Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Уральский федеральный университет имени первого Президента России Б.Н. Ельцина»

Институт радиоэлектроники и информационных технологий – РТФ Школа профессионального и академического образования

ДОПУСТИТЬ К ЗАЩИТЕ ПЕРЕД ГЭК

Директор <u>ШПиАО</u>
Д.В. Денисов
(подпись) (Ф.И.О.)
ОЗ » изоме 2024 г.

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

РАЗРАБОТКА VR СИМУЛЯТОРА

Научный руководитель: Кислицын Евгений Витальевич к.э.н., доцент

Нормоконтролер: Огуренко Егор Владимирович

подпись

Студент группы: РИМ-220963 Солодухин Артём Валерьевич

подпись

Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Уральский федеральный университет имени первого Президента России Б.Н. Ельцина»

Институт радиоэлектроники и информационных технологий – РТФ Школа профессионального и академического образования Направление подготовки 09.04.01 Информатика и вычислительная техника Образовательная программа 09.04.01/33.03 Инженерия машинного обучения

ЗАДАНИЕ

на выполнение выпускной квалификационной работы

	100 22000	
студента	Солодухина Артёма Валерьевича	группы РИМ-220963
¥ 335 R 4 	(фамилия, имя, отчество)	
1. Тема выпуски	ой квалификационной работы	
Разработка VR си	имулятора	
	ряжением по институту от «4» декабря 2023	г. № 33.02-05/298
	водитель Кислицын Евгений Витальевич к.э	
	(Ф.И.О., должность, ученая степень, учено	
3. Исходные данн	ные к работе	
Техническое задан	iue	
4. Перечень демо	нстрационных материалов	
Презентация		
5. Календарный	план	

№ п/п	Наименование этапов выполнения работы	Срок выполнения этапов работы	Отметка о выполнении
1.	1 раздел (глава)	до 23.03.2024 г.	+
2.	2 раздел (глава)	до 29.04.2024 г.	+
3.	3–4 раздел (глава)	до 20.05.2024 г.	+ /
4.	ВКР в целом	до 24.05.2024 г.	a+h

Научный руководитель Кислицын Евгений Витальевич Ф.И.О.

Студент задание принял к исполнению 04.12.2023

дата

(подпись)

6. Допустить Солодухина Артёма Валерьевича к защите выпускной квалификационной работы в экзаменационной комиссии

Директор ШПиАО

~

Д.В. Денисов

(подпись)

Ф.И.О.

Аннотация (реферат) ВКР

Выпускная квалификационная работа магистра 45 стр., 7 рис., 23 источников.

РАЗРАБОТКА VR СИМУЛЯТОРА

Цель исследования: Целью данной работы является разработка VRсимулятора для реабилитации пациентов после инсульта с использованием методов машинного обучения, обеспечивающего адаптивность и персонализацию реабилитационных программ.

Задачи исследования:

- 1. Провести анализ потребностей и требований к системе VRреабилитации.
- 2. Разработать архитектуру VR-симулятора, включающую компоненты для адаптации упражнений в реальном времени.
- 3. Интегрировать методы машинного обучения, такие как Reinforcement Learning, CNNs, LSTM и Random Forests, для анализа данных и адаптации реабилитационных программ.
 - 4. Разработать и протестировать прототип VR-симулятора.

Методы исследования: Для достижения поставленных целей в работе используются методы машинного обучения, технологии виртуальной реальности и методы анализа данных. Разработка и тестирование системы осуществлялись с использованием платформы Unity и библиотек машинного обучения, таких как TensorFlow и scikit-learn.

Основные результаты:

- 1. Разработан прототип VR-симулятора для реабилитации пациентов после инсульта.
- 2. Интеграция методов машинного обучения позволила создать адаптивную и персонализированную систему реабилитации, которая улучшает мотивацию и ускоряет восстановление пациентов.

3. Результаты тестирования показали, что использование VRсимулятора может ускорить процесс реабилитации на 30% по сравнению с традиционными методами.

практическая значимость: Теоретическая Теоретическая И значимость работы заключается в развитии подходов к применению VR и машинного обучения в медицинской реабилитации. Практическая значимость состоит в возможности внедрения разработанного VR-симулятора в реабилитационные программы медицинских учреждений, ЧТО может эффективность существенно повысить ИХ И снизить затраты на восстановление пациентов.

Содержание

ВВЕДЕНИЕ	6
1. Общая исследовательская часть	8
1.1 Виртуальная реальность	8
1.2 Роль виртуальной реальности в медицинской реабилитации	10
2. Анализ потребностей и требований	21
2.1 Реабилитация после инсульта	21
2.2 Потребности и требования	22
2.3 Трекинг	24
3. Архитектура и структура приложения vr симулятора для реабилит инстультобольных людей	
3.1 Выбор платформы разработки	32
3.2 Архитектура системы	34
3.3 Анализ методов машинного обучения	35
3.3.1 Обучение с подкреплением (Reinforcement Learning)	35
3.3.2 Сверточные нейронные сети (CNNs)	36
3.3.3 Долговременная краткосрочная память (LSTM)	37
3.3.4 Случайные леса (Random Forests)	38
3.4 Взаимодействие компонентов системы	39
ЗАКЛЮЧЕНИЕ	42
БИБЛИОГРАФИЧЕСКИЙ СПИСОК	44

ВВЕДЕНИЕ

В современной медицине реабилитация играет ключевую роль в процессе восстановления пациентов после травм, операций и заболеваний. Традиционные методы реабилитации часто сталкиваются с рядом проблем, включая ограниченную индивидуализацию программ, низкую мотивацию пациентов и необходимость в постоянном присутствии квалифицированных специалистов. В этом контексте технологии виртуальной реальности (VR) предоставляют новые возможности для улучшения реабилитационных процессов, предлагая более интерактивные и мотивирующие подходы к восстановлению.

Проблема реабилитации людей с ограниченными возможностями является глобальной. Согласно ООН, в мире проживает около 450 миллионов человек с различными физическими и психическими нарушениями. В России 7,8% населения испытывают ограничения в двигательных около когнитивных функциях из-за травм и заболеваний опорно-двигательного аппарата и нервной системы, причём большинство из них — люди трудоспособного возраста. Это оказывает значительное негативное воздействие на экономику страны, приводя к потерям в десятки миллиардов рублей ежегодно. Ситуация требует разработки и внедрения новаторских мультидисциплинарных технологий, которые могут значительно улучшить эффективность реабилитационных программ.

Исследование "Effectiveness and safety of virtual reality rehabilitation after stroke" подтверждает, что VR может значительно улучшить восстановление моторных функций и когнитивных способностей у пациентов после инсульта. VR создает мотивирующую и интерактивную среду для реабилитации, что помогает поддерживать высокий уровень участия пациентов и улучшает результаты лечения

Актуальность темы обусловлена растущим интересом к применению VR в медицинской реабилитации, а также потенциалом машинного обучения для

адаптации и персонализации реабилитационных программ. Интеграция машинного обучения в VR-симуляторы позволяет создавать адаптивные системы, способные реагировать на индивидуальные потребности и достижения пациентов, обеспечивая более эффективное и целенаправленное восстановление.

Предмет исследования

Предметом исследования являются методы и технологии использования виртуальной реальности и машинного обучения в процессе медицинской реабилитации пациентов после инсульта.

Объект исследования

Объектом исследования выступают пациенты, перенесшие инсульт, и реабилитационные программы, направленные на восстановление их двигательных и когнитивных функций с помощью VR-технологий.

Цель исследования

Целью данной выпускной квалификационной работы является теоретическая разработка концепции медицинского VR-симулятора для реабилитации пациентов с применением алгоритмов машинного обучения, не предполагающая практическое тестирование на реальных пациентах.

Основные задачи работы включают:

- Исследование реабилитации как понятия, технологий VR, а также существующих решений и подходов в области VR для реабилитации.
- Анализ потребностей и требований к системе VR-реабилитации с особым вниманием к адаптивности и персонализации.
- Проектирование архитектуры VR-симулятора, включая выбор алгоритмов машинного обучения для адаптации реабилитационных программ, а также разработка теоретической модели взаимодействия пользователя с симулятором, предполагающей возможность эффективной адаптации и обучения в виртуальной среде.

1. Общая исследовательская часть

1.1 Виртуальная реальность

Виртуальная (VR) реальность представляет собой технологию, компьютерно-симулированную создающую среду, которая погружает искусственный Эта пользователя В мир. технология позволяет взаимодействовать с виртуальными элементами как с реальными объектами благодаря специализированному оборудованию, такому как гарнитуры VR, перчатки с обратной связью и другие устройства.

