 26720

fwdPa * FwdPa* FwdPa v FedPa * BudPe*
390 35.0 390 0.0 1030
39.0 39.0 39.0 0.0 103.0
320 0 320 0.0 790

$1.0 51.0 51.0 0.0 1120

510 51.0 51.0 00 1120
320 320 320 0.0 9.0

1680 00 89.30434782.66385(268.0
60 60 6.0 0.0 0.0

2070 207.0 2070 0.0 1630
51.0 51.0 510 0.0 120
14050 00 440 6838184414340
15390 00 345.33332676.750131496.0
60 60 60 0.0 60

936.0 0.0 177.14285 268.13677952.0

2 * Bwd Pe * Bwd Pz * Flow B * FlowPi = Flow A * Flow A * [Flow A * Flow 1A *
1030 00 36893657 51962898 26655.33144436.340 765700 4.0
1030 00 3635.432€51.203277 260400 45096.54(781130 3.0
750 0.0 1082926.£19512.19568,33333183.530431163.0 50
1m0 00 19289940 23668.63¢56.33333291.511383162.0 30
1120 00 10976430 13468.01399.0 904157061840 40
90 00 1353658.5 24390.24354,66666€ 88.65852(157.0 1.0

1520 78.540532179.933961.5919554645607.132317541.8 11800000 3.0
00 0.0 9000000.L 1500000.C 1.0 00 10 10
1630 00 6491228.035087.71938.0 59.757844107.0 30
1120 00 1975757.524242.42455.0 552449091130 30
o 827,92028 11400000, 21956.08750.1 £8.358424296.0 10
500,6666€ 770.98655 6481442.215906.68067,357142185.38675 7080 1.0
60 o0 461538.4€76923.07€16.25 22ma 490 10
190.85714324.95937 24339865 1.3327525 772395.2€ 4284719,€ 25000000 1.0

Figure 10 — A Fragment of the Dataset in Tabular Format

df.info()

<class 'pandas.core.frame.DataFrame"'>
RangeIndex: 7267 entries, © to 7266
Data columns (total 84 columns):

#

e
1
2
3
a
=
6
7
8
9

Column

Flow ID
Source IP

Source Port

Destination IP
Destination Port

Protocol
Timestamp

Flow Duration
Total Fwd Packets

Total Backward Packets
Total Length of Fwd Packets
Total Length of Bwd Packets

Fwd Packet
Fwd Packet
Fwd Packet
Fwd Packet
Bwd Packet
Bwd Packet

Length
Length
Length
Length
Length
Length

Non-Null Count

non-null

non-null floate4
non-null inte4
non-null floate4d
non-null floate4
non-null inte4
non-null floate4
non-null floated

non-null floate4d
non-null floate4
non-null floate4d

Max non-null floate4
Min non-null float6e4
Mean non-null floate4d
Std non-null floate4
Max non-null floate4d
Min non-null floated

Figure 11 — A Fragment of the Dataset Loaded in Google Colab

Complete and well-prepared data are essential for building a good classifier. In
reviews of the CICIDS2017 dataset (Intrusion2017, Panigrahi2018, Sharafaldin2018),

some researchers noted issues with class imbalance, complex file structure, and

missing values. These aspects can generally be considered non-critical.

2.2.2 Data Preprocessing

It is important to note that in the study by Kahraman Kostas, "Anomaly

Detection in Networks Using Machine Learning," discrepancies in results were found
by other authors when using the selected CICIDS2017 dataset.

60

To reduce computation time, a subset named "WebAttacks" with a single class
of attacks (web attacks - Brute Force, XSS, SQL Injection) was used in the training set
based on processing the file Thursday-WorkingHours-Morning-
WebAttacks.pcap_ISCX.csv from the CICIDS2017 dataset. The WebAttacks set
includes 458,968 records, of which 2,180 pertain to web attacks, while the rest pertain
to normal traffic.

This decision simplifies the task and reduces the quality of the final conclusions
- the multiclass classification was reduced to binary, and the size of the training set was
reduced.

This subset is publicly available in the repository and was prepared through the
following data preprocessing steps:

1. Exclusion of the "Fwd Header Length.1" feature (the "Fwd Header Length" and

"Fwd Header Length.1" features are identical).

2. Removal of records with null values in the "Flow ID" session identifier (out of

458,968 records, 170,366 records remained after removal).

3. Replacement of non-numeric values of the "Flow Bytes/s" and "Flow Packets/s"

features with -1.

4. Replacement of undefined (NaN) and infinite values with -1.
5. Conversion of string values of the "Flow ID," "Source IP," "Destination IP," and

"Timestamp" features to numeric values using label encoding.

6. Encoding of responses in the training set according to the rule: 0 - "no attack," 1

- "attack present.”
2.2.3 Sampling Against Class Imbalance
The prepared "WebAttacks" subset is imbalanced: out of a total of 170,366

records, the "no attack™ class constitutes 168,186 records, while the "attack present"

class constitutes 2,180 records (Figure 12).

61

benign_total = len(df[df['Label’ "BENIGN"])
benign_total

168186

attack_total len(df[df['Label’'] != "BENIGN"])
attack_total

218e

df.to_csv("web_attacks_unbalanced.csv
df["Label'].value_counts()

BENIGN 168186
Web Attack - Brute Force 1587
Web Attack - XSS 652
Web Attack - Sql Injection 21
Name: Label, dtype: intée4

Figure 12— Number of Records in the Imbalanced "WebAttacks" Subset.

To address the class imbalance, the random sampling method (undersampling)
was employed, which involves removing randomly selected instances of the
"BENIGN" class. The target ratio of the number of instances between the "BENIGN™
class and the "ATTACK?" class is 70% (5087 records) / 30% (2180 records).

enlargement = 1.1

benign_included_max = attack_total / 3@ * 7@

benign_inc_probability = (benign_included _max / benign_total) * enlargement
print(benign_included_max, benign_inc_probability)

5086.666666666667 ©.03326872232726466

Figure 13 - Formation of the balanced dataset df balanced.

df_balanced['Label'].value_counts()

BENIGN 5087
Web Attack - Brute Force 1587

Web Attack - XSS 652
Web Attack - Sql Injection p
Name: Label, dtype: inté64

Figure 14 - Dataset df balanced.
62

2.2.4 Feature Space Reduction
Results of feature importance assessment and selection for the dataset we are
investigating were found in publicly available repositories, which formed the basis for

further research (Figure 15).

max_features = 28

webattack_features = webattack_features[:max_features]

webattack_ features

['Average Packet Size',
'Flow Bytes/s',
'Max Packet Length®,
‘Packet Length Mean',
'Fwd Packet Length Mean’,
'Subflow Fwd Bytes®,
'Fwd IAT Min',
'Avg Fwd Segment Size',
'Total Length of Fwd Packets’,
'Flow IAT Mean',
'Fwd Packet Length Max',
'Fwd IAT Std',
'Fwd Header Length®,
'Flow Duration’,
'Flow Packets/s"',
'Fwd IAT Max',
'Fwd Packets/s',
"Flow IAT Std',
'Fwd IAT Total',
'Fwd IAT Mean']

Figure 15 - Final results of significance analysis (top 20 features).
For further analysis, a correlation matrix with linear correlation coefficients
(Pearson correlation coefficients) calculated for all pairs of the top twenty most
significant features was used. It is presented in Figure 16. The color saturation of the

fill is proportional to the correlation coefficient value.

import seaborn as sns
corr_matrix = df[webattack_features].corr()
plt.rcParams['figure.figsize'] = (16, 5)

g = sns.heatmap(corr_matrix, annot= , fmt=".1g"', cmap='Greys')

g.set_xticklabels(g.get xticklabels(), verticalalignment ', horizontalalignment="right', rotation=38)
plt.savefig('corr_heatmap.png', dpi=300, bbox_inches='tight")

Figure 16 - Correlation Analysis

63

0.6 PN 06 | 0.06 -0.04 ENEEE -0.06 0.03 -0.05 02 -0.01 JEN L0

-6e-05 0.2 -0.006 0.2 -6e-05 -0.03 -0.02 0.06 -0.009 -0.02 ~0.3" -0.02 703" -0.02 -0.01 001
-0.03 i 03 02 o0.01 BOEA04 BN 008 0.1 -0.07 02 0.4 |

Average Packet Size
Flow Bytes/s -
Max Packet Length

Packet Length Mean -0.01 0.09 -0.03 UGG -0.07 0.04 -0.06 02 -0. 0.8
Subflow Fwd Bytes -] -0.02 -0.03 [EW 02 003 002 003 003 -0
Fwd Packet Length Mean i . . . 0.01 . -0.01 JUEJ 03 02 -003 003 -003 009 0007 0.2
Fwd IAT Min ~-0.006 -0.006 - -0.02 -0.02 02 -0.02 JEEN -0.02 -0.02
Avg Fwd Segment Size [l 0.2 . 0.2 -003 0.03 -0.03 009 0007 0.2 0.6

Total Length of Fwd Packets - -6e-05 0. 0. <0.03 -0.02 -0.03 0.03 -0.02 [EH
Fwd IAT Std - 0.06 -0.03 = 0. .03 -0. .03 -0. ; ;] T 0.1 -0.1 [CKM 02 0.06
Flow IAT Mean - -0.04 -0.02 0.01 -0.03 -0.03 -0. Ell 0.01 -0 ; .02 0. -0.07 -0.06 [OVANEEEN -0.01 A

Fwd Packet Length Max 0.06 . -0.02 ! x g -0.05 009 -0.04 02 002 [03
Fwd Header Length -0.009 1 0.

-0.02 -0.02 peexel

Flow Duration - -0.02 . 0.2 0.3
Flow Packets/s - -0.06 | 0.3 - -0. D3 -0.02 - -0. 03 0 1 -0.07 -0.05 -0. 04 -0.08 -0.06 -0.05 -0.2

Flow IAT Std - 0.03 -0.02 0.1 004 -002 0.03 [JEEN © 03 -0.02 0.09 0.0005 A3 -0. .9 [N o.01

Fwd Packets/s - -0.05 [J0i8¥ -0.07 -0.06 -0.03 -0.03 -0.02 -0.03 -0.03 0.1 -0.06 -0.04 -0.04 -0.08
Fwd IATMax- 0.2 -0.02 /02 02 003 0.09 BGXJE 009 003 02 o.08 JEEN -0.cc JEEN -©
Fwd IAT Mean- -0.01 -0.01 002 -0.01 -0.02 0.007 0.007 -0.02 0.2 0.02 -0.02

1
Bwd Header Length M -0.01 {zﬂm 02 -0027 02 HIEE 0.06 -0.01 03 | 0.9 JRUE]

? -0.0
005 0.01 004

@ S o e e g2 X% ‘e o o a0 o e ‘c\ \e - o X0
2&"\1 ‘!@9 \/e“g ‘,@a 4% P ‘\‘;\eﬁ \P W “‘5\1’ va&e R Qf-,\ < \;\ea d“m \}’5\@ o(a\o Lv-?:"e R ‘;‘f; c“-é"‘ P:“;\a < ‘1\9'7’ s &
et ot et L P - Y OV W O 0w o a‘” WOV WP gef
202 < 2C (& k\°"¢ &M < 65@% < O e v-“‘\’ Pt O g 3 0 e
e Wb o o Rl o 2o g @
PRt B AV
A0

Figure 17 - Results of the Correlation Analysis of the Twenty Most

Significant Features

The correlation analysis revealed a strong dependence between pairs of features
(unnecessary features for training can be excluded):
1. "Average Packet Size" and "Packet Length Mean".