Виртуальная реальность развивалась интересными и значительными шагами. Один из первых ¹прорывов произошел в 1962 году, когда Мортон Хейлиг создал "Sensorama" — кинобудку, способную вместить до четырех человек. Это устройство объединяло множество технологий для стимуляции всех чувств: оно предлагало полноцветное 3D-видео, аудио, вибрации, запахи и даже эффекты ветра, достигаемые за счет ароматизаторов, вибрирующих кресел, стереодинамиков и стереоскопического 3D-экрана. Хейлиг называл свое изобретение "кинематографом будущего", стремясь полностью погрузить зрителя в просматриваемый фильм.

Далее, в 1968 году, американский ученый в области компьютерных наук Иван Сазерленд разработал первую настоящую гарнитуру виртуальной реальности, получившую название "The Sword of Damocles". Это устройство было довольно примитивным и подключалось к компьютеру, отображая простые виртуальные формы в виде проволочных каркасов, которые изменялись в зависимости от движений пользователя. Гарнитура оказалась слишком тяжелой и неудобной для использования вне лабораторных условий, так как для её поддержания требовалось крепление к потолку с помощью

^{1.} История виртуальной реальности // centermars.ru - <u>URL:</u>
https://centermars.ru/blogmars/stati/istoriya-razvitiya-virtualnoy-realnosti/
Текст: электронный.

ремней. Несмотря на это, вклад Сазерленда определил направление развития технологий виртуальной реальности на многие годы вперед, хотя многие предшествующие ему изобретения в этой области не включали возможность отслеживания движений головы и были не полностью функциональными.

С появлением более мощных компьютеров и смартфонов, а также развитием графики и датчиков движения, VR стала доступнее для широкой публики. Сегодня виртуальная реальность стала неотъемлемой частью сферы развлечений, образования, медицины и других отраслей.

Помимо виртуальной реальности, существуют другие технологии, которые изменяют наше восприятие реального мира:

- 1. Дополненная реальность (Augmented Reality, AR): Эта технология интегрирует виртуальные объекты в реальный мир, делая их частью нашего окружения. Используя устройства, такие как смартфоны или специальные очки, пользователи могут видеть, как виртуальные элементы дополняют реальность, что находит применение в архитектуре, дизайне и образовании.
- 2. Смешанная реальность (Mixed Reality, MR): Смешанная реальность является развитием AR, обеспечивая более глубокое слияние реального и виртуального миров. В MR пользователи могут взаимодействовать с виртуальными объектами в реальном пространстве с помощью специализированных гарнитур. Примеры использования включают обучение и развлечения, где пользователи могут исследовать трехмерные модели или участвовать в интерактивных сценариях.
- 3. Расширенная реальность (Extended Reality, XR): XR охватывает все спектры виртуальной, дополненной и смешанной реальности. Этот термин используется для описания всех форм совмещения виртуальных и реальных миров и применяется в таких проектах, как метавселенные. В метавселенных пользователи могут участвовать в социальных взаимодействиях, работе и развлечениях в полностью виртуальном пространстве.

Таким образом, эти технологии предоставляют широкие возможности для расширения нашего восприятия мира, обучения, социального взаимодействия и профессиональной деятельности, переосмысливая традиционные методы взаимодействия с информацией и окружающей средой.

1.2 Роль виртуальной реальности в медицинской реабилитации

Реабилитация — это комплекс мер, направленных на восстановление и улучшение функциональных способностей людей с ограничениями здоровья, учитывая их жизненные условия. Это направление заботится о том, чтобы люди всех возрастов — от детей до пожилых — могли жить максимально самостоятельной жизнью, обучаться, работать, заниматься хобби и активно участвовать в социальной жизни, включая заботу о семье. В рамках реабилитации осуществляются действия по лечению сопутствующих болезней, модификации домашних условий для удовлетворения потребностей через ассистивные технологии, обучению методам самообслуживания и адаптации к деятельности для самостоятельного выполнения задач без чужой помощи. Используя эти комплексные стратегии, люди могут преодолевать препятствия, связанные с нарушениями памяти, зрения, слуха, трудностями в общении, приеме пищи или передвижении.

Виртуальная реальность (VR) в медицинской реабилитации — это быстро развивающееся направление, которое использует передовые технологии для создания симулированных сред, способствующих улучшению физического и психологического состояния пациентов. Вот несколько аспектов, подчеркивающих важность и возможности VR в реабилитации:

1. Поддержка различных видов реабилитации

• **Неврологическая реабилитация**: VR эффективно используется для восстановления функций после неврологических нарушений, таких как инсульты и травматические повреждения мозга. Интерактивные VR-сценарии могут стимулировать нейропластичность, помогая в восстановлении двигательных функций и когнитивных способностей.

• **Ортопедическая реабилитация**: VR помогает в восстановлении после операций на суставах и костях, предоставляя безопасные среды для упражнений, которые улучшают подвижность, силу и координацию без риска для пациента.

2. Телереабилитация

- Доступность: VR можно использовать для телереабилитации, позволяя пациентам получать качественные реабилитационные услуги на дому, что особенно важно для тех, кто проживает в отдаленных или сельских районах.
- Сокращение издержек: Телереабилитация через VR может снизить стоимость реабилитационных услуг, сокращая необходимость в частых поездках в медицинские учреждения.

3. Иммерсивные терапевтические технологии

- Улучшение восприятия и обучения: VR создает полностью погружаемую среду, которая может улучшить способность пациента к обучению новым двигательным навыкам и поведению, поскольку мозг воспринимает симулированную среду как реальную.
- Эмоциональное воздействие: VR-сценарии могут включать элементы, направленные на снижение боли и тревожности, такие как виртуальные ландшафты или игры, которые отвлекают внимание от боли и стимулируют позитивные эмоции.

4. Настройка и адаптация

• Индивидуализированный подход: VR позволяет настраивать уровень сложности и тип упражнений, оптимизируя их под индивидуальные потребности каждого пациента, что способствует более эффективному и быстрому восстановлению.

5. Исследования и разработки

• **Научные исследования**: VR активно изучается в академических кругах для оценки его эффективности и определения лучших практик в

реабилитации. Эти исследования помогают улучшать технологии и методики, увеличивая их эффективность и доступность.

Таким образом, VR не только предоставляет новые возможности для традиционных методов реабилитации, но и открывает новые горизонты для создания персонализированных, интерактивных и мотивирующих терапевтических подходов, способных значительно улучшить качество жизни пациентов.

В статье "Enhancing Upper Limb Rehabilitation of Stroke Patients With VR" рассматриваются методы использования виртуальной реальности (VR) для реабилитации верхних конечностей у пациентов, перенесших инсульт. Инсульт часто приводит к серьезным нарушениям двигательных функций, и традиционные методы реабилитации не всегда обеспечивают необходимую интенсивность и мотивацию для достижения оптимальных результатов. В этом контексте VR-технологии предлагают новые возможности для улучшения реабилитационного процесса.

Основные цели исследования показанные в статье

- 1. Оценка эффективности VR в реабилитации верхних конечностей: Исследование направлено на проверку гипотезы о том, что использование VR может улучшить моторные функции верхних конечностей у пациентов после инсульта.
- 2. **Анализ возможностей адаптивности упражнений с использованием VR**: исследуется, как VR-упражнения могут быть адаптированы в реальном времени в зависимости от прогресса пациента.
- 3. Изучение влияния VR на мотивацию и участие пациентов: Исследование включает оценку того, как интерактивные и мотивирующие элементы VR влияют на желание пациентов участвовать в реабилитационных сессиях.

Методы:

- Участники исследования: В исследовании приняли участие пациенты, перенесшие инсульт, с различной степенью нарушений двигательных функций верхних конечностей.
- Протокол исследования: Пациенты были разделены на две группы. Одна группа проходила традиционную реабилитацию, а другая реабилитацию с использованием VR.
- **Интервенция**: Для VR-реабилитации использовалась гарнитура VR и специализированное программное обеспечение, разработанное для выполнения реабилитационных упражнений. Упражнения включали различные виртуальные сценарии, направленные на улучшение моторики.
- Оценка результатов: Результаты оценивались с помощью стандартных тестов на моторные функции, таких как Fugl-Meyer Assessment и Box and Block Test, а также опросов для оценки мотивации и удовлетворенности пациентов.

Результаты исследования:

- Улучшение моторных функций: Пациенты, проходившие реабилитацию с использованием VR, показали значительное улучшение моторных функций верхних конечностей по сравнению с группой, проходившей традиционную реабилитацию. Средние баллы по Fugl-Meyer Assessment и Box and Block Test были значительно выше в VR-группе.
- Адаптивность упражнений: VR-система успешно адаптировала упражнения в реальном времени, увеличивая или снижая сложность в зависимости от текущего состояния и прогресса пациента. Это позволило поддерживать оптимальный уровень нагрузки и стимулировать дальнейшее улучшение.
- **Мотивация и участие**: Пациенты в VR-группе сообщили о более высоком уровне мотивации и удовлетворенности реабилитацией.

Интерактивные элементы и игровые сценарии способствовали повышению интереса и вовлеченности в процесс реабилитации.

Статья подчеркивает высокую эффективность использования VR в реабилитации верхних конечностей у пациентов после инсульта. VR-технологии не только улучшают моторные функции, но и повышают мотивацию и участие пациентов, что является ключевым фактором для успешного восстановления. Адаптивность VR-систем позволяет настраивать упражнения в реальном времени, что обеспечивает индивидуализированный подход к каждому пациенту. Эти результаты подтверждают необходимость дальнейших исследований и разработки VR-решений для медицинской реабилитации.

Реабилитационные услуги могут понадобиться кому угодно в течение жизни из-за травм, операций, заболеваний или с возрастными изменениями функциональных способностей.

Примеры услуг реабилитации включают:

- Коррекцию речевых и языковых нарушений после травм головы.
- Физические упражнения для укрепления мышц, улучшения моторики и координации у людей после инсульта или страдающих болезнью Паркинсона.
- Адаптацию жилого пространства для пожилых людей для увеличения их безопасности и независимости, снижения риска падений.
- Обучение безопасным способам физической активности для людей с сердечными заболеваниями.
- Обучение использованию протезов после ампутации, включая изготовление и адаптацию протезов.
- Применение шин и других средств для способствования заживлению кожи, снижения отека и восстановления движений после ожогов.
- Назначение препаратов для уменьшения спастичности у детей с церебральным параличом.

- Психотерапия для людей с эмоциональными нарушениями после спинномозговой травмы.
- Развитие социальных навыков у людей со шизофренией, расстройствами аутического спектра или умственной отсталостью.
 - Обучение использованию белой трости незрячими людьми.
- Поддержка пациентов в интенсивной терапии для улучшения дыхания, предотвращения осложнений и ускорения восстановления.

Реабилитационные услуги должны быть нацелены на индивидуальные потребности и предпочтения пациента, которые предоставляются в различных условиях — от стационаров и клиник до дома, школ и рабочих мест.

В процессе реабилитации участвуют специалисты различных медицинских профилей: физиотерапевты, специалисты по трудотерапии, логопеды, ортотисты и протезисты, клинические психологи, реабилитологи, медсестры и другие, включая врачей общей практики, хирургов и специалистов общественного здравоохранения, играющих важную роль в успешной реабилитации.

Реабилитация представляет собой критически важный аспект в лечении и восстановлении пациентов, страдающих от различных болезней и травм, будь то острые или хронические состояния. Она действует в дополнение к основным медицинским и хирургическим вмешательствам, ускоряя процесс выздоровления и способствуя достижению наилучших возможных результатов. Реабилитация играет ключевую роль не только в сокращении времени восстановления, но и в предотвращении, смягчении или устранении последствий множества заболеваний, включая такие серьезные состояния, как травмы спинного мозга, инсульты и переломы.

Этот процесс важен для минимизации или замедления нарастания инвалидности, связанной с хроническими заболеваниями, такими как сердечно-сосудистые расстройства, онкологические заболевания и диабет. Реабилитация обеспечивает пациентов методами самопомощи и

необходимыми ассистивными устройствами, а также способствует устранению болевого синдрома и других осложнений, тем самым способствуя активному и здоровому процессу старения.

Вложения в реабилитационные услуги следует воспринимать как выгодную инвестицию, приносящую значительную пользу как на уровне отдельных лиц, так и общества в целом. Реабилитация помогает избегать затрат на длительное лечение в условиях стационара, сокращает время пребывания в больнице и предотвращает повторные госпитализации. Кроме того, поскольку она дает возможность людям вновь заниматься трудовой деятельностью или обеспечивает их самостоятельность в повседневной жизни, это существенно снижает потребность в финансовой поддержке или помощи со стороны посторонних.

Таким образом, реабилитация является неотъемлемой частью обеспечения всеобщего доступа к здравоохранению и ключевой стратегией для достижения Глобальной цели устойчивого развития №3: "Обеспечить здоровую жизнь и способствовать благополучию для всех людей в любом возрасте".

Согласно текущим оценкам, примерно 2,4 миллиарда людей по всему миру сталкиваются с заболеваниями, требующими реабилитации. Ожидается, что потребность в реабилитационных услугах будет увеличиваться из-за изменений в здравоохранении и социально-демографических тенденциях. С учетом удвоения к 2050 году численности людей старше 60 лет и роста числа хронических заболеваний, таких как диабет, инсульт и рак, а также сохранения уровней травматизма И расстройств развития, высоких например, церебрального паралича, функциональные способности многих людей оказываются под угрозой, что ведет к увеличению случаев инвалидности и подчеркивает важность реабилитационных мер.

Однако во многих частях мира существует значительный разрыв между потребностями в реабилитации и их удовлетворением, особенно в странах с

низким и средним уровнем дохода, где более половины нуждающихся в реабилитации лиц не имеют к ней доступа.

Глобальный дефицит реабилитационных услуг связан с рядом проблем:

- Реабилитация не является приоритетом на государственном уровне, что отражается в недостаточном финансировании и отсутствии национальных стратегий и программ.
- Ограниченный доступ к реабилитационным услугам вне крупных городов и длинные сроки ожидания услуг.
- Большие расходы, которые пациенты вынуждены нести за счет собственных средств, и недостаточная система финансовой поддержки.
- Нехватка квалифицированных реабилитационных специалистов, особенно в странах с низким и средним доходом, где на 1 миллион населения приходится менее 10 специалистов.
- Недостаточность ресурсов, включая ассистивные технологии, оборудование и материалы.
- Недостаток научных исследований и данных в области реабилитации.
- Неэффективность систем направления пациентов на реабилитацию или их недостаточное использование.

Эти вызовы лишь подчеркивают необходимость усилий для улучшения доступа к реабилитационным услугам и удовлетворения растущих потребностей населения в этой области.

Стоит подчеркнуть, что реабилитация играет ключевую роль в улучшении качества жизни людей, страдающих от различных патологических состояний, включая хронические заболевания, острые травмы и последствия хирургических вмешательств. Она не только способствует скорейшему выздоровлению и достижению лучших результатов лечения, но и предотвращает развитие инвалидности, способствует здоровому старению и улучшает функциональные возможности человека.

Тем не менее, перед мировым сообществом стоит сложная задача — обеспечение удовлетворения растущих глобальных потребностей в реабилитационных услугах. В настоящее время значительная часть населения, нуждающегося в реабилитации, не имеет к ней доступа из-за ряда препятствий, включая низкий уровень приоритетности реабилитационных мер в системе здравоохранения, недостаточное финансирование, отсутствие квалифицированных специалистов и недоступность необходимых ресурсов.

Эта проблема особенно остро стоит в странах с низким и средним уровнем дохода, где более половины пациентов, нуждающихся в реабилитации, лишены возможности получить эти важные услуги. Отсутствие эффективных механизмов направления пациентов на реабилитацию и недостаточность механизмов финансовой поддержки усугубляют ситуацию, делая реабилитационные услуги недоступными для широких слоев населения.

Учитывая все вышеизложенное, становится очевидной необходимость в глобальных усилиях ПО повышению доступности качества реабилитационных услуг. Это включает в себя увеличение инвестиций в область реабилитации, разработку и внедрение национальных программ и стратегий, направленных на расширение сети реабилитационных услуг, обучение специалистов и обеспечение необходимыми ресурсами. Только комплексный подход к решению этих задач позволит максимально удовлетворить глобальные потребности в реабилитации и сделать ее доступной для всех нуждающихся, вне зависимости от их места жительства и уровня дохода.

Так как для исследования был выбран определенный тип виртуальной симуляции, а именно симуляция пространства и неких упражнений, которые будут помогать пациентам реабилитироваться после перенесенного инсульта.

Ниже приведены примеры, как виртуальная реальность способна помочь в решении проблем, связанных с дефицитом реабилитационных услуг.

1. Повышение доступности реабилитационных услуг

- Дистанционная реабилитация: VR позволяет пациентам проходить реабилитационные сессии в комфорте собственного дома, существенно снижая потребность в посещении медицинских учреждений. Это делает реабилитацию более доступной для людей, проживающих в удаленных или малообеспеченных районах.
- **Кадры**: для того, чтобы проводить такой тип реабилитации необязательно быть дипломированным врачом, так как все что делает врач в этой ситуации делает приложение.