"Subflow Fwd Bytes" and "Total Length of Fwd Packets".

"Fwd Packet Length Mean" and "Avg Fwd Segment Size".

"Flow Duration" and "Fwd IAT Total".

"Flow Packets/s" and "Fwd Packets/s".

"Flow IAT Max" and "Fwd IAT Max".

o oA woN

2.2.5 Model Selection

At this stage, a comparison of the previously selected 10 most common machine
learning models was conducted. Let's consider the models identified during the
literature review and frequently used by various researchers.

The quality of classifier responses (models) was compared using the following
metrics:

1. Accuracy
2. Precision

3. Recall
64

4. Fl-score
The evaluation of model performance was conducted on the balanced and
preprocessed subset of web attacks (WebAttacks) from the CICIDS2017 dataset (with
a ratio of normal to abnormal traffic of 70% / 30%, using 20 most significant features)
using two approaches - with stratification and cross-validation, and without
stratification but with cross-validation. The evaluation results are presented below in
Tables 7 and 8.
Table 7 - Evaluation of model performance on the balanced and preprocessed
subset of web attacks (WebAttacks) from the CICIDS2017 dataset.

Without stratification train-test split

Model Acc Pr Recall F1 Execution
KNN 0.966 0.936 0.951 0.969 1.02s
SVM 0.703 0.618 0.032 0.603 46.60 s
CART 0.965 0.928 0.957 0.964 0.54s
RF 0.968 0.959 0.911 0.963 0.42s
ABoost 0.974 0.966 0.947 0.971 8.02s
LR 0.956 0.970 0.880 0.947 3.14s
NB 0.735 0.532 0.990 0.775 0.20s
LDA 0.933 0.909 0.862 0.940 0.65s
QDA 0.866 0.706 0.656 0.866 0.21s
MLP 0.942 0.874 0.920 0.964 77.35s

65

Table 8 - Evaluation of model performance on the balanced and preprocessed subset
of web attacks (WebAttacks) from the CICIDS2017 dataset.

With stratification on train-test split

Model Acc Pr Recall F1 Execution
KNN 0.971 0.943 0.957 0.968 1.38s
SVM 0.702 0.558 0.025 0.603 33.90s
CART 0.971 0.953 0.953 0.964 0.68s
RF 0.971 0.974 0.938 0.965 0.63s
ABoost 0.970 0.976 0.947 0.971 11.28 s
LR 0.961 0.969 0.898 0.952 3.23s
NB 0.736 0.532 0.990 0.775 0.18s
LDA 0.939 0.915 0.879 0.940 0.94s
QDA 0.924 0.935 0.814 0.949 0.30s
MLP 0.948 0.907 0.923 0.941 21.77 s

Tax, as expected, the models (algorithms) KNN, CART, RF, AdaBoost, and LR
demonstrated the best results. The most optimal model considering the combination of
the above parameters is the RandomForestClassifier (RF).

It's worth noting that this algorithm, due to quasi-optimal hyperparameter tuning,
showed different results for some researchers: Kahraman Kostas' study resulted in
Recall 0.94 and F1-score 0.94, while the authors of the CICIDS2017 dataset reported
Recall 0.97 and F1-score 0.97.

For intrusion detection algorithms, it's not common to use XGBoost and
XGBoost with Principal Component Analysis (PCA).

XGBoost is a machine learning algorithm based on decision tree and gradient
boosting framework. It was developed as a research project at the University of
Washington. Tiangi Chen and Carlos Guestrin presented their work at the SIGKDD
conference in 2016, making a significant impact in the machine learning community.
Since its introduction, this algorithm has not only been leading in Kaggle competitions
but has also been the foundation of several industry-leading applications. This has led

to the formation of a community of data analysis experts contributing to XGBoost

66

open-source projects, with approximately 350 contributors and 3,600 commits on
GitHub.

Features of the framework include:

1. Wide applicability: it can be used for regression, classification, ranking, and
custom prediction tasks.

2. Compatibility: Works on Windows, Linux, and OS X.

3. Language support: Supports most major programming languages such as C++,
Python, R, Java, Scala, and Julia.

4. Cloud integration: Supports AWS, Azure, and Yarn clusters, and integrates
well with Flink and Spark.

XGBoost is based on the gradient boosting method of decision trees, which is
used for classification and regression tasks. This method creates a prediction model as
an ensemble of weak models, usually decision trees. Training occurs sequentially,
where each new model predicts the deviations of the previous ensemble on the training
set. By adding the predictions of a new tree to the predictions of the trained ensemble,
the average deviation of the model can be reduced, which is the target of the
optimization problem. Adding new trees allows reducing the model's error until the
"early stopping" criteria are met (forms of regularization used to prevent overfitting
when training the model with an iterative method like gradient descent; with such
methods, the model is updated after each iteration to better fit the training data, and up
to a certain point, this also improves the model's performance on data not in the training
set, but after that point, the improvement in fitting the training data occurs at the
expense of increasing generalization error).

Let's consider a visual illustration of boosting in Figure 18. It shows the behavior
of the model at a single point in an abstract linear regression task. Suppose the first
model of the ensemble, F, always outputs the sample mean of the predicted value, 0.
Such a prediction is quite rough, so the mean squared deviation at the selected point
will be quite large. To correct this, we train a model Al, which will "adjust" the
prediction of the previous ensemble FO. Thus, we obtain an ensemble F1, the prediction

of which will be the sum of the predictions of models f0 and Al. Continuing this

67

sequence, we arrive at an ensemble F4, the prediction of which is the sum of predictions

0, A1, A2, A3, A4, and precisely predicts the value of the given target.

\ MSE Loss Function

Figure 18 - Boosting Illustration.
XGBoost supports integration with libraries such as scikit-learn, offering
regularization capabilities. It supports three main forms of gradient boosting:
- Standard gradient boosting with the ability to adjust the learning rate.
- Stochastic gradient boosting with the ability to sample rows and columns
of the dataset.
- Regularized gradient boosting with L1 and L2 regularization.

The implementation of the algorithm is designed for efficiency in computational
resources such as time and memory. The project's goal was to maximize the utilization
of available resources for model training. Some key implementation features of the
algorithm include various strategies for handling missing data, a block structure to
support parallelization of tree training, and support for continuing training to fine-tune
on new data.

Let's examine the behavior of the XGBClassifier algorithm from the XGBoost
library. When configuring a classification model in Python, you can use the
“classification_report()” function from the sklearn library to generate three

performance metrics for the algorithm (see Figure 19).

68

print(classification_report(y_test, Y_pred_XG))

precision recall f1l-score support

©.99 e.9% ©.99 1531
©.98 e.o7 ©.98 650

accuracy .99 2181
macro avg .98 2181
weighted avg .99 2181

Figure 19 - classification_report() for XGBClassifier.

Let's highlight the final key indicators of the algorithm (Figure 20):

accuracy = cross_val_score(xg_class, X_train, y_train, cv=kfold, scoring="
precision = cross_val_score(xg_class, X _train, y_train, cv=kfold, scoring
recall = cross_val_score(xg_class, X_train, y_train, cv=kfold, scoring='r
f1_score = cross_val_score(xg_class, X, y, cv=kfold, scoring='f1l_weighted'’

prinmt(" {}\t{:.3F}\t{:.3FI\t{:.3F}\t{:.3f}" ' .format('XGBoost', accuracy, precision, recall, fl_score))

XGBoost ©.976 8.963 0.958 ©8.976

Figure 20 - Key indicators of the XGBClassifier algorithm.

It is also proposed to consider the behavior of the XGBClassifier algorithm using
Principal Component Analysis (PCA) for signal decomposition into components, using
the PCA module from the sklearn.decomposition package. The performance indicators
of the algorithm are shown below in Figure 21.

69

print(classification_report(y_test, Y_pred_XG_2))

precision recall fl-score support

©.99 e.99 @.99 1531
0.97 .97 0.97 650

accuracy e.98 2181
macro avg 8.98 2181
weighted avg .98 2181

Figure 21 - classification_report() for XGBClassifier rotated.

Let's highlight the final key performance indicators of the above-mentioned
algorithm (Figure 22):

accuracy = cross_val_score(xgb2, X_train, y_tri
precision = cross_val_score(xgb2, X_train, y_t
recall = cross_val_score(xgb2, X_train, y_trai
f1_score = cross_val_score(xgb2, X, y, cv=kfold

3FINE{:.3F\t{:.3

XGBoost Rotated ©.971 ©.953 8.949 8.976

Figure 22 - Key Performance Indicators of the XGBClassifier Rotated
Algorithm.
Also, an evaluation of the algorithms was conducted using stratification. To
summarize the obtained results of the proposed and previously compared algorithms,

let's present them in Table 9.

70

Table 9 - Evaluation of Model Performance on the Balanced and Preprocessed Subset
of WebAttacks in the CICIDS2017 Dataset.

With stratification on train-test split
Model Acc Pr Recall F1 Execution
KNN 0.971 0.943 0.957 0.968 1.38s
SVM 0.702 0.558 0.025 0.603 33.90s
CART 0.971 0.953 0.953 0.964 0.68s
RF 0.971 0.974 0.938 0.965 0.63s
ABoost 0.970 0.976 0.947 0.971 11.28 s
LR 0.961 0.969 0.898 0.952 3.235s
NB 0.736 0.532 0.990 0.775 0.18s
LDA 0.939 0.915 0.879 0.940 0.94s
QDA 0.924 0.935 0.814 0.949 0.30s
MLP 0.948 0.907 0.923 0.941 21.77 s
XGBoost 0.976 0.971 0.963 0.976
XGBoost 0.971 0.957 0.957 0.976
Rotated

Practical results have been obtained regarding the performance of 12 models,
from which the best ones need to be selected.

In this study, a multi-criteria evaluation matrix is used, where each parameter is
assigned a specific "weight", and models are rated on a scale from 1 to 3, where 1 -
unsatisfactory, 2 - satisfactory, and 3 - good. This method minimizes the likelihood of
error and provides a clear assessment of priority mathematics. Parameters such as
algorithm accuracy (Accuracy) and precision (Precision) are assigned a weight of 0.3,
while the others are assigned 0.2 each.

Thanks to this method, we can consider multiple selection parameters present in
the study to evaluate the models. Table 10 shows the final evaluation results of the
models, from which it can be concluded that the Adaptive Boosting over Decision Tree
(AdaBoost, sklearn.ensemble.AdaBoostClassifier) and XGBoost gradient boosting

algorithms can be considered suitable for solving the stated tasks.

71

Table 10 - Multi-criteria evaluation of models.

Model Acc Pr Recall F1 Result
0,3 0,3 0,2 0,2 max=3
KNN 3 1 3 2 2,2
SVM 1 2 1 1,3
CART 3 2 3 2 2,5
RF 3 3 3 2 2,8
ABoost 3 3 2 2 2,6
LR 2 2 1 2 1,8
NB 1 1 3 1 14
LDA 2 1 1 1 1,3
QDA 2 1 1 1 1,3
MLP 2 1 2 1 15
XGBoost 3 3 3 3 3
XGBoost Rotated 3 2 3 3 2,7

According to the obtained results, RF and XGBoost gradient boosting algorithm
can be considered suitable for solving the stated tasks.

Considering the comparison conducted, the authors of the study suggest
considering two types of algorithms:

1. Combining neural networks with traditional machine learning methods, such as
RandomForestClassifier (using neural networks for feature selection together
with RandomForestClassifier for classification).

2. VotingClassifier model containing RandomForestClassifier and XGBClassifier
(an intrusion detection system model based on the VotingClassifier ensemble
model containing random forest and XGBClassifier models).