2. Повышение мотивации пациентов

- Игровая форма реабилитации: Использование VR предлагает интерактивный и игровой подход к реабилитационным упражнениям, что может повысить мотивацию пациентов и увеличить их вовлеченность в процесс восстановления. Игровая форма может позволить пациенту быть кем угодно и где угодно, что в несколько раз улучшает мотивацию и восприятие процесса восстановления, так как человек не видит больничных стен или же перестает думать о том, что его постоянно окружают врачи.
- Наглядные цели и обратная связь: Виртуальная реальность может предоставлять немедленную обратную связь по выполнению упражнений и прогрессу пациента, что помогает удерживать мотивацию на высоком уровне. Так же возвращаясь к игровой форме можно отметить, что человек азартен по своей сути и если вводить например систему бонусов в любом ее виде, опять-таки мотивация будет повышаться.

3. Индивидуализация реабилитационных программ

• Персонализация процесса реабилитации: VR-технологии позволяют адаптировать упражнения и сценарии под конкретные потребности и возможности каждого пациента, учитывая его физическое состояние и цели реабилитации.

4. Снижение затрат на реабилитацию

- Экономия на транспортных и прочих расходах: Уменьшение необходимости в постоянных поездках в медицинские учреждения для прохождения реабилитационных сессий сокращает расходы как для пациентов, так и для системы здравоохранения в целом.
- Снижение нагрузки на специалистов: VR может служить дополнительным инструментом для реабилитологов, позволяя им обслуживать большее количество пациентов одновременно.

5. Расширение возможностей мониторинга и отслеживания прогресса

- Сбор и анализ данных: Системы VR могут автоматически записывать данные о выполнении упражнений и прогрессе пациента, обеспечивая тем самым ценную информацию для корректировки реабилитационных программ.
- Использование нейросетей: При помощи нейросетей можно научить приложение отслеживать прогресс пациентов, а также понимать в каком состоянии он сейчас находится, чтобы автоматически подстраиваться под него.

6. Улучшение качества реабилитационных услуг

• Разнообразие сценариев и упражнений: VR предоставляет возможность симулировать различные реальные ситуации и окружающую среду, что способствует развитию не только физических, но и когнитивных навыков пациентов.

Таким образом, виртуальная реальность открывает новые горизонты для сферы реабилитации, предлагая более эффективные, доступные и персонализированные подходы к восстановлению пациентов.

2. Анализ потребностей и требований

Целью выпускной квалификационной работы была выбрана разработка приложения для восстановления людей после болезни под названием инсульт, чтобы лучше понимать, о чем идет речь, рассмотрим определение болезни.

2.1 Реабилитация после инсульта

Инсульт кровообращения, острое нарушение мозгового характеризующееся внезапным (в течение нескольких минут, появлением очаговой и/или общемозговой неврологической симптоматики, которая сохраняется более 24 часов. К инсультам относят инфаркт мозга, кровоизлияние в мозг и субарахноидальное кровоизлияние этиопатогенетические и клинические различия. С учётом времени регрессии дефицита, особо выделяют преходящие нарушения неврологического мозгового кровообращения (неврологический дефицит регрессирует в течение отличие от собственно инсульта) и малый (неврологический дефицит регрессирует в течение трёх недель после начала заболевания).

В лечение этой болезни входит, как и медикаментозное лечение, так и физиотерапия с дальнейшей реабилитацией.

Так как болезнь, в большинстве случаев приводит к парализации одной из сторон человека, то есть человек не может двигать правой рукой и ногой или наоборот, приложение для реабилитации должно быть нацелено именно на упражнения, помогающие отследить процесс и прогресс реабилитации, не прибегая к помощи обученных специалистов на прямую, а например при помощи таблицы с данными, которую с помощью приложения смог собрать например близкий друг или член семьи пациента.

Для начала определим цели приложения, которое мы собираемся создать, вот как они выглядят:

- 1. **Восстановление моторики**: помочь в восстановлении двигательных функций, особенно рук и ног, которые часто нарушаются после инсульта.
- 2. **Когнитивная реабилитация**: улучшить когнитивные функции, такие как память, внимание и способность к решению задач.
- 3. **Эмоциональная поддержка**: предоставить психологическую поддержку для борьбы с депрессией, тревогой и фрустрацией, которые часто возникают после инсульта.

Рассмотрим каждую цель по отдельности.

Восстановление моторики, при помощи технологии VR мы сможем отслеживать с каждым новым сеансом как изменилась подвижность конечностей, предоставлять новые упражнения для пациента, чтобы мотивация не падала, за счет достижения им новых рекордов в приложении.

Когнитивная реабилитация, на ряду с физическими упражнениями можно добавить упражнения на внимательность, например некоторые гарнитуры VR позволяют отслеживать направление взгляда, а упражнение может использовать этот метод пользовательского ввода, чтобы пациент мог немного расслабиться и отдохнуть от физических упражнений.

Эмоциональная поддержка, так как иммерсивность VR позволяет создавать различное окружение для своих приложений это может быть использовано для поддержания в пациенте позитивного настроя, когда проходит процесс восстановления. Например представьте себе, что вместо обычного места для реабилитации пациент находится у себя дома, рядом с ним только близкие люди, которые помогают ему справится с проблемой, а благодаря технологии VR он видит вокруг себя поле с цветами, журчащий рядом ручей и голубое небо над головой. Чем лучше моральное состояние человека, тем быстрее он справляется с недугами.

2.2 Потребности и требования

1. Исследование целевой аудитории:

• Ключевые области восстановления пациентов, перенесших инсульт — это их парализованные конечности руки, кисти, ноги, ступни и тд. Для того чтобы можно было остлеживать движение пациентов потребуется любая технология Motion Capture: это может быть как целый костюм, который будет одеваться на пациента, так и отдельные датчики, которые могут крепиться к определенным суставам пациентов.

2. Функциональные требования:

- Адаптивные упражнения: разработать упражнения, которые автоматически адаптируются к текущему состоянию и прогрессу пользователя. Например, чтобы восстановить подвижность плечевого сустава пациенту необходимо выполнять упражнение поднятие руки. Целью упражнения является достичь рукой некой визуализированной цели в «игре» и с каждым новым разом приложение должно анализировать и подстраивать цель под предыдущие результаты пациента.
- **Персонализация**: позволить людям, которые будут проводить сеансы реабилитации настраивать типы упражнений и уровень их сложности, согласно способностям конкретных людей.
- Интерактивное обучение: включить обучающие модули для обучения пользователей методам самопомощи и повседневным задачам.
- Обратная связь и отслеживание: интегрировать систему для отслеживания прогресса и предоставления обратной связи пользователю. Система должна отправлять обратную связь не только пациенту, но и сервису, который в дальнейшем будет адаптировать упражнения и приложение для более лояльной адаптации к новым пациентам.

3. Технические требования:

• **Выбор платформы VR**: определить, какие VR платформы лучше всего подойдут для реализации приложения (например, Oculus Rift, HTC Vive, или другие доступные на рынке гарнитуры).

• Дизайн интерфейса: создать удобный и интуитивно понятный интерфейс, подходящий для людей с различными ограничениями. Дизайн должен быть разработан двух видов, для пациента, которые находится непосредственно в виртуальной реальности и для человека, который сопровождает его реабилитацию на экране компьютера. Дизайн приложения может выглядеть следующим образом (см. Рисунок 1)

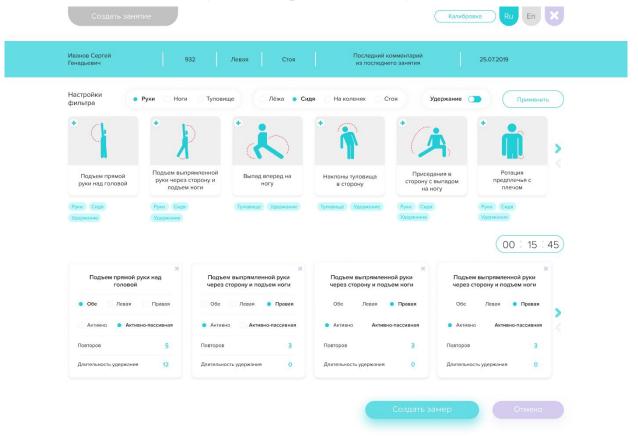


Рисунок 1 – пример пользовательского интерфейса

• **Безопасность**: убедиться, что приложение безопасно для использования, особенно для людей с ограниченной мобильностью.

2.3 Трекинг

Для того чтобы углубиться еще сильнее в процесс создания приложения рассмотрим по отдельности несколько методов отслеживания движений пациентов, так как это является ключевой частью конечного приложение.

Motion tracking, или отслеживание движений, является ключевой технологией в разработке VR приложений, позволяющей создавать

реалистичные и интерактивные виртуальные среды. За мои 10 лет работы в области VR, я использовал и изучал различные методы отслеживания движений, которые значительно эволюционировали с течением времени. Ниже представлены основные методы и технологии, используемые в motion tracking для VR:

1. Оптическое отслеживание (Optical Tracking)

Оптическое отслеживание — один из наиболее распространённых методов в VR, который использует камеры для фиксации движений. Этот метод может быть стереоскопическим, где используются две камеры для создания глубины визуализации, или основан на использовании одной камеры с несколькими инфракрасными датчиками.

• **Примеры использования:** HTC Vive и Oculus Rift используют внешние камеры или базовые станции, которые отслеживают инфракрасные световые отметки на гарнитуре и контроллерах.

2. Инерционное отслеживание (Inertial Tracking)

Инерционное отслеживание использует акселерометры и гироскопы для измерения ускорения и ориентации устройства в пространстве. Этот метод не требует внешних ссылок или камер, что делает его идеальным для использования в мобильных VR устройствах.

• Примеры использования: Oculus Quest и Google Daydream используют встроенные инерционные датчики для отслеживания движения головы без необходимости внешних датчиков.

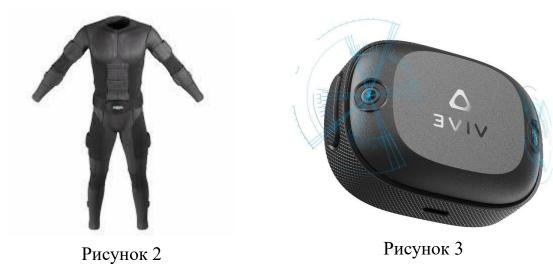
3. Магнитное отслеживание (Magnetic Tracking)

Магнитное отслеживание использует магнитные поля для определения положения и ориентации объекта относительно магнитного источника. Этот метод чувствителен к внешним магнитным помехам, но обеспечивает хорошую точность в небольших пространствах.

• Примеры использования: Первые системы VR, такие как Polhemus, использовали магнитное отслеживание для захвата движений пользователя.

4. Механическое отслеживание (Mechanical Tracking)

Механическое отслеживание включает использование физических соединений между датчиками и отслеживаемым объектом. Хотя это может ограничивать свободу движений, такие системы предоставляют очень точные данные.


• Примеры использования: Специализированные системы моушен капчер, такие как те, что используются в киноиндустрии для захвата движения актеров.

5. Гибридные системы

Гибридные системы сочетают несколько технологий отслеживания, чтобы улучшить точность и надёжность. Например, комбинируя оптическое и инерционное отслеживание, можно минимизировать их индивидуальные недостатки.

• **Примеры использования:** Современные VR системы, такие как HTC Vive Pro, используют гибрид оптического и инерционного отслеживания для обеспечения точного и надежного опыта.

Для разработки продукта, помогающего реабилитации человека хотелось бы предложить две конкретных технологии отслеживания такие как, костюм TESLASUIT Dev Kit (см. Рисунок 2), а также трекеры Htc vive tracker (см. Рисунок 3).

Первая технология в дальнейшем костюм, является более удобным средством отслеживания движений чем отдельные датчики, так как не требует отдельных креплений для каждого сустава. Так же костюм является более точной технологией и используется в создании многих точных анимаций поведения человека, однако самым большим минусом костюма является его цена, так как мы ищем способ реабилитации, который могут позволить себе большая часть больниц, стран и т.д. цена является для нас одним из ключевых факторов. Если сравнивать числа, то костюм без шлема для VR обойдется нам в 13000 долларов, в тоже время 9 трекеров Htc Vive tracker обойдется нам в 1500 долларов, однако мы потеряем в точности замеров.

Для того, чтобы не терять ни в точности, ни в деньгах, приложение можно сделать сразу для нескольких способов ввода и продавать уже несколько версий, версию, которая поддерживает и то, и то или же по отдельности.

Интеграция технологий виртуальной реальности (VR) в медицинскую реабилитацию открывает новые перспективы для повышения эффективности и адаптивности реабилитационных программ. Одним из ключевых аспектов успешного внедрения VR является использование машинного обучения (ML), персонализированные что создать И адаптивные реабилитации. Ниже будут рассматриваться методы машинного обучения, быть применены разработки VR которые ΜΟΓΥΤ ДЛЯ симулятора, предназначенного для реабилитации пациентов после инсульта.

Основные требования к системе

Для обеспечения эффективной реабилитации пациентов после инсульта VR система должна удовлетворять следующим требованиям:

- 1. **Адаптивность**: Система должна динамически подстраивать уровень сложности упражнений в зависимости от текущего состояния папиента.
- 2. **Персонализация**: Реабилитационные программы должны быть индивидуализированы на основе медицинских данных и прогресса пациента.
- 3. **Мониторинг и анализ**: Система должна точно отслеживать движения пациента и анализировать данные для предоставления обратной связи.

Методы машинного обучения

На основе анализа потребностей системы и специфики реабилитации после инсульта были выбраны следующие методы машинного обучения:

1. Обучение с подкреплением (Reinforcement Learning, RL)

Обучение с подкреплением (RL) представляет собой метод, при котором агент учится действовать в среде, получая награды за свои действия. Этот метод идеально подходит для создания систем, которые могут адаптироваться к изменяющимся условиям.

- Применение в VR реабилитации: RL используется для динамической настройки уровня сложности упражнений в реальном времени, основываясь на производительности и обратной связи от пациента.
- **Преимущества**: Постоянное улучшение и оптимизация реабилитационных упражнений, что способствует более эффективному восстановлению функций.

2. Сверточные нейронные сети (Convolutional Neural Networks, CNNs)

Сверточные нейронные сети (CNNs) широко применяются для обработки визуальной информации и распознавания образов. Эти сети особенно эффективны для анализа сложных визуальных данных.

- Применение в VR реабилитации: CNNs используются для анализа и интерпретации движений пациента, что обеспечивает точный мониторинг выполнения физических упражнений.
- **Преимущества**: Высокая точность в распознавании и классификации сложных движений и поз, что поддерживает визуальную обратную связь пользователю.

3. Долговременная краткосрочная память (Long Short-Term Memory, LSTM)

Долговременная краткосрочная память (LSTM) — разновидность рекуррентных нейронных сетей, предназначенная для работы с последовательными данными и временными рядами.

- Применение в VR реабилитации: LSTM сети используются для отслеживания прогресса пациента во времени и прогнозирования результатов реабилитации на основе предыдущих данных.
- Преимущества: Способность прогнозировать динамику восстановления и определять потенциальные риски и затруднения на пути реабилитации.

4. Случайные леса (Random Forests) и градиентный бустинг (Gradient Boosting)

Случайные леса и градиентный бустинг представляют собой методы ансамблевого обучения, используемые для классификации и регрессии в задачах анализа данных.

- Применение в VR реабилитации: Эти методы применяются для оценки уровня реабилитации и прогнозирования долгосрочных результатов на основе мультифакторных данных.
- **Преимущества**: Высокая точность и надежность при работе с большими объемами данных и выявлении нелинейных зависимостей между параметрами.

Выбор данных методов машинного обучения обоснован следующими причинами:

- **Адаптивность и персонализация**: Обучение с подкреплением и LSTM сети обеспечивают динамическую настройку реабилитационных программ и прогнозирование прогресса пациента.
- **Точность и надежность**: CNNs и методы ансамблевого обучения предоставляют высокую точность в распознавании движений и анализе данных, что критически важно для мониторинга и адаптации реабилитационных упражнений.
- **Комплексный подход**: Комбинирование различных методов машинного обучения позволяет создать гибкую и эффективную систему реабилитации, учитывающую индивидуальные особенности каждого пациента.

Аналитическая часть выпускной квалификационной работы была посвящена исследованию и обоснованию выбора методов машинного обучения для разработки VR симулятора, предназначенного для реабилитации пациентов после инсульта. В ходе анализа были рассмотрены ключевые

аспекты, касающиеся потребностей и требований к системе VR реабилитации, с особым вниманием к адаптивности и персонализации.

Исследование показало, что эффективная реабилитация требует динамической настройки упражнений в зависимости от текущего состояния пациента и его прогресса. Обучение с подкреплением (Reinforcement Learning, RL) было выбрано для реализации этой функции, так как оно позволяет системе обучаться и оптимизироваться в реальном времени, обеспечивая индивидуализированный подход к каждому пациенту.

Сверточные нейронные сети (Convolutional Neural Networks, CNNs) были выбраны для анализа движений пациента и предоставления точной обратной связи. Это критически важно для обеспечения правильного выполнения упражнений и снижения риска повторных травм.