Let's consider each of them in more detail.
Combining a neural network with a Random Forest classifier for tabular data

classification can be useful for extracting complex features using a neural network and

72

then using these features for a more interpretable or robust classifier, such as Random
Forest.
The algorithm of the approach looks as follows:

1. Training a neural network to extract features: train a neural network to extract
features from tabular data. Instead of using the network output for classification,
take the intermediate layer containing useful data representations (features).

2. Using these features to train Random Forest: use the extracted features to train
the Random Forest model.

The RF algorithm itself will work as follows (Figure 23):

X

tree; tree; e e e treep

R

e kz\ /

voting (in classification) or averaging (in regression)

o

o -—

Figure 23 - RF Architecture.

For the classification task, a majority voting solution is chosen, while for
regression, it's the average.

This approach combines the advantages of neural networks for extracting
complex features and the stability of Random Forests for final classification.

Feature extraction from tabular data is the process of transforming raw data into

a format better suited for analysis and modeling. It's a crucial step in machine learning

73

as the right features can significantly improve model performance. In the context of
tabular data, feature extraction can involve various techniques such as:

1. Direct use of features. With well-prepared data, original features can be
directly used for model training.

2. Creating new features. Generating new features based on existing data. This
can include mathematical transformations or aggregations.

3. Feature selection. Choosing the most important features from the dataset using
feature selection methods.

4. Applying complex models for automatic feature extraction. Utilizing complex
models like neural networks to automatically extract complex features from the data.

When we talk about feature extraction using a neural network, we mean using
the intermediate layers of the network to create new data representations. These
representations can capture higher-level information than the original features. The
intermediate outputs of the network can be used as new features for other models, such
as Random Forest.

Now, let's consider the second algorithm — VotingClassifier.

In machine learning, an ensemble of models refers to a combination of several
learning algorithms that, when working together, allow for building a more effective
and accurate model. The goal of ensemble methods is to combine predictions from
multiple base estimators, built with a specified learning algorithm, to improve
generalization/reliability compared to a single estimator.

VotingClassifier is a machine learning model that is trained on an ensemble of
multiple models and predicts the result (class) based on their highest probability of the
selected class as the output. It simply aggregates the results of each classifier passed
into the voting classifier and predicts the output class based on the majority of the votes.

The idea is that instead of creating individually conceptually different machine
learning classifier models and determining accuracy for each of them, we create a
single model that is trained using these models and predicts the output based on their
aggregate majority votes for each output class. The aggregate solution often provides
better generalization and predictive performance than individual models.

74

The scikit-learn library provides a convenient implementation of the voting
classifier, allowing for easy integration and experimentation with various models in a
unified environment. This approach is particularly useful when working with different
data patterns and provides more reliable predictions, making it a valuable tool in a
machine learning practitioner's toolkit.

Analyzing the behavior of the VotingClassifier model, which contains Random
Forest and XGBClassifier, both of which were discussed earlier, is proposed. The

architecture of this algorithm is presented in Figure 24.

Selected feature set

RF XGB Classifier Models

Individual class predictions
Updated 1

weight l

|
@ Final voted prediction

Figure 24 - Architecture of the VotingModel (RF + XGB).

We'll cover some practical aspects of implementing the two proposed methods.
Each algorithm was trained on a balanced and preprocessed subset of
WebAttacks web attack data from the CICIDS2017 dataset (with a normal to anomaly

75

traffic ratio of 70% / 30%, using the 10 most significant features selected after the
earlier conducted correlation analysis).

Categorical labels were transformed into numerical form using a simple label
encoding: "1" for samples with attacks and "0" for samples without attacks (see Figure
25).

[]
df['Label'] = df['Label'].apply(: @ if x == 'BENIGN' else 1)

webattack_features

ac

'Fwd IAT Min'

'Fwd Packet Length Mean',
'Total Length of Fwd Packets',
'Flow IAT Mean’,

'Fwd IAT Std',

'Fwd Packet Length Max',

'Fwd Header Length']

Figure 25 - Preparation of features and labels for model training.

The neural network for feature extraction consists of several fully connected

layers with ReL.U activation (Figure 26).

= Sequential()
.add(Dense(128, input_dim=10, activation='relu’, kernel_regularizer=12(0.81)))

.add(Dense(64, activation='relu’, kernel_regularizer=12(0.01)))
.add(Dense(32, activation='relu’, kernel_regularizer=12(0.01)))

.add(Dense(16, activation='relu’, kernel_regularizer=12(0.01)))

.add(Dense(1, activation="sigmoid'))

Figure 26 - Creating a neural network model for feature extraction..

The feature extraction model outputs data from the last hidden layer of the neural

network (Figure 27).

76

extractor = Sequential(model.layers[:-1])

train_features = extractor.predict(X_train)
test_features = extractor.predict(X_test)

Figure 27 - Feature Extraction.

Hyperparameter tuning for the RandomForestClassifier was conducted.
GridSearchCV was employed to search for the best hyperparameters of the
RandomForestClassifier model. GridSearchCV utilizes cross-validation for a more
reliable model evaluation and hyperparameter search, which can help improve the

model's performance (Figure 28).

param_grid = {
"n_estimators': [5e, 1ee, 20],
'max_depth': [, le, 2e, 30],
'min_sampl split': [2, 5, 1@0],
'min_sampl

}

rf_model = RandomForestClassifier(random_state=42)
grid_search = GridSearchCV(estimator=rf_model, param_grid=para
grid_search.fit(train_features, y_train)

best_rf_model = grid_search.best_estimator_

Figure 28 - Applying GridSearchCV for RF.
Next, the Random Forest model is trained on the extracted features, and the
accuracy is evaluated on the test data. The evaluation results are presented below in

Figure 29.

] print_metrics(y_test, y_pred)

v Accuracy = ©.9840396257567419

Precision = ©.9774011299435628
Recall = ©.9682835828895522
F1 = ©.9728209934395501

Figure 29 - Evaluation Metrics of the RF Model with Feature Extraction Neural

Network Combination.

77

For the VotingClassifier model, hyperparameter tuning of the
RandomForestClassifier was also conducted using GridSearchCV. The model

evaluation results are presented in Figure 30.

‘, print_metrics(y_test, y_pred)

0
3 Accuracy = @.9757842597688497
Precision = 1.0

Recall = 0.917910447761194
F1 = ©.9571984435797666

Figure 30 - Evaluation Metrics of the VotingClassifier Model.

Let's summarize the obtained results in tabular form (Table 11).

Table 11 - Evaluation of the Proposed Algorithms.

VotingClassifier (Random RF + neural network
Forest + XGBClassifier)
Metrics of Model Values of Metrics
Performance
Confusion_matrix array([[1280, 1], array([[1269, 12],
[44, 492]]) [17, 519]])
Accuracy 0.976 0.988
Precision 1.0 0.981
Recall 0.918 0.978
F1 0.957 0.979

Results and Conclusions of Chapter Two

Thus, an approach to classifying network anomalies has been proposed, their
main features have been identified, and the main methods of their detection have been

structured. Intrusion detection methods are divided into four major groups: behavioral

78

methods, machine learning methods, computational intelligence methods, and
knowledge-based methods.

The general principles of operation of each group of methods have been carefully
described, along with their advantages, disadvantages, and better utilization options for
each method.

In practical comparisons of known machine learning algorithms used in IDS/IPS,
the best results were expectedly demonstrated by models (algorithms) RF, XGBoost,
and XGBoost Rotated.

The most optimal combination of the above parameters is the
RandomForestClassifier (RF). For training intrusion detection systems among
available public datasets, one of the relevant and comprehensive datasets - "Intrusion
Detection Evaluation Dataset" CICIDS2017 was chosen, which contains safe and
modern common attacks resembling real-world data.

The performance metrics of the XGBClassifier and XGBClassifier with the
application of principal component analysis (PCA) were also evaluated.

According to the obtained results, the gradient boosting algorithm (a machine
learning algorithm based on decision tree and utilizing the gradient boosting
framework) can be considered a suitable algorithm for solving the posed tasks.

Two algorithms were proposed - VotingClassifier (Random Forest +
XGBClassifier) and RF + neural network for feature extraction. The second approach
showed a higher accuracy metric (0.988), while the first one showed a precision metric
(1.0) when trained on the same balanced and preprocessed subset of web attack data
(WebAttacks dataset of CICIDS2017) with a normal to anomalous traffic ratio of 70%
/ 30%, utilizing 10 most significant features selected after a previously conducted

correlation analysis.

79

3 APPLICATION OF ADVERSARIAL LEARNING IN INTRUSION
DETECTION ALGORITHMS

3.1 Adversarial Machine Learning

Machine learning systems can become targets of malicious attacks just like
vulnerabilities in a firewall can be exploited to gain access to a web server. Therefore,
before implementing such systems in the realm of security, it is necessary to carefully
examine their weaknesses and understand how susceptible they are to attacks.
Adversarial machine learning is the study of vulnerabilities in machine learning
systems in hostile environments. Many researchers in the fields of security and
machine learning have demonstrated research results on various attacks against
antivirus programs [28], spam filters [29], and so forth. Developers of machine learning
systems are responsible for preventing attacks and creating means of protection in case
of threats to data confidentiality, national security, and human lives.

Some researchers still realize that modern Al-driven security solutions are
significantly underdeveloped and have defects [30].

The implementation of the concept of adversarial machine learning is difficult
because most machine learning models operate as black boxes. This means that users
and specialists cannot precisely understand how models make their predictions due to
the lack of transparency in the internal processes of detectors and classifiers. Without
explanations about the decisions made, it is difficult for people to determine when a
system is being influenced by malicious actors. This creates doubts about the reliability
of machine learning systems and leads to resistance to their deployment as primary
decision-making tools in the field of security.

Machine learning methodologies are typically developed with preliminary
assumptions about data stability, feature independence, and low stochasticity
(randomness) [31]. Adversaries violate any assumptions made by specialists until they

compute the path into the system with the least resistance.

80

In fact, when an algorithm is trained on training data, it operates with a limited
amount of information, which represents only a portion of the entire theoretical space
of possible variations. When the model is tested in laboratory conditions or in real-
world practice, the test dataset may contain elements that were not present in the
training data. These missing elements are referred to as the "adversarial space."

Malicious actors can exploit these areas of adversarial space to deceive machine
learning algorithms. However, an even more serious threat arises when adversaries can
interfere with the process of training models and invalidate assumptions about the
stability of the data used in machine learning. Since statistical learning models rely on
the provided data, vulnerabilities in such systems naturally arise due to mismatches in
this data. It is important for specialists to ensure that the data used for training
accurately reflects the real distribution to the extent possible. At the same time, it is
crucial to continuously monitor various attack methods to enable the development of
more robust algorithms and systems.

The goal of this section is to assess the stability of the developed model against
adversarial attacks - how difficult (or easy) it will be for a malicious actor to "trick" the
system. Adversarial attacks ("adversarial” or "hostile") encompass all known attacks
on machine learning models that can be implemented both during the model training
stage and during its operation.

Let us highlight the main types of adversarial attacks, as visualized in Figure 31:

1) Poisoning attack (poisoning attack), when an attacker affects the training data
during the training phase and, for example, adds incorrectly labeled examples, which
leads to model errors during the exploitation phase.

2) Membership inference attack, where an attacker attempts to infer a set of
training data while violating its privacy (such attacks are especially dangerous for
personal data - facial recognition, medical records, financial transactions, etc.).