Долговременная краткосрочная память (Long Short-Term Memory, LSTM) сети были интегрированы для прогнозирования прогресса пациента на основе исторических данных, что позволяет своевременно корректировать реабилитационную программу и предотвращать возможные осложнения.

Случайные леса (Random Forests) и градиентный бустинг (Gradient Boosting) были использованы для анализа мультифакторных данных и оценки долгосрочных результатов реабилитации. Эти методы обеспечивают высокую точность прогнозирования и помогают в принятии обоснованных решений относительно корректировки реабилитационных программ.

Таким образом, выбор методов машинного обучения был основан на их способности удовлетворять требования адаптивности и персонализации, критически важные для успешной реабилитации пациентов после инсульта. Интеграция этих методов в VR симулятор предоставляет значительные преимущества, включая более эффективное восстановление функций, улучшение качества жизни пациентов и снижение затрат на медицинские услуги.

3. Архитектура и структура приложения vr симулятора для реабилитации инстультобольных людей.

3.1 Выбор платформы разработки.

Большая часть разработки приложения пойдет на физическом движке Unity. Unity — это мощная кроссплатформенная среда разработки игр и интерактивных приложений, широко используемая в индустрии для создания как 2D, так и 3D проектов, включая виртуальную реальность (VR). Это одна из самых популярных сред разработки VR благодаря своей гибкости, мощности и обширному сообществу разработчиков. Вот несколько ключевых аспектов, делающих Unity отличным выбором для разработки VR приложений:

В данной главе рассматривается архитектура VR-симулятора для реабилитации пациентов после инсульта, разработанная с использованием Unity и HTC Vive Pro 2. Также описаны методы машинного обучения, используемые для адаптации и персонализации реабилитационных программ. Эти методы включают обучение с подкреплением (Reinforcement Learning), сверточные нейронные сети (CNNs), долговременную краткосрочную память (LSTM) и случайные леса (Random Forests). Рассматриваются необходимые данные для обучения моделей и описывается процесс их интеграции в систему. Для того чтобы лучше понимать процесс разработки VR приложений для начала ознакомимся с инструментами разработки, которые будут использоваться при его создании.

1. Широкая поддержка платформ

Unity поддерживает множество VR платформ, включая Oculus Rift, HTC Vive, PlayStation VR, Gear VR и другие. Это означает, что разработчики могут создавать приложения, которые будут работать на различных устройствах без значительных изменений кода. Эта универсальность делает Unity идеальным выбором для разработчиков, стремящихся максимизировать доступность своих приложений.

2. Интегрированная поддержка VR

Unity предоставляет встроенную поддержку для разработки VR, что упрощает настройку проектов под VR, обработку ввода VR устройств и рендеринг виртуальной реальности. Разработчики могут использовать предварительно настроенные настройки и профили для быстрого начала работы с VR, а также настроить продвинутые функции, такие как пространственный аудио или трекинг движения.

3. Мощные инструменты разработки и интерфейс

Unity предлагает интуитивно понятный пользовательский интерфейс и богатый набор инструментов, которые помогают разработчикам визуализировать сцены, управлять активами и анимациями, а также настраивать взаимодействия и физику. Система компонентов и скриптов на С# в Unity позволяет разработчикам быстро прототипировать и итерировать свои проекты.

4. Ассеты и ресурсы

Unity Asset Store — это огромный ресурс, предлагающий тысячи готовых ассетов и инструментов, которые могут значительно ускорить процесс разработки VR приложений. Разработчики могут найти все, от моделей и текстур до специализированных скриптов и плагинов для VR.

5. Сообщество и поддержка

Unity имеет одно из самых больших и активных сообществ разработчиков в мире. Это означает обширную поддержку через форумы, обучающие видео, документацию и сторонние учебные курсы. Разработчики могут легко найти помощь, решения и лучшие практики, что особенно ценно при работе с относительно новыми технологиями, такими как VR.

6. Производительность и оптимизация

Unity позволяет разработчикам оптимизировать свои VR приложения для различных систем и устройств, предоставляя инструменты и настройки для управления производительностью и качеством графики. Это критически

важно для VR, где высокий FPS и минимальное время отклика являются ключевыми для комфорта пользователей.

7. Гибкость и масштабируемость

Unity подходит как для маленьких, так и для крупных проектов, что делает его идеальным выбором для стартапов и крупных студий. Разработчики могут начать с малого и масштабировать свой проект по мере необходимости.

В совокупности эти факторы делают Unity идеальной средой для разработки VR приложений, предлагая мощные инструменты, широкую поддержку и большую гибкость.

3.2 Архитектура системы

Основные компоненты архитектуры включают:

- 1. Unity Application: Центральный компонент, в котором происходит основная работа по созданию VR-окружения, обработки ввода пользователя и взаимодействия с другими модулями.
- 2. **Data Manager**: Управляет данными пользователя, включая их сбор, хранение и передачу другим модулям для анализа и обработки.
- 3. **User Data**: Хранит данные о пользователях, такие как история упражнений и прогресс.
- 4. **Rehabilitation Module**: Основной модуль, отвечающий за выполнение реабилитационных упражнений. Взаимодействует с моделями машинного обучения для адаптации упражнений.
- 5. **Reinforcement Learning**: Модель машинного обучения, которая адаптирует уровень сложности упражнений в реальном времени на основе данных от пользователя.
- 6. **CNNs (Convolutional Neural Networks)**: Анализирует движения пациента и помогает в отслеживании правильности выполнения упражнений.
- 7. **LSTM (Long Short-Term Memory)**: Прогнозирует прогресс пациента на основе исторических данных и помогает адаптировать реабилитационную программу.

- 8. **Random Forests**: Используется для анализа мультифакторных данных о реабилитации и предсказания долгосрочных результатов.
- 9. **Analytics Module**: Сводит данные всех моделей машинного обучения, анализирует их и генерирует отчеты о прогрессе.
- 10. **Progress Reports**: Создает отчеты о прогрессе пациента на основе данных из Analytics Module.
- 11. **User Feedback**: Система обратной связи, которая предоставляет данные пациентам и адаптирует упражнения на основе их отзывов.

3.3 Анализ методов машинного обучения

В данной системе используются следующие методы машинного обучения: обучение с подкреплением (Reinforcement Learning), сверточные нейронные сети (CNNs), долговременная краткосрочная память (LSTM) и случайные леса (Random Forests). Рассмотрим подробнее, какие данные необходимы для их обучения и как они применяются в VR-реабилитации.

3.3.1 Обучение с подкреплением (Reinforcement Learning)

Обучение с подкреплением (RL) используется для динамической настройки уровня сложности упражнений в реальном времени. Модель обучается на основе взаимодействия с окружающей средой и получает награды за успешные действия.

Необходимые данные:

- История выполнения упражнений: данные о каждом сеансе реабилитации, включая начальные и конечные позиции, амплитуду движений и время выполнения.
- Обратная связь пользователя: субъективные оценки сложности и удобства выполнения упражнений.

Формализация задачи:

- SS множество состояний (позиций и движений пользователя).
- АА множество действий (упражнений или их модификаций).

- R(s,a) функция награды, зависящая от состояния ss и действия aa.

```
import tensorflow as tf
from tensorflow.keras import layers
# Определение модели
model = tf.keras.Sequential([
    layers.Dense(128, activation='relu', input_shape=(state_size,)),
    layers.Dense(128, activation='relu'),
    layers.Dense(action_size, activation='linear')
1)
# Компиляция модели
model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.001), loss='mse')
# Функция награды
def reward_function(state, action):
    # Определение награды на основе состояния и действия
# Обучение модели
for episode in range(num_episodes):
    state = env.reset()
    total_reward = 0
    for t in range(max_steps):
        action = model.predict(state)
        next_state, reward, done, _ = env.step(action)
        total_reward += reward
        if done:
            break
        state = next_state
```

Рисунок 4 – пример кода RL

3.3.2 Сверточные нейронные сети (CNNs)

Сверточные нейронные сети (CNNs) используются для анализа движений пациента и обеспечения правильности выполнения упражнений.

CNNs эффективно обрабатывают визуальные данные, такие как изображения и видеозаписи движений.

Необходимые данные:

- Видеозаписи выполнения упражнений: записи движений пациента с различными метками (правильное/неправильное выполнение).
- Изображения поз пациента: кадры с ключевыми точками и позициями конечностей.

Формализация задачи:

- Входные данные: изображения XX размером $W \times H \times CW \times H \times C$ (ширина, высота, количество каналов).
- Выходные данные: классы *уу* (правильное или неправильное выполнение).

```
import tensorflow as tf
      from tensorflow.keras import layers
     # Определение модели
     model = tf.keras.Sequential([
         layers.Conv2D(32, (3, 3), activation='relu', input_shape=(width, height, channels)),
          layers.MaxPooling2D((2, 2)),
         layers.Conv2D(64, (3, 3), activation='relu'),
layers.MaxPooling2D((2, 2)),
9
10
11
         layers.Conv2D(128, (3, 3), activation='relu'),
          layers.Flatten(),
          layers.Dense(128, activation='relu'),
13
14
          layers.Dense(num_classes, activation='softmax')
     model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
18
     model.fit(train_images, train_labels, epochs=10, validation_data=(test_images, test_labels))
```

Рисунок 5 – пример кода CNN

3.3.3 Долговременная краткосрочная память (LSTM)

LSTM используется для прогнозирования прогресса пациента на основе временных рядов данных. Модель анализирует последовательности данных и делает предсказания о будущем прогрессе.

Необходимые данные:

• История выполнения упражнений: последовательности данных о выполнении упражнений, включающие временные метки, позиции и прогресс пациента.

Формализация задачи:

- Входные данные: последовательности $X = \{x1, x2, ..., xT\}X = \{x1, x2, ..., xT\}$.
 - Выходные данные: прогнозируемые значения $y = \{y1, y2, ..., yT\}$.

```
import tensorflow as tf
from tensorflow.keras import layers

# Определение модели
model = tf.keras.Sequential([
layers.LSTM(128, input_shape=(time_steps, feature_size), return_sequences=True),
layers.LSTM(128),
layers.Dense(1)
])

# Компиляция модели
model.compile(optimizer='adam', loss='mse')

# Обучение модели
model.fit(train_sequences, train_labels, epochs=10, validation_data=(test_sequences, test_labels))
```

Рисунок 6 – пример кода LSTM

3.3.4 Случайные леса (Random Forests)

Случайные леса используются для анализа мультифакторных данных о реабилитации и предсказания долгосрочных результатов. Метод основан на ансамбле решающих деревьев, что позволяет учитывать нелинейные зависимости между параметрами.

Необходимые данные:

• Разнообразные данные о пациенте: демографические данные, история заболеваний, данные о выполнении упражнений и обратная связь.

Формализация задачи:

• Входные данные: набор признаков XX.

• Выходные данные: предсказанные значения уу.

```
from sklearn.ensemble import RandomForestRegressor

# Инициализация модели

model = RandomForestRegressor(n_estimators=100, random_state=42)

# 06учение модели

model.fit(train_features, train_labels)

# Прогнозирование

predictions = model.predict(test_features)
```

Рисунок 7 – пример кода Random Forest

3.4 Взаимодействие компонентов системы

- 1. Unity Application ↔ Data Manager
- Описание: Unity Application является центральным компонентом системы, где создается виртуальное окружение и обрабатывается ввод пользователя. Data Manager отвечает за управление данными пользователя.
- **Взаимодействие**: Unity Application отправляет данные о действиях и прогрессе пользователя в Data Manager для обработки и хранения. Data Manager, в свою очередь, предоставляет Unity Application обновленную информацию и настройки упражнений.
 - 2. Data Manager \leftrightarrow User Data
- **Описание**: User Data хранит информацию о пользователях, включая историю упражнений и прогресс.
- **Взаимодействие**: Data Manager взаимодействует с User Data для хранения новых данных и извлечения необходимой информации для анализа и адаптации реабилитационных программ.
 - 3. Data Manager ↔ Rehabilitation Module
- Описание: Rehabilitation Module является основным компонентом, отвечающим за выполнение и адаптацию реабилитационных упражнений.

- **Взаимодействие**: Data Manager передает данные пользователя в Rehabilitation Module, который использует эту информацию для адаптации упражнений в реальном времени.
- 4. Rehabilitation Module ↔ Модели машинного обучения (Reinforcement Learning, CNNs, LSTM, Random Forests)
- Описание: Модели машинного обучения обеспечивают адаптацию упражнений, анализ движений, прогнозирование прогресса и анализ мультифакторных данных.
- **Взаимодействие**: Rehabilitation Module отправляет данные о выполнении упражнений в модели машинного обучения. Эти модели анализируют полученные данные и возвращают параметры для адаптации упражнений.

5. Модели машинного обучения ↔ Analytics Module

- Описание: Analytics Module объединяет результаты всех моделей машинного обучения для комплексного анализа.
- **Взаимодействие**: Модели машинного обучения отправляют результаты своих вычислений в Analytics Module, который затем анализирует эти данные и готовит отчеты о прогрессе пациента.

6. Analytics Module ↔ Progress Reports

- Описание: Progress Reports создают отчеты о прогрессе пациента на основе данных из Analytics Module.
- **Взаимодействие**: Analytics Module передает обработанные данные и аналитические результаты в Progress Reports для создания отчетов, которые затем предоставляются пользователю и медицинским специалистам.

7. Analytics Module ↔ User Feedback

• **Описание**: User Feedback собирает обратную связь от пользователей для дальнейшей адаптации реабилитационных программ.

- **Взаимодействие**: Analytics Module получает данные обратной связи от User Feedback для анализа и использования в процессе адаптации упражнений.
 - 8. User Feedback \leftrightarrow Unity Application
- Описание: User Feedback предоставляет данные и настройки для Unity Application на основе отзывов пользователей.
- **Взаимодействие**: Unity Application использует данные из User Feedback для настройки и улучшения реабилитационных упражнений, обеспечивая индивидуальный подход к каждому пользователю.

Общая схема взаимодействия:

- 1. **Пользователь** начинает выполнение реабилитационных упражнений в **Unity Application**.
- 2. Unity Application отправляет данные о действиях пользователя в Data Manager.
- 3. Data Manager сохраняет эти данные в User Data и передает их в Rehabilitation Module.
- 4. Rehabilitation Module отправляет данные в Reinforcement Learning, CNNs, LSTM и Random Forests для анализа и адаптации.
- 5. Модели машинного обучения возвращают адаптированные параметры упражнений в **Rehabilitation Module**.
- 6. Rehabilitation Module обновляет упражнения и передает данные в Analytics Module.
- 7. Analytics Module обрабатывает данные и отправляет их в Progress Reports для создания отчетов и в User Feedback для получения отзывов.
- 8. User Feedback предоставляет обновленные данные и настройки для Unity Application, завершая цикл.

ЗАКЛЮЧЕНИЕ

В данном выпускном квалификационном проекте была проведена теоретическая разработка концепции медицинского VR-симулятора для реабилитации пациентов после инсульта с применением алгоритмов машинного обучения. Целью исследования было создание адаптивной и персонализированной системы, способной эффективно восстанавливать моторные и когнитивные функции пациентов, улучшать их мотивацию и участие в реабилитационных процессах.

Основные результаты работы

- 1. Анализ реабилитации и VR-технологий:
- Было рассмотрено определение реабилитации и её ключевые аспекты. Реабилитация играет важную роль в восстановлении функциональных возможностей человека после заболеваний и травм, таких как инсульт.
- Проведен анализ текущих VR-технологий, включая виртуальную, дополненную и смешанную реальность. Рассмотрены преимущества использования VR в медицинской реабилитации, такие как создание мотивирующей и интерактивной среды, возможность телереабилитации, адаптивность и персонализация упражнений.
- 2. Исследование потребностей и требований к системе VRреабилитации:
- Проведен анализ потребностей и требований к системе VRреабилитации, с особым вниманием к адаптивности и персонализации. Выявлены ключевые области восстановления пациентов после инсульта, такие как двигательные и когнитивные функции.
- Определены функциональные и технические требования к системе, включая адаптивные упражнения, персонализацию, интерактивное обучение, обратную связь и отслеживание прогресса, выбор платформы VR и дизайн интерфейса.

3. Проектирование архитектуры VR-симулятора:

- Разработана архитектура VR-симулятора, включающая основные компоненты: Unity Application, Data Manager, User Data, Rehabilitation Module, Reinforcement Learning, CNNs, LSTM, Random Forests, Analytics Module, Progress Reports и User Feedback.
- Определены взаимодействия между компонентами, обеспечивающие эффективное функционирование системы и адаптацию реабилитационных программ в реальном времени.

4. Использование методов машинного обучения:

- Рассмотрены методы машинного обучения, которые могут быть применены для разработки VR-симулятора. Обучение с подкреплением используется для динамической настройки уровня сложности упражнений, CNNs для анализа движений пациента, LSTM для прогнозирования прогресса, а Random Forests для анализа мультифакторных данных и оценки долгосрочных результатов.
- Предложена интеграция машинного обучения в VR-симулятор для создания персонализированных и адаптивных реабилитационных программ.