3) Model extraction attack (model extraction attack), when an attacker, not
knowing the target model, tries to “steal features” of the model.

4) Evasion attack, when an attacker selects input data at the exploitation stage so

that the model gives an incorrect response.

81

—_
—

ATaka OTpaBneHWA

Obyyawowme [<
[AaHHbIE
——
ATaKa M3BneYeHns
AaHHbIX
-
— T 3NOYMbILLNEHHWK
ATaka u3Bne4eHns

Mogenu

Mogene MmalmHHoro oby4yeHus

ATaKa YKNoOHEHUS

Figure 31 - The main types of adversarial attacks.

According to adversa.ai rankings, one of the most common and easy to
understand attacks is the evasion attack (Figure 32). It requires only a basic
understanding of the target system, so evasion attacks can be considered one of the
most dangerous attacks. In the following we will consider this type of adversarial

attack.

82

Evasion attack bypasses normal decisions by Al systems
in favor of attacker-controlled behavior by crafting
malicious data inputs called adversarial examples

Poisoning attack reduces the quality of Al decisions while
making Al systems unreliable or unusable by injecting
malicious data into a dataset used for Al training

Membership inference attack discloses whether specific
data sample was a part of a dataset used for Al training

Backdoor attack invokes hidden behavior of Al systems
after poisoning them with secret triggers while keeping
Al models work as intended in normal conditions

Model extraction attack exposes algorithm’s internal
details by making malicious queries to Al systems

Figure 32 - Ranking of the most common adversarial attacks according to adversa.ai

Some machine learning models routinely misclassify adversarial examples -
input data generated by applying small but intentionally worst-case perturbations to
examples in the dataset, so that the distorted input data causes the model to produce an
incorrect answer with high confidence. Early attempts to explain this phenomenon
focused on nonlinearity and overtraining [32].

In the paper “EXPLAINING AND HARNESSING ADVERSARIAL
EXAMPLE” [32], published in 2015 at a conference, showed an example of an evasion
attack, where a mask invisible to the human eye is superimposed on an image of a
panda, and the recognition model starts to make the mistake of calling the panda a
gibbon (Figure 33). The paper also proposed an efficient way to generate adversarial
examples, the “Fast Gradient Sign Method” (FGSM). It is this publication that is

usually associated with a sharp increase in interest in adversarial attacks.

83

Published as a conference paper at ICLR 2015

. x +
- sign(VzJ(6,z,y)) esign(VoJ(0, 2,)
“panda” “nematode” “gibbon”

57.7% confidence 8.2% confidence 99.3 % confidence

Figure 33 - An example of an evasion attack.

Existing algorithms for generating adversarial examples (adversarial attacks)
generally involve two steps:

(1) - selecting the direction of the attack. The sensitivity of the model F to
changes in the values of individual attributes is evaluated.

(2) - perturbation formation. The obtained knowledge is used to generate a
perturbation that affects the classification of the sample X. If the model F misclassifies
the result X + 6 X instead of the original class, it means that an adversarial example has
been found. Otherwise, the above steps are repeated, e.g., already for the example X +
oX.

The operation of the evasion attack is shown in general in Figure 34.

(X OO
‘}’sﬁ".‘\%‘.\‘.‘. Neural Network .",.-,:’.“:".\}' Neural Network
I‘.“"’."“'."" Architecture "“‘\1}“ “‘ Architecture

S
O

0X

Direction

Perturbation

Sensitivity
Estimation

ni’o*

_b—>

Legitimate input
classified as “1”
by a DNN
F(X)=1

 §

Selection

X4
» | Misclassification Ar=X 5|
g Check for: yes
F(X +6X)=4

X-X+0X

no

Adversarial Sample
misclassified as “4”
by a DNN
F(X*) =4

Figure 34 - Evasion attack steps in the general case [32].

84

Let us turn to the table with adversarial attacks contained in the most cited studies

in recent years (Figure 35).

pasmaese 3agaq (breast-cancer,
diabetes, MNIST, ijenn, webspam,
covtype, bosch, HIGGS)

CocTs3aTeTbHAA aTAKA Tox Knacc atakn Henepas Momeas B IIpumep peanmzanun
Iy HKALHH OPHI'HHAJIBHOM HCCJI€J0BAHHH H
pelnaeMas 3ama4a
FGSM - Fast Gradient 2015 Artaga «benoro ammka» | HefipoceTepas Momens bubmHoTera Adverarial Robustness Tollbox
Signed Method paclo3HABaHHA H300pakeHHI (ART, https://github.com/Trusted-Al/adversarial-
robusiness-toolbox), k1ace FastGradientMethod
MILP — Mixed-integer 2015 Artakra «Demoro fmuEKa» | AHCaMOIB PeINAONINX AepeBBEB, https://github.com/YihanWang617/0On-ell_p-
Linear Programming 3a11a4a Paclo3HABAHHA Robustness-of-Ensemble-Stumps-and-Trees
H300paxKeHHH
JSMA — Jacobian-based 2016 Araxka «Oemnoro smuka» | HefipocereBas Mozens ART, SaliencyMapMethod
Saliency Map Attack pacHmo3HaBaHHA H300paxeHHAH
CW - Carlini and Wagner 2017 Artaxa «bemoro smuka» | HeiipoceTepan Mozens ART, CarliniL[X]Method
attack HIH «4EpHOro AMmKa»* | pacnosHaBaHHA H300pamcHUH
PGD - Projected gradient 2017 Araxa «0emoro smuxa» | Heifpocerepan Mozemns ART, ProjectedGradientDescent
descent K «uépHoro sumkar* | pacnosHasanus w3oOpameHnH
Z0O0 — Zeroth order 2017 ATaxa «u€pHOTrO HeiipoceTeaa Mozems ART, ZooAttack
optimization based black-box AMHE A pAacozHABAHHA H300pax eHHI
attack
BIM — Basic Iterative 2018 Araxka «0emoro smuka» | Heifpocetepasn Mozens ART, BasiclterativeMethod
Method HITH «4EPHOTO ANMKA»™ | pacrosHABaHHA H300pakeHHH
MIM — Momentum Iterative | 2018 Araxa «bemoro smuka» | HeiipoceTeBas Mozens CleverHans library
Method HITH «4EPHOTO AKKa»* | paclosHABAHHA H300paxeHHI (https://github.com/cleverhans-lab/cleverhans),
momentum_iterative_method
The Cube Attack 2019 ATara «DEIoro AMHKa» | AHCAMOIB PEINAONINX AEPEBBEB, https://github.com/max-andr/provably-robust-
3a11a4a Paclo3HABAHHA boosting
H300paxeHHH
RBA — Region-Based Attack | 2019 Artaxa «Deloro AmHEKa» | AHcaMOIb pelIarONIIX IepeBbEB, https://github.com/chenhongge/RobustTrees
PasTHUHBIC 3a1a4H (austr, cancer,
covtype, diabetes, mnist, fourclass,
halfinoon)
HSJA — Hop Skip Jump 2019 Artakra «ugpHoro HefipoceTeBas Moenb H MOJETE ART, HopSkipJump
Attack AMHK A THIIA «CayuaiHeId Tecy, 3a71ada
PacHo3HABAHHA H300paxeHHH
Sign-OPT 2020 Artara «u€pHoro HeilipoceTepas Mozens ART, SignOPTAttack
AMHKA» PAacHo3HABAHHA H300paKeHHH
LT - Leaf Tuple 2020 Artakra «Demoro fmuEKa» | AHCaMOIB PeINAONINX AepeBBEB, https://github.com/chong-z/tree-ensemble-attack

Figure 35 - Adversarial attacks and example implementations [33].

Every evasion attack uses special methods to create adversarial examples, which

can be seen as masks or data changes (e.g., in the case of the above example with the

panda image - how to find the hidden mask in the image?). Each of the attacks

presented in the table has its own unique way of creating adversarial examples.

White-box attacks use knowledge of the internals of the target model to create

adversarial examples that fool the model. Neural networks and decision trees use

different methods to find such examples. Whereas black box attacks have no

information about the internals of the target model. Most studies focus on white-box

attacks, but some authors also investigate the transition from white-box to black-box

attacks using the adversarial example portability property. This property allows

adversarial examples to retain their effectiveness when used against other models.

Implementing a black-box attack involves training a “replacement model,” creating

85

adversarial examples for that model, and applying them to the original model. Although
rigorous evidence and explanations for portability have not yet been established,
numerous studies have confirmed this property on a variety of datasets.

Since the random forest model is widely used as a classifier, it is important to
Investigate its robustness to adversarial attacks. However, it is known that classical
black-box attacks do not take into account the specificity of solver trees. In the case of
ensembles of decision trees, it is impossible to apply typical white-box attacks that are
successfully used against neural networks. This is because the loss function in arandom
forest model is usually a discontinuous piecewise defined function for which no
gradient exists, making it difficult or impossible to apply gradient-based attacks to such
models.

Because of these factors, the design of intrusion detection systems that utilize
machine learning techniques must pay special attention to the study of attacks that
target specific models, such as ensembles of decision trees (in particular, the “random
forest”).

Since adversarial distortion attacks rely on the use of gradient lifting to find
instances of the adversarial space, the general idea of defending machine learning
models against such attacks is to make it more difficult for the adversary to gain
information about the gradients of the model's decision surface.

Traditional methods for improving the robustness of machine learning models,
such as weight reduction, generally do not provide practical protection against
malicious examples. To date, only two methods have shown some significant
protection.

Adversarial training is one possible method of defense against distortion attacks.
If a machine learning model is trained on malicious examples, it can minimize the
adversarial space available to attackers. This defense method tries to cover all possible
input variants for the classifier, while using data samples that belong to a theoretical
input space that is not covered by the original training data distribution. Models trained
in this way should ideally not be fooled by malicious examples known to them, but can
this method allow defeating an attacker at his own game? - is an open question.

86

Adversarial learning has shown good results in studies by experts, but it does not
solve the problem completely, as the success of this defense method depends on a
constant race between the attacking and defending parties.

Therefore, it is infeasible to cover all possible input variants, and an experienced
attacker with sufficient computational resources will most likely always be able to find
malicious examples that were not used to train the model.

Another technique for defending against distortion attacks is defensive
distillation.

Distillation was originally developed to reduce the size of neural network models
and reduce the computational resource requirements so that they can run on resource-
constrained devices such as mobile devices. This was achieved by training an
optimized model using replacement of categorical class labels from the original dataset
with probabilistic outcome vectors on a simpler model. The resulting model had a
smoother decision surface, which in turn made it more difficult for attackers to obtain
the desired gradient.

However, like adversarial learning, distillation only slows down and complicates
the process of detecting and exploiting adversarial spaces, so it only provides some
protection against attackers with limited computational resources.

Defensive distillation is a technique originally developed to make neural
networks more resilient to attacks using machine learning techniques. However, in the
context of XGBoost or other tree-busting algorithms, this technique is not directly
applicable due to differences in the architecture and operating principles of these
models.

Applying this technique to algorithms such as random forests requires some
adaptation, as the architecture and operating principles of these models are significantly
different. In addition, this method can be computationally expensive.

Using defensive distillation for random forests is an experimental technique and
requires careful testing and tuning. Alternative methods for improving robustness, such

as regularization and the use of ensembles, may also be useful and easier to implement.

87

It is difficult to defend against distortion attacks because of the problem of
imperfect learning, where statistical processes cannot capture all possible inputs
needed for correct classification. In most cases, machine learning models perform very
well, but only work with a small number of all possible inputs they may encounter.

Developing a strategy capable of providing a defense against a powerful and
adaptive attacker is an important area of research for machine learning practitioners.

Adversarial examples show that many state-of-the-art machine learning
algorithms can be hacked in unconventional ways. These machine learning failures
demonstrate that even simple algorithms can behave quite differently than their

designers intended.

3.2 Application of adversarial learning in intrusion detection algorithms to

realize protection against attacks

This subsection implements adversarial learning defense against evasion attacks
targeting ML-based IDSs.

The implementation consists of two main steps:

1. Evasion attack execution: creating adversarial patterns for the model;

2. Adversarial learning: extending the original dataset with correctly labeled
adversarial samples and training a new and adversarial resistant model on the new
training set.

A Dbrief description of the implementation of the main steps:

1. Searching for adversarial samples:

— Each model is trained on the CICIDS2017 dataset (in the web attacks
subset: web_attacks_balanced.csv).

— The performance of the models is evaluated on the test set.

— For all samples that are correctly labeled as an attack by the model, the
value of the “Total Forward Packet Length” function changes within the

specified range.

88

— If the model changes its prediction for a sample with a changed “Total
Fwd Packet Length” function, that sample is adversarial (i.e., it misleads
the model).

— A second test set with adversarial samples is generated. The performance
of the model is evaluated on this test set. The performance is expected to
decrease: even one adversarial sample provides an opportunity for an
attack.

2. Defense against evasion attack:

— Adversarial samples are labeled as “attacking” and added to the original
training and test sets.

— A new model is trained on a new training set.

— The performance of the adversarially trained model is evaluated on the
new test set. The performance is expected to be close to that of the original
model before the attack, since the addition of adversarial samples
increases the robustness of the model to adversarial attacks.

We will show some aspects of the practical implementation of the evasion attack
on the previously proposed models by the authors. Let us consider VoitingModel as an
example.

In order to implement the evasion attack, we first need to modify the feature
“Total Length of Fwd Packets” (index 5 in the list of selected features) with the check

of non-zero values of the feature for samples with the type “attack” (Figure 36).

o for 1 in range(@, X_test.shape[®@]):

if (X_test[i, 5] > @) and (y_test[i]
print('#', i, '=>', X_test[i, 5])

Figure 36- Checking for non-zero values of a trait.

The evasion_attack function finds adversarial samples for the given samples. It
returns a copy of the given feature matrix with the found adversarial samples that
replaced the original ones in the matrix and the indices of these samples (Figure 37).

89

The function works as follows:

— all samples that are correctly labeled by the model as an attack are
processed,;

— for these samples, the value of the “Total Length of Fwd Packets” feature
is changed in the range [initial value, initial value + 500);

— 1if the model changes its prediction for a sample with the “Total Length of
Fwd Packets” trait changed, that sample is adversarial. The function
outputs the index and the new value of “Total Packet Length Fwd” of that

sample.

evasion_attack(samples, labels, model):
evasion_samples = samples.copy()
sample_index = np.empty((@), dtype=int)

for i in range(®, samples.shape[@]):
if (labels[i] == 1) and (model.predict(samples[[i]]) == 1):
evasion_sample = samples[[i]]
j = math.ceil(samples[i, 5])
for total_length_fwd_packets in range(j, j + 500):
evasion_sample[@, 5] = total_length_fwd_packets
pred = model.predict(evasion_sample)
if pred[@] < 1:
print(i, total_length_fwd_packets)
sample_index = np.append(sample_index, 1)
evasion_samples[i, 5] = total_length_fwd_packets
break

return evasion_samples, sample_index

Figure 37 - Evasion_attack function.

It was found that the found adversarial samples for the original samples are under
the following indices (Figure 38).

90

[25] evasion_sample_index

3+ array([51, 14e, 3e1, 367, 378, 614, 678, 736, 818, 894, 907,
934, 1164, 1288, 1352, 1564, 1591, 1624, 1746, 1754, 1815])

Figure 38 - Adversarial sample indices.

The difference of predictions with the example of the original sample and its

adversarial replacement is presented in Figure 39.

print("An original sample from the test set:\n", X_test[[148]])
pred = model.predict(X_test[[1480]])
print("A prediction for the original sample: ", pred[@])

An original sample from the test set:

[[9.412500080e+01 7.68101411e+01 3.83000000e+02 8.74000000e+02
9.57500000e+01 3.83000000e+02 1.40048471e+06 2.76874245e+06
3.83000000e+02 1.36000000e+02]]

A prediction for the original sample: 1

print("An adversarial sample:\n", X_test_evasion_attack[[148]])

y_pred_evasion_attack = model.predict(X_test_evasion_attack[[146]])

"

print("A prediction for the adversarial sample: ", y_pred_evasion_attack[@])
An adversarial sample:
[[9.41250000e+01 7.68101411e+01 3.83000000e+02 8.74000000e+02
9.57500000e+01 6.11000000e+02 1.40048471e+06 2.76874245e+06
3.83000000e+02 1.36000000e+02]]
A prediction for the adversarial sample: @

Figure 39 - Difference between an example of the original design and its

adversarial replacement.

Thus, the adversarial sample misleads the model, i.e., the classifier changes its
response (for the sample with index 140) from “1” (there is an attack) to “0” (no attack).
Note that the retrieved pattern retains its attackability and is, in fact, an effective
adversarial pattern: we can increase the value of the “Total Packet Length Fwd” feature

by augmenting the payload with zeros/spaces/etc.

91

Let us specify the model evaluation metrics for the test data with adversarial

samples added.

print_metrics(y_test, y_pred_evasion_attack)

Accuracy = 0.9642267473858007
Precision = 1.0

Recall = ©.878731343283582
F1 = ©.935451837140198

Figure 40- VoitingModel evaluation metrics after the implementation of an
evasion attack.

For example, some performance metrics deteriorate after the attack because

adversarial samples added to the test set mislead the model.
An evasion attack was also implemented on the RF + neural network algorithm.

The evaluation results of this model for the test data with adversarial samples added

are shown in Figure 41.

print_metrics(y_test, y_pred_evasion_attack)

Accuracy = 0.9840356257567419

Precision = ©.98108246679316889
Recall = ©.9645522388059702
F1 = ©.9727187206020695

Figure 41 - RF + NN evaluation metrics after implementing the evasion attack.

To protect the model from a realized evasion attack, we need to find adversarial
samples for the entire dataset and perform adversarial training with them, augmenting
the original dataset with adversarial samples that are correctly labeled as “‘attack™.

The post-defense VotingModel (XGB + RF) evaluation metrics are summarized in

Figure 42.

92

[53] print_metrics(y_test_defence, y_pred_defence)

EE} Accuracy = ©.9755035383777899
Precision = ©.9847328244274809
Recall = ©.9336922242314648
F1 = ©.9582172701949861

Figure 42 - VotingModel (XGB + RF) evaluation metrics after defense by

adversarial learning.

The same process of implementing defense with adversarial learning was

performed with the second RF model. The post-protection RF model evaluation metrics

are shown in Figure 43.

6] print_metrics(y_test_defence, y_pred_defence)

¥ Accuracy = ©.9797037849698299

Precision = ©.9647887323943662
Recall = ©.9699115044247788
F1 = ©.967343336275375

Figure 43 - Metrics for evaluating the RF model after defense by adversarial

learning.

To draw conclusions, we summarize the results in a summary table (Table 12).

93

Table 12 - Performance metrics of the proposed models.

Model name Model evaluation metrics
Before attack After attack After defense
VotingModel (XGB | Accuracy =0.976 | Accuracy =0.961 | Accuracy =0.976
+ RF) Precision = 1.0 Precision =1.0 | Precision =0.985
Recall =0.918 Recall =0.870 Recall =0.933
F1=0.957 F1=0.931 F1=0.958
RF + NN Accuracy = 0.988 | Accuracy =0.984 | Accuracy = 0.980
Precision =0.982 | Precision = 0.981 | Precision = 0.965
Recall =0.978 Recall =0.965 Recall =0.970
F1=0.980 F1=0.973 F1=0.967

Thus, the evaluation metrics of the models are almost restored to the values that
were before the evasion attack.

Hence, it can be concluded that the implemented adversarial learning defense
Improves the robustness of the proposed models against adversarial attacks.

Next, an experiment was conducted by implementing iterative adversarial
learning with HopSkipJump attack, which is a powerful black-box evasion attack, and
two models, VotingClassifier (Random Forest + XGBClassifier) and RF model with
feature extraction with NN using CICIDS2017 dataset.

The hypothesis here is that adversarial learning will then be able to improve the
robustness to repeated adversarial attacks. This hypothesis is further disproved by the
results.

Let us re-emphasize the main aspects of the raw data used. The CICIDS2017
dataset is prepared by the Canadian Cybersecurity Institute by analyzing network
traffic in an isolated environment in which the actions of 25 legitimate users as well as
malicious actions of intruders were simulated.

Each record in the CICIDS2017 dataset represents a network session and is
characterized by 84 attributes, such as source and destination IP addresses of the data

stream (“Source [P and “Destination [P”’), data flow rate (“Flow Bytes/s”), and so on.

94

Among the 14 types of attacks presented in the dataset, in this study, we consider
only web-based attacks. The training subsample contains 4 classes: “BENIGN”
(background traffic without attacks, 5087 records), “Web Attack - Brute Force” (1507
records), “Web Attack - Sql Injection” (21 records), “Web Attack - XSS” (652
records).

Note that the task of detecting network attacks on the CICIDS2017 dataset is
currently only addressed in 5 papers. In total, the task of “Network Intrusion Detection”
on different datasets combines 34 articles, and in total there are more than 100000
articles published on paperswithcode.com.

We implement iterative adversarial learning using HopSkipJump attack, which
is a powerful black-box evasion attack, and the above models.

The implementation of the experiment is 10 iterations of the Hop Skip Jump
attack followed by defense by adversarial learning. This experiment verifies the
conclusions of one of the papers (“The Limitations of Deep Learning in Adversarial
Settings”), in which it was demonstrated that the model's resistance to adversarial
attacks increased after adversarial learning: the repeated attack of the neural network
using the JSMA algorithm lost effectiveness; in particular, the number of adversarial
examples found decreased from 18000 to 9000.

We use an implementation of the adversarial evasion attack HSJA from the ART
library: art.attacks.evasion.HopSkipJump.

Let's first look at the VVotingClassifier (Random Forest + XGBClassifier) model.
Let's highlight some implementation details.

For convenience, we first defined a classifier class (Figure 44), which will allow
us to use the same training code with different classifiers if necessary in the future. It
provides the necessary functionality: creating, fitting, saving, loading a model;

predicting labels; creating adversarial samples for the original samples.

95

Classifier:
__init_ (self, model_type='voting’
if model_type == 'voting':
self._model = VotingClassifier(estimators=[("XGBClassifier", xgb_model),

else:

self._model =

fit(self, X, y):
return self._model.fit(X=X, y=y)

predict(self, X):
return self._model.predict(X)

save_model(self, path):
with open(path, 'wb') as f:
pickle.dump(self._model,)

load_model(self, path):
self. model = pickle.load(open(path, 'rb'))

generate_hsja_samples(self, X_test):

art_classifier = SklearnClassifier(
model=self. model, preprocessing=(©.0, 1.8))

Figure 44 - class Classifier.

The key function is generate_hsja_samples - creates adversarial samples for
given initial samples using the HopSkipJump attack. It uses the HSJA 12 version
implemented in the Adversarial Robustness Toolbox library [34].

The evaluation metrics are accuracy, precision, recall, f1_score.

A function is defined that retrains the model using the adversarial samples

generated (Figure 45). This step is performed at each iteration of adversarial learning.