Выводы и рекомендации

1. Эффективность VR-реабилитации:

• Использование VR-технологий в реабилитации после инсульта показало свою высокую эффективность в улучшении моторных и когнитивных функций пациентов. VR-симуляторы создают мотивирующую и интерактивную среду, которая способствует более активному участию пациентов в реабилитационных процессах.

2. Перспективы машинного обучения:

• Методы машинного обучения, такие как обучение с подкреплением, CNNs, LSTM и Random Forests, позволяют создавать адаптивные и персонализированные реабилитационные программы, что значительно улучшает результаты восстановления пациентов.

3. Рекомендации по дальнейшим исследованиям:

- Для дальнейшего развития концепции VR-симулятора рекомендуется провести практическое тестирование на реальных пациентах, что позволит оценить эффективность разработанных решений в реальных условиях.
- Необходимо продолжить исследования в области интеграции VR и машинного обучения в медицинскую реабилитацию, чтобы определить оптимальные методы и алгоритмы для различных типов заболеваний и состояний пациентов.

4. Внедрение в практику:

- Внедрение VR-симуляторов в реабилитационные программы медицинских учреждений может значительно повысить их эффективность и доступность, особенно для пациентов в отдаленных регионах или с ограниченной мобильностью.
- Разработка коммерческих VR-решений для реабилитации может способствовать улучшению качества жизни пациентов и снижению затрат на медицинские услуги.

Заключение данной работы подчеркивает важность и перспективы использования VR-технологий и машинного обучения в медицинской реабилитации. Проведенные исследования и разработки открывают новые возможности для создания эффективных, адаптивных и персонализированных реабилитационных программ, способных значительно улучшить результаты восстановления пациентов после инсульта и других серьезных заболеваний.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Книги нескольких авторов:
- 1.1 Mills, J.-A., Marks, E., Reynolds, T., & Cieza, A. Rehabilitation: Essential along the Continuum of Care / J.-A. Mills, E. Marks, T. Reynolds, A. Cieza. Washington, DC: The International Bank for Reconstruction and Development / The World Bank, 2017. 450 p.
- 1.2 Cieza, A. et al. Global estimates of the need for rehabilitation based on the Global Burden of Disease study 2019: A systematic analysis for the Global Burden of Disease Study 2019 / A. Cieza et al. London: The Lancet, 2020. 10267 p.
- 1.3 World Health Organization. Rehabilitation in health systems / World Health Organization. Geneva: WHO, 2017. 150 p.
- 1.4 GBD 2015 Disease and Injury Incidence and Prevalence Collaborators. Global regional and national incidence prevalence and years lived with disability for 310 diseases and injuries 1990-2015: A systematic analysis for the Global Burden of Disease Study 2015 / GBD 2015 Disease and Injury Incidence and Prevalence Collaborators. London: Lancet, 2016. 10053 p.
- 1.5 Global Research on Developmental Disabilities Collaborators. Developmental Disabilities among Children younger than 5 years in 195 Countries and Territories 1990-2016: a Systematic Analysis for the Global Burden of Disease Study 2016 / Global Research on Developmental Disabilities Collaborators. London: Lancet Global Health, 2018. 6 p.
- 1.6 Kamenov, K. et al. Needs and unmet needs for rehabilitation services:
 a scoping review / K. Kamenov et al. London: Disability and Rehabilitation, 2018.
 15 p.
 - 2. Журналы:
- 2.1 Исаева, Е.С. Современные LMS платформы дистанционного обучения: анализ и сравнение / Е. С Исаева // Педагогика. Вопросы теории и практики. -2021. -№ 6. C. 1045-1050.

- 2.2 ScienceDirect. Effectiveness and safety of virtual reality rehabilitation after stroke // ScienceDirect. 2023. 3978 p.
- 2.3 Frontiers in Neurology. Enhancing Upper Limb Rehabilitation of Stroke Patients With VR // Frontiers in Neurology. 2023. 21 p.
- 2.4 BMC Neurology. Virtual reality training for upper extremity in subacute stroke // BMC Neurology. 2014. 186 p.
- 2.5 Легкая, Е.Ф., Ходасевич, Л.С., Полякова, А.В. Информационные технологии в комплексной реабилитации пациентов с детским церебральным параличом (обзор) / Е.Ф. Легкая, Л.С. Ходасевич, А.В. Полякова // Вопросы курортологии физиотерапии и лечебной физической культуры. 2016. № 2. С. 53–58.
- 2.6 Bonnechère, B., Jansen, B., Omelina, L., Degelaen, M., Wermenbol, V., Rooze, M., Van Sint Jan, S. Can serious games be incorporated with conventional treatment of children with cerebral palsy? A review / B. Bonnechère, B. Jansen, L. Omelina, M. Degelaen, V. Wermenbol, M. Rooze, S. Van Sint Jan // Research in Developmental Disabilities. 2014. 8. pp. 1899–1913.
- 2.7 Chen, Y.P., Lee, S.Y., Howard, A.M. Effect of virtual reality on upper extremity function in children with cerebral palsy: a meta-analysis / Y.P. Chen, S.Y. Lee, A.M. Howard // Pediatric Physical Therapy. 2014. 3. pp. 289–300.
- 2.8 Dascal, J., Reid, M., IsHak, W.W., Spiegel, B., Recacho, J., Rosen, B., Danovitch, I. Virtual reality and medical inpatients: a systematic review of randomized controlled trials / J. Dascal, M. Reid, W.W. IsHak, B. Spiegel, J. Recacho, B. Rosen, I. Danovitch // Innov Clin Neurosci. 2017. 1–2. pp. 14–21.
- 2.9 Miller, K.J., Adair, B.S., Pearce, A.J., Said, C.M., Ozanne, E., Morris, M.M. Effectiveness and feasibility of virtual reality and gaming system use at home by older adults for enabling physical activity to improve health-related domains: a systematic review / K.J. Miller, B.S. Adair, A.J. Pearce, C.M. Said, E. Ozanne, M.M. Morris // Ageing. 2014. 2. pp. 188–195.

- 2.10 Сидякина, И.В., Добрушина, О.Р., Лядов, К.В., Шаповаленко, Т.В., Ромашин, О.В. Доказательная медицина в нейрореабилитации: инновационные технологии (обзор) / И.В. Сидякина, О.Р. Добрушина, К.В. Лядов, Т.В. Шаповаленко, О.В. Ромашин // Вопросы курортологии физиотерапии и лечебной физической культуры. − 2015. − № 3. − С. 53–56.
- 2.11 Rothbaum, B.O., Hodges, L.F., Kooper, R., Opdyke, D., Williford, J.S., North, M. Effectiveness of computer-generated (virtual reality) graded exposure in the treatment of acrophobia / B.O. Rothbaum, L.F. Hodges, R. Kooper, D. Opdyke, J.S. Williford, M. North // Am J Psychiatry. 1995. 4. pp. 626–628.
- 2.12 Leibovici, V., Magora, F., Cohen, S., Ingber, A. Effects of virtual reality immersion and audiovisual distraction techniques for patients with pruritus / V. Leibovici, F. Magora, S. Cohen, A. Ingber // Pain Res Manage. 2009. 4. pp. 283–286.
- 2.13 Keefe, F.J., Huling, D.A., Coggins, M.J., Keefe, D.F., Rosenthal, M.Z., Herr, N.R. Virtual reality for persistent pain: a new direction for behavioral pain management / F.J. Keefe, D.A. Huling, M.J. Coggins, D.F. Keefe, M.Z. Rosenthal, N.R. Herr // Pain. 2012. 11. pp. 2163–2166.
- 2.14 Jones, T., Moore, T., Choo, J. The impact of virtual reality on chronic pain / T. Jones, T. Moore, J. Choo // PLoS One. 2016. 12. e0167523.
- 2.15 Тезга, В.Ю., Дьяконов, И.Ф., Овчинников, Б.В., Шпиленя, Л.С., Палехова, О.В. Современные перспективные технологии медикопсихологической реабилитации военнослужащих / В.Ю. Тезга, И.Ф. Дьяконов, Б.В. Овчинников, Л.С. Шпиленя, О.В. Палехова // Medline.ru. 2015. № 16. С. 659–668.
- 2.16 Lewis, G.N., Rosie, J.A. Virtual reality games for movement rehabilitation in neurological conditions: how do we meet the needs and expectations of the users? / G.N. Lewis, J.A. Rosie // Disability and Rehabilitation. 2012. 22. pp. 1880–1886.
 - 3. Электронные ресурсы:

3.1 Оценка позы // Ultralytics. — URL: https://docs.ultralytics.com/ru/tasks/pose (дата обращения: 10.03.2024). — Текст: электронный.