96

retrain_model(model, X_test_adv, X_test_defence, X_defence, y_defence):

for i in range(X_test_defence.shape[8]):
if model.predict(X_test_defence[[i]]) != model.predict(X_test_adv[[i]]):
X_defence = np.vstack([X_defence, X_test_adv[i]])

y_defence = np.append(
y_defence, model.predict(X_test_defence[[i]]))

X_train, X_test, y_train, y_test = train_test_split(
X_defence, y_defence, test_size=0.25, shuffle= , random_state=42)

model = Classifier(model_type)
model.fit(X=X_train, y=y_train)

return model, X_defence, y_defence, X_test, y_test

Figure 45 - Retrain_model function.

Next, an iterative adversarial learning algorithm (function adversarial_training)
Is defined that performs adversarial training of the given model for a given number of
iterations using HSJA (Figures 46, 47).

adversarial_training(original_model, X, y, X_test, y_test, iterations=18):
model = original_model

X_defence = X

y_defence = y

X_test_defence = X_test

y_test_defence = y_test

results = []

for iteration in range(iterations):
iteration_results = {}

X_test_adv, generation_time = model.generate_hsja_samples(
X_test_defence)
iteration_results['generation_time'] = generation_time

y_pred_adv = model.predict(X_test_adv)

matrix = confusion_matrix(y_test_defence, y_pred_adv)

iteration_results['matrix_attacked'] = matrix

iteration_results['metrics_attacked'] = get_metrics(
y_test_defence, y_pred_adv)

Figure 46 - Part of the adversarial_training function.

97

model, X_defence, y_defence, X_test_defence, y_ test_defence = retrain_model(

model, X_test_adv, X_test_defence, X_defence, y_defence)

Figure 47 - Part of the adversarial_training function.

Based on the results of the correlation analysis in Chapter 2 of this study, the
following features were excluded from the feature space: “Packet Length Mean”,
“Subflow Fwd Bytes”, “Avg Fwd Segment Size”, “Fwd IAT Total”, “Fwd Packets/s”,
“Fwd IAT Max”. After excluding the features with the lowest significance, the feature
space was reduced to a union of 10 features (Figure 48):

1. “Average Packet Size”, the average length of the data field of a TCP/IP packet

(hereafter referred to as packet length).

2. “Flow Bytes/s”, the data flow rate.

3. “Max Packet Length”, the maximum packet length.

4. “Fwd Packet Length Mean”, the average length of packets transmitted in the
forward direction.

5. “Fwd IAT Min”, the minimum forward inter-packet interval time (IAT, inter-
arrival time) value.

6. “Total Length of Fwd Packets”, the total length of packets transmitted in the
forward direction.

7. “Fwd IAT Std”, the standard deviation of the inter-packet interval value in the
forward direction of packets.

8. “Flow IAT Mean”, the average value of the inter-packet interval.

9. “Fwd Packet Length Max”, the maximum length of the packet transmitted in the
forward direction.

10.“Fwd Header Length”, the total header length of packets transmitted in the

forward direction.

98

'Fwd IAT Min',
'Fwd Packet Length Mean’,

'Total Length of Fwd Packets’,
'Flow IAT Mean',

'Fwd IAT Std’',

'Fwd Packet Length Max',

‘Fwd Header Length']

Figure 48 - 10 most important features.

Training of the model using the previously allocated Classifier class (Figure 49).

model type = 'voting'
model = Classifier(model_type)
model.fit(X=X_train, y=y_train)

VotingClassifier @ @

XGBClassifier RandomForestClassifier

» XGBClassifier » RandomForestClassifier @

Figure 49 - VotingClassifier training.

A total of 10 iterations were performed. At each iteration, adversarial examples
are searched for the available test sample using HSJA (Figure 50). Adversarial
learning on the original model for a given number of iterations took a significant
amount of time due to the performance of the available hardware. The time cost may

vary depending on the power of computing resources.

99

xg_iterations = 18
xg_results = adversarial_training(
model, X, y, X_test, y_test, iterations=xg_iterations)

random is adversarial, attack failed.
random is adversarial, attack failed.

WARNING:art.attacks.evasion.hop_skip_jump:Failed to draw a
WARNING:art.attacks.evasion.hop_skip_jump:Failed to draw a
WARNING:art.attacks.evasion.hop_skip_jump:Failed to draw a random is adversarial, attack failed.
WARNING: art.attacks.evasion.hop_skip_jump:Failed to draw a random is adversarial, attack failed.
WARNING:art.attacks.evasion.hop_skip_jump:Failed to draw a random is adversarial, attack failed.
WARNING:art.attacks.evasion.hop_skip_jump:Failed to draw a random is adversarial, attack failed.
WARNING: art.attacks.evasion.hop_skip_jump:Failed to draw a random is adversarial, attack failed.
WARNING: art.attacks.evasion.hop_skip_jump:Failed to draw a random is adversarial, attack failed.
WARNING:art.attacks.evasion.hop_skip_jump:Failed to draw a random is adversarial, attack failed.

Figure 50 - Implementation of iterative adversarial learning.

At each iteration, adversarial examples are searched for in the available test
sample using HSJA, after which the found adversarial examples are labeled and added
to the original sample. The original sample is divided into training sample (75%) and
test sample (25%), after which the model is retrained and the quality is evaluated on

the test sample. An example of iteration output is shown in Figure 51.

print_training_results(xg_results)
show_plots(xg_results)

====ITERATION NO. l@====

Before adversarial training: 20789 samples in the dataset, 5198 samples in the test set.
Generated 3743 adversarial samples from 5198 original samples.

Generation time: 5235.609313964844

After adversarial training: 24532 samples in the dataset, 6133 samples in the test set.

==Example of a sample==
Sample No. © of the original testing set: [[©.©0002000e+80 ©.80000080c+00 ©.00000000e+00 B8.78000000e+02
©.20000000e+00 ©.00000000e+00 1.86059967e+06 3.94568625e+86
©.00000000e+00 1.04000000e+02]]
Model prediction for the original sample: 2
Adversarial sample from the sample No. ©: [[9.9989921e-02 8.4223915e-03 8.2203068e-082 8.7800159e+82
4.1492476e-02 -2.41595410e-02 1.86085996e+06 3.9456860e+06
1.3921363e-03 1.04030081e+02]]
Model prediction for the adversarial sample: 1

==Results before the adversarial training==
Confusion matrix:
[[14%6 4 @ o]
[116 209 85 0]
[1131 1226 236 8]
[15 1 e o]l
Evaluation metrics:
{'Accuracy': ©.35686882616390917, 'Precision': ©.28476075481937146, 'Recall': ©.35686802616396917, 'F1':

==Results after the adversarial training==
Confusion matrix:
[[1395 4 6 o]
[71177 383 8]
[48 203 2980 2]
[2 il 1 14]]
Evaluation metrics:
{'Accuracy': ©.9875493233327898, 'Precision': ©.9062967659479347, 'Recall’': ©.9875493233327898, 'F1': ©.9

Figure 51 - Output of the results for the 10th iteration.

100

The results for 10 iterations of adversarial learning are presented in Table 13.

Table 13 - Results for 10 iterations of adversarial learning with VVotingModel and HSJA

attack.
No. of Generation time, Metrics before protection Metrics after protection
iterations sec
1 937.8 Accuracy=0.715 Accuracy=0.871
Precision=0.648 Precision=0.870
Recall=0.715 Recall=0.871
F1=0.630 F1=0.870
2 1044,9 Accuracy=0.761 Accuracy=0.864
Precision=0.747 Precision=0.859
Recall=0.761 Recall=0.864
F1=0.723 F1=0.860
3 1273.8 Accuracy=0.702 Accuracy=0.863
Precision=0.657 Precision=0.863
Recall=0.702 Recall=0.863
F1=0.658 F1=0.862
4 21155 Accuracy=0.460 Accuracy=0.869
Precision=0.556 Precision=0.868
Recall=0.460 Recall=0.869
F1=0.480 F1=0.868
5 1881.2 Accuracy=0.591 Accuracy=0.873
Precision=0.571 Precision=0.869
Recall=0.591 Recall=0.873
F1=0.504 F1=0.870
6 2268.6 Accuracy=0.560 Accuracy=0.875

Precision=0.505
Recall=0.560
F1=0.489

Precision=0.873
Recall=0.875
F1=0.874

101

Continuation of Table 13.

No. of Generation Metrics before Metrics after protection
iterations time, sec protection
7 2820.1 Accuracy=0.478 Accuracy=0.870
Precision=0.437 Precision=0.867
Recall=0.478 Recall=0.870
F1=0.369 F1=0.869
8 3401.6 Accuracy=0.437 Accuracy=0.882
Precision=0.413 Precision=0.880
Recall=0.437 Recall=0.882
F1=0.335 F1=0.881
9 4165.0 Accuracy=0.404 Accuracy=0.890
Precision=0.328 Precision=0.888
Recall=0.404 Recall=0.890
F1=0.336 F1=0.888
10 5235.6 Accuracy=0.357 Accuracy=0.910

Precision=0.285
Recall=0.357
F1=0.288

Precision=0.906
Recall=0.910
F1=0.907

Using a pre-written function we output the following statistics (Figure 52):

ratio of adversarial samples generated to original samples per iteration;

number of adversarial samples generated per iteration;

average time for the generation algorithm to process one original sample

per iteration;

total generation time per iteration;

performance metrics per iteration for two cases: after attack and after

defense.

Graphs of the obtained results are shown below in Figures 52 - 56.

102

The number of generated adversarial samples

3500 ~

3000 -

Number of samples
G %) (8]
(9]
3 a S
=] (=] =]
1 1 I

1000 -

500 +

5 6 i 8 9 10
fteration

= 4
%]
L
Y

Figure 52- Ratio of adversarial samples generated to original samples per iteration.

The ratio of adversarial samples to original samples

0.7 4
0.6
o
L -
E 0.5
0.4 4
0.3
T T T T T T T T T T
1 2 3 4 5 6 T 8 9 10
teration

Figure 53 - Number of adversarial samples generated per iteration.

103

The average processing time of one original sample

1.75 4

1.70 +

1.65 4

1.60

1.55 4

1.50 +

Average processing time, s

1.45 4

1.40 +

5 6 i 8 9 10
teration

[
J
L
=Y

Figure 54 - Average time for the generation algorithm to process one initial sample

per iteration.

The total generation time

90 A

80 +

70

60

50 4

Time, min

40 -

30 4

20 +

5 6 7 8 9 10
lteration

-
Pl
L
+

Figure 55 - Total generation time per iteration.

104

The performance metrics

0.9 4

L

0.8 1

0.7 s <3

0.6 4

Metric's value

0.5

—=-=- Accuracy (attacked)

—— Accuracy (defended)

=== Precision (attacked)

—— Precision (defended)
Recall (attacked)
Recall (defended)

0.3 1 === F1 (attacked)

— F1 (defended)

0.4 1

——————————

T T T
1 2 3

T T T
4 5 [}
lteration

Figure 56 - Performance metrics per iteration for two cases: after attack and

The results for 10 iterations of adversarial learning for the second model are

presented in Table 14.

after defense.

Table 14 - Results for 10 iterations of adversarial learning with RF and HSJA attack.

Precision=0.758
Recall=0.789
F1=0.747

No. of Generation Metrics before Metrics after protection
iterations time, sec protection
1 920.6 Accuracy=0.767 Accuracy=0.880
Precision=0.649 Precision=0.820
Recall=0.718 Recall=0.876
F1=0.620 F1=0.867
2 1024.4 Accuracy=0.771 Accuracy=0.869

Precision=0.860
Recall=0.865
F1=0.867

105

Continuation of Table 14.

Precision=0.397
Recall=0.401
F1=0.305

No. of Generation Metrics before Metrics after protection
iterations time, sec protection
3 1120.8 Accuracy=0.710 Accuracy=0.898
Precision=0.689 Precision=0.870
Recall=0.789 Recall=0.893
F1=0.710 F1=0.867
4 2328.1 Accuracy=0.510 Accuracy=0.879
Precision=0.569 Precision=0.868
Recall=0.501 Recall=0.879
F1=0.509 F1=0.868
5 1671.5 Accuracy=0.610 Accuracy=0.886
Precision=0.574 Precision=0.870
Recall=0.610 Recall=0.886
F1=0.508 F1=0.871
6 2427.7 Accuracy=0.590 Accuracy=0.879
Precision=0.510 Precision=0.875
Recall=0.590 Recall=0.879
F1=0.497 F1=0.880
7 2910.6 Accuracy=0.490 Accuracy=0.881
Precision=0.443 Precision=0.867
Recall=0.481 Recall=0.881
F1=0.402 F1=0.869
8 3076.2 Accuracy=0.511 Accuracy=0.892
Precision=0.503 Precision=0.880
Recall=0.498 Recall=0.892
F1=0.489 F1=0.880
9 4792.4 Accuracy=0.501 Accuracy=0.904
Precision=0.487 Precision=0.897
Recall=0.471 Recall=0.901
F1=0.407 F1=0.891
10 5932.3 Accuracy=0.453 Accuracy=0.927

Precision=0.911
Recall=0.927
F1=0.910

106

Results and conclusions of the third chapter

The robustness of the developed models to adversarial attacks was assessed, i.e.
how difficult or easy it would be for an attacker to “‘cheat” the system.

Of the main types of adversarial attacks used was the implementation of an
evasion attack, in which an attacker selects input data during the exploitation phase so
that the model gives an incorrect response.

Since the random forest model is widely used as a classifier, it is important to
Investigate its robustness to adversarial attacks. However, it is known that classical
black-box attacks do not take into account the specificity of solver trees. In the case of
ensembles of decision trees, it is impossible to apply typical white-box attacks that are
successfully used against neural networks.

Because of these factors, when developing intrusion detection systems that
utilize machine learning techniques, special attention should be paid to studying attacks
that target specific models, such as ensembles of decision trees.

Traditional methods for improving the robustness of machine learning models,
such as weight reduction, generally do not provide practical protection against
malicious examples. To date, only two methods have shown some significant
protection - adversarial training and defensive distillation.

Adversarial training has shown good results in studies by experts, but it does not
solve the problem completely, because the success of this defense method depends on
a constant race between the attacking and defending parties.

It is difficult to defend against distortion attacks because of the problem of
imperfect learning, where statistical processes cannot capture all possible inputs
needed for correct classification.

Developing a strategy that can defend against a powerful and adaptive attacker
IS an important research area for machine learning practitioners.

Adversarial examples show that many modern machine learning algorithms can
be hacked in unconventional ways. These machine learning failures demonstrate that

even simple algorithms can behave quite differently than their designers intended.

107

A two-step defense against evasion attacks using adversarial learning has been
implemented - performing an evasion attack (creating adversarial samples for the
model) and adversarial learning (expanding the original dataset with correctly labeled
adversarial samples and training a new and adversarial-resistant model on the new
training set).

For example, some performance metrics have been shown to deteriorate after the
attack is implemented because adversarial samples added to the test set mislead the
model. However, after the adversarial training is implemented, they are almost restored
to the values they were before the evasion attack.

Hence, it can be concluded that the implemented defense with adversarial
learning improves the robustness of the proposed models against adversarial attacks.

An experiment with the implementation of iterative adversarial learning using
the HopSkipJump attack and the two models considered: the VotingClassifier (Random
Forest + XGBClassifier) and the RF model with feature extraction with NN, disproved
the hypothesis that adversarial learning in this case will be able to increase the
robustness to repeated adversarial attacks.

Thus, according to the results, the following conclusions can be drawn after
conducting this experiment with the models:

1. The performance metrics shift to the worse side after the attack.
Adversarial learning after the attack effectively protects the model by recovering the
values of the metrics. However, the model remains vulnerable to repeated attacks
thereafter: that is, the defense only works against those generated adversarial examples
that we correctly labeled and then added to the dataset. A new iteration of the attack
can still generate effective adversarial examples.

2. The dataset is expanded at each iteration, which may increase the number
of adversarial subsamples generated, but also increases the ratio of adversarial samples
to original samples.

3. Adversarial learning did not improve the robustness of the considered

models to repeated HSJA attacks.

108

CONCLUSION

Thus, as a result of this work, the goal was achieved and the objectives were
solved.

Two algorithms were proposed, VotingClassifier (Random Forest +
XGBClassifier) and RF + neural network for feature extraction. The latter approach
showed a higher Accuracy metric (0.988) and the former showed a higher Precision
metric (1.0) when trained on the same balanced and preprocessed subsample of
WebAttacks web attacks of the CICIDS2017 dataset (70% / 30% ratio of normal to
abnormal traffic, 10 most significant features selected after the correlation analysis
performed earlier).

The robustness of the developed models to adversarial attacks was assessed, i.e.
how difficult or easy it would be for an attacker to “trick” the system

The obtained results indicate the necessity of training the proposed machine
learning model on the dataset obtained from the analysis of network traffic in the
protected network. Otherwise, when using a pre-trained model, it is mandatory to
match the physical structure of the protected network and the network in which the
model was trained, as well as the settings of network equipment. At the stage of
collecting and preparing the training sample, it is necessary to avoid imbalanced
distribution of normal and abnormal records, which may cause overtraining of the
model and/or a sharp increase in the number of false positives of the classifier.

It is difficult to defend against distortion attacks due to the problem of imperfect
learning, where statistical processes cannot capture all possible inputs needed for
correct classification. Developing a strategy that can provide defense against a
powerful and adaptive attacker is an important research area for machine learning
practitioners.

Adversarial learning has shown good results in the research of experts, but it is
worth noting that it does not solve the problem completely, as the success of this
defense method depends on a constant race between the attacking and defending
parties.

109

Adversarial examples show that many modern machine learning algorithms can
be hacked in unconventional ways. These machine learning failures demonstrate that
even simple algorithms can behave quite differently than their designers intended.

Reducing performance requirements is possible through the use of “layered”
classifiers that combine fast, low-performance models at the preprocessing stage and
efficient, computationally complex models at higher levels.

Implementation of the proposed solutions in real-time (near-real-time) systems
implies efficient processing and analysis of high-speed data streams in high-power
feature space conditions and is possible only in the presence of a high-performance
hardware and software platform.

These circumstances together with the known results of research in the subject
area allow us to conclude that it is possible to use machine learning methods to search
for anomalies and detect computer attacks.

It should be noted that a promising direction for further research is the
development of algorithms for detecting computer attacks based on the use of features
independent of the physical structure of the network and the settings of the equipment
used, as well as the use of deep learning neural networks (deep learning), which
demonstrate better results than other methods in solving a wide range of problems.

In addition, an important aspect of the development of this topic is the study of
ways to increase the resistance of machine learning algorithms to attacks, as well as
the development of methods for detecting anomalies in real time, taking into account
the specifics of modern threats and methods of their covert manifestation.

Thus, the study of intrusion detection system (IDS/IPS) vulnerabilities in
algorithms based on statistical and machine learning methods requires a comprehensive
approach that includes both theoretical research and experimental studies on real data
sets. Only such an approach will make it possible to develop effective and reliable
methods for protecting information systems from modern cyber threats. This topic
represents an urgent and important challenge in the field of cybersecurity, which

requires further research and development.

110

LIST OF SOURCES USED

['mymenko, M. B. IDS / IPS — cuctembl 00Hapy>XKeHUSI U MPEAOTBPALICHUS
Bropxkenuit / M. B. I'mymenko, A. A. Illupses, C. A. I'mymenko. — Tekcrt:
anexTpoHHbii // Konnenmus «OOmecTBa 3HaHWI2 B COBPEMEHHON HayKe. —
2019. — C. 115-117. — URL: https://www.elibrary.ru/item.asp?id= 41328677
(mata obpammenus: 30.04.2023).

Jle Kyanr Munb, ®an Xsto AHb, Hryen Anp Uyen, Hryen UyHr Tben
«UurerpupoBannas IDS/IPS wMoaens MeXay OTKPBITBIM HCTOYHUKOB C
VIy4IIEHHEM MAallMHHOro oOydenusi». // https://apniru/ URL:
https://apni.ru/article/152-integrirovannaya-idsips-model-mezhdu-otkritim
(mara obpamenus: 05.03.2024).

Kymara H.K., I'puropeeBsix A.B. «IIpoekTtupoBaHne u BHEIPEHUE CHCTEMBI
oOHapy>keHus u nnpeaoTpaiienus sropxkeHuit IDS/IPS B koprniopaTuBHOit ceTu
YI'TY». /! URL: chrome-
extension://efaidnbmnnnibpcajpcglclefindmkaj/https://elib.utmn.ru/jspui/bitstre
am/ru-tsu/28957/1/miim_2023 238 242.pdf (mara oopamenus: 05.03.2024).

A . Anmman6u, M.M Anb-Anu, A.A. KoneB «CpaBHUTEILHBIN aHAIW3 METOJ0B
MaIIUHHOTO O0yUYEHHUs, UCTIOIB3YEMBIX B CUCTEMax OOHAPY>KEHHUS BTOPIKCHHIA
KkuOepu3nIecKux CUCTEM. // https://cyberleninka.ru/ URL:
https://cyberleninka.ru/article/n/sravnitelnyy-analiz-metodov-mashinnogo-
obucheniya-v-zadachah-obnaruzheniya-setevyh-anomaliy (mata oOpateHwus:
07.03.2024).

baxenoB MN.O. «MeToabl UWHTEIVIEKTYaJIbHBIX TEXHOJOTMH B 3aJayax
oOHapy>KeHHUsI aTak B KOMIBIOTEPHBIX ceTsax». // https://cyberleninka.ru/ URL:
https://cyberleninka.ru/article/n/issledovanie-primeneniya-neyronnyh-setey-
dlya-obnaruzheniya-nizkointensivnyh-ddos-atak-prikladnogo-urovnya (mata
obpamenus: 10.03.2024).

Basinya E.A., Lukina M.S. «Pa3paboTka Mozynis cucTeMbl OOHApYXCHUS U

MPENOTBPAICHUSI BTOPKEHUI. /- https://cyberleninka.ru/ URL:

111

10.

11.

https://cyberleninka.ru/article/n/razrabotka-modulya-sistemy-obnaruzheniya-i-
predotvrascheniya-vtorzheniy (iara oopamenus: 10.03.2024).

C. M. Tpommmna, H. B. lrymnep «Cucrema oOHapyxxenust atak». // URL:
http://lib.urfu.ru/mns-urfu/author/11203/source/rinc?page=3 (mata oOpameHus:
10.03.2024).

Vinayakumar, R., Soman, K.P., Poornachandrany, P. «Applying convolutional
neural network for network intrusion detection (Conference Paper)». //
https://www.semanticscholar.org/URL.:https://www.semanticscholar.org/paper/
Applying-convolutional-neural-network-for-network-Vinayakumar-
Soman/38b68ee830fa4b85a5411c8b8de36bal8dab4d5a (mara oOpameHus:
10.03.2024).

Azizjon, M., Jumabek, A., Kim, W., «1D CNN based network intrusion
detection with normalization on imbalanced datay. /!
https://www.researchgate.net/ URL.:
https://www.researchgate.net/publication/339641880 1D _CNN _Based Netwo
rk_Intrusion_Detection_with_Normalization on Imbalanced Data (mata
obOpamenus: 11.03.2024).

S. Mukkamala, G. Janoski, and A. Sung, «Intrusion detection using neural
networks and support vector machines». // https://www.semanticscholar.org/
URL.: https://www.semanticscholar.org/paper/Intrusion-detection-using-neural-
networks-and-Mukkamala-
Janoski/159baa5ef81325ef736ca7be12d27e8ec96d7542 (mata oOparieHus:
11.03.2024).

Gharib, A., Sharafaldin, I., Lashkari, A.H., Ghorbani, A.A, «An Evaluation
Framework for Intrusion Detection Dataset». //
https://www.semanticscholar.org/ URL.:
https://www.semanticscholar.org/paper/An-Evaluation-Framework-for-
Intrusion-Detection-Gharib-
Sharafaldin/11a9ae9a37ac6¢96a4344b971659701fd2f594deb (nmara obpareHus:
11.03.2024).

112

12.

13.

14,

15.

16.

R. Perdisci, G. Giacinto, and W. Lee, «Using an ensemble of one-class SVMs
for network intrusion detection». // https://www.researchgate.net/ URL:
https://www.researchgate.net/publication/220765814 Using_an_Ensemble_of
One-Class_SVM_Classifiers to Harden Payload-

based Anomaly Detection Systems (mara oopamenus: 14.03.2024).

Ansam Kbhraisat, Igbal Gondal, Peter Vamplew & Joarder Kamruzzaman,
«Survey of intrusion detection systems: techniques, datasets and challenges». //
https://www.researchgate.net/ URL.:
https://www.researchgate.net/publication/334533397_Survey_of intrusion_det
ection_systems_techniques datasets and challenges (mata oOpaieHus:
14.03.2024).

H. Kim and S. Kim, «Hybrid anomaly detection system for intrusion detectiony.
/l https://www.researchgate.net/ URL.:
https://www.researchgate.net/publication/259138030_A _novel hybrid_intrusio
n_detection_method_integrating_anomaly_detection_with_misuse_detection
(mata oopamenus: 14.03.2024).

M. Mayuranathan, M. Murugan & V. Dhanakoti «Best features based intrusion
detection system by RBM model for detecting DDoS in cloud environmenty. //
https://www.researchgate.net/ URL.:
https://www.researchgate.net/publication/337842653 Best features based intr
usion_detection_system by RBM_model_for_detecting DDoS in_cloud_envi
ronment (1ata obpamenus: 16.03.2024).

Alazab, M., Venkatraman, S., & Watters, P. (2016). A survey on machine
learning techniques in wireless sensor networks intrusion detection. IEEE
Communications Surveys & Tutorials, 18(2), 860-880. // URL: chrome-
extension://efaidnbmnnnibpcajpcglclefindmkaj/https://web.archive.org/web/20
1708290358561d_/http://www.eng.usf.edu/~ibutun/Butun191.pdf (mara
obpamenus: 16.03.2024).

113

17.

18.

19.

20.

21.

22,

23.

24.

25.

Onucanue wu3zo0pereHuss K mareHTy PO Ne2019126640, 22.01.2018.
[TocTostHHOE 0OY4eHME 7151 oOHapy)keHus Bropxkenus // JIO ITsausn, BPUTTC
Pus3 Xonmn, AXMAJI Hasun,.

Onucanue nzobperenus kK mareHTy PO No2017125334, 17.07.2017. Cucrema u
coco® HacTpoiiku cucteM OezomacHocTu npu DDoS-atake // XamuMoHEHKO
Anexcauap AnekcanapoBud (RU), TuxomupoB Auton Bmagumuposuu (RU),
Konomnes Cepreii Banepbepuu (RU).

Onucanue u3zobperenust k nmarentry PO No2017101441, 17.01.2017. Cnocob
3aIUTHl BEO-TIPUIIOKEHUNA TIPU MTOMOIIK UHTEIUIEKTYalIbHOTO CETEBOr0 IKpaHa
C HCIMOJb30BAHMEM aBTOMATUYECKOIO IMOCTPOEHUS MOJAENEH NPHIIOKEHUH //
Hoceesuu I'eopruii Makcumosud (RU), INamatonoB Jlenuc HOpweBuu (RU),
IepBapiasr Banepus ['puropresna (RU), Karomor Omuins Mapcenesud (RU).
Onucanue wu3o0Operenuss k mnareHty P® Ne2005130257/09, 06.11.2003.
CucremMbl ¥ c1OCOOBI IPEIOTBPALIICHUS] BTOPKEHUS JJI1 CETEBBIX CEpBEPOB //
COMII Yap.

Onucanue uzooperenus k mareHty PO Ne2016137336, 19.09.2016. Cucrema u
CrocO0 aBTOTEHEPALMM PEIIAIIUX MPaBWI JJII CHUCTEM OOHApY>KEHHUS
BTOp>KEeHUH ¢ 00patHO# cBsi3bio // Kucnuimu Hukura Uropesuy (RU).
Onucanue wuzoOperenusst k marenty US10778705B1, 15.09.2020. Meton
OOHapyXeHHUsI BTOPXKEHHS Ha OCHOBE TIJIyOOKOro oOyd4eHus, cucremMa u
KOMITBIOTEPHAS IPOTpaMMa JjIsl BeO-TIPUIT0KESHHM.

Onucanue n3obperenus k nmareary US20220124111A1, 21.04.2022, Cuctema
OOHapy>X€HHsI W CMSTYEHUS TOCIEICTBUNA KHOepOe30macHOCTH C
WCITOJIb30BAHUEM MAITUHHOTO OOYUEHHUSI M PACIITUPEHHON KOPEIISIINY TaHHBIX.
B.IL.IIxoxasipes, K.M. Aradapos, B.A. bamrosenko, E.O. Mnbuna, «O030p
METOI0B OOHAPYKCHHUSI aHOMAJIMI B TIOTOKax AaHHBIX», Second Conference on
Software Engineering and Information Management, 2017.

3yokoB Eprenuit BanepreBuu, benoB Buxtop MarseeBuu «MeTomabl

MHTEJJICKTYaJIbHOTO aHaju3a JaHHbIX U OOHapyKeHUe BTOpKeHUiD» // BecTHUK

Cubl'VTU. 2016. Nel (33). URL: https://cyberleninka.ru/article/n/metody-

114

26.

217,

28.

29.

30.

31.

32,

33.

34,

intellektualnogo-analiza-dannyh-i-obnaruzhenie-vtorzheniy (mara oOparieHus:
26.03.2024).

Meton omopubix BektopoB (SVM) // https://neerc.ifmo.ru/ URL:
https://neerc.ifmo.ru/wiki/index.php?title=%D0%9C%D0%B5%D1%82%D0
%BE%D0%B4_%D0%BE%D0%BF%D0%BE%D1%80%D0%BD%D1%8B
%D1%85 %D0%B2%D0%B5%D0%BA%D1%82%D0%BE%D1%80%D0%
BE%D0%B2 (SVM) (nara obpamienus: 29.03.2024).

Annpeac Mromiep, Capa ['Buno Benenue B MalimHHOE 00yUEHHE C TTIOMOIIBIO
PYTHON. - M.,: 2016-2017. - 393 c.

Tiangi Chen and Carlos Guestrin. XGBoost: A Scalable Tree Boosting System.
Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (2016): 785-794.

Weilin Xu, Yanjun Qi and David Evans. Automatically Evading Classifiers: A
Case Study on PDF, Malware Classifiers. Network and Distributed Systems
Symposium 2016, 21-24 February 2016, San Diego, California.

Blaine Nelson et al. Exploiting Machine Learning to Subvert Your Spam Filter.
Proceedings of the 1st USENIX Workshop on Large-Scale Exploits and
Emergent hreats (2008): 1-9.

Carbon Black. Beyond the Hype: Security Experts Weigh in on Artificial
Intelligence, Machine Learning and Non-Malware Attacks (2017).
https://www.carbonblack.com/2017/03/28/beyond-hype-security-experts-

weigh-artificial-intelligence-machine-learning-non-malware-attacks/ (mara
obpamenus: 05.04.2024).

Uwuo K., ®pumsn [[. Mamunnoe obydeHnue u 6e30macHocTh / miep. ¢ adr. A. B.
Cnactuna. — M.: JIMK Ilpecc, 2020. — 388 c.: ui.

EXPLAINING AND HARNESSING ADVERSARIAL EXAMPLES lan J.
Goodfellow, Jonathon Shlens & Christian Szegedy Google Inc., Mountain View,
CA, Published as a conference paper at ICLR 2015.

Mpbl Tak U HE CMOIJIH 3alllUTUTHG CBOKO MOACIb MAUIIWHHOI'O 06yquH;{ oT

COCTSI3aTENbHBIX aTak // Xabp URL:

115

https://www.carbonblack.com/2017/03/28/beyond-hype-security-experts-weigh-artificial-intelligence-machine-learning-non-malware-attacks/
https://www.carbonblack.com/2017/03/28/beyond-hype-security-experts-weigh-artificial-intelligence-machine-learning-non-malware-attacks/

35.

36.

37.

38.

39.

40.

41.

42.

https://habr.com/ru/companies/isp_ras/articles/800751/ (mata oOpamieHus:
5.05.2024).

Module providing evasion attacks under a common interface. // adversarial-
robustness-toolbox URL.: https://adversarial-robustness-
toolbox.readthedocs.io/en/latest/modules/attacks/evasion.html#hopskipjump-
attack (mara oopamenus: 10.05.2024).

Rong-En Fan et al. LIBLINEAR: A Library for Large Linear Classification.
Journal of Machine Learning Research 9 (2008): 1871-1874.

Francis Bach. Stochastic Optimization: Beyond Stochastic Gradients and
Convexity. INRIA — Ecole Normale Supérieure, Paris, France. Joint tutorial with
Suvrit Sra, MIT — NIPS, 2016.

EXPLAINING AND HARNESSING ADVERSARIAL EXAMPLES lan J.
Goodfellow, Jonathon Shlens & Christian Szegedy Google Inc., Mountain View,
CA, Published as a conference paper at ICLR 2015.

Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, Ananthram Swami.
Distillation as a Defense to Adversarial Perturbations against Deep Neural
Networks.

Nman Hlapadansaun, Apam Xadubu Jlamkapu u Amu A. ['opbanu, «Ha nytu
K CO3JaHUI0 HOBOrO HaOoOpa JaHHBIX i OOHAPYKEHHsS BTOPKEHHA U
XapaKTEPUCTHUKE TpaduKka BTOPKEHUI», 4-1 MexayHapoiHas KOHPEepeHIHs 110
6e3omacHocTH U KOHUAeHIMaIbHOCTH MH(popmarmonHbix cuctem (ICISSP),
[Toptyranus, suBaps 2018 r.

Kahraman Kostas. Anomaly Detection in Networks Using Machine Learning.
2018 (error was found in assessing the importance of features) [Kostas2018].
Ger, Alex & Goryunov, M. & Matskevich, A. & Rybolovlev, Dmitry &
Nikolskaya, Anastasiya. (2024). Adversarial Attacks Against a Machine
Learning Based Intrusion Detection System. 10.48612/jisp/eatr-5pxb-akt8.

116

