СТРУКТУРА И СВОЙСТВА КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ НА ОСНОВЕ СЕЛЕНИДОВ ПЕРЕХОДНЫХ МЕТАЛЛОВ

Шаймуратов С. Г. 1, Шерокалова Е. М. 1, Акрамов Д. Ф. 1, Селезнева Н. В. 1 Уральский федеральный университет имени первого Президента России Б.Н. Ельцина, ИЕНиМ, г. Екатеринбург, Россия Е-mail: sergey.shaimuratov@urfu.ru

STRUCTURE AND PROPERTIES OF COMPOSITE MATERIALS BASED ON TRANSITION METAL SELENIDES

Shaimuratov S. G.¹, Sherokalova E. M.¹, Akramov D. F.¹, Selezneva N. V.¹ Ural Federal University, Institute of Natural Sciences and Mathematics, Ekaterinburg, Russia

The physical properties of the 80% Fe_{6.95}Se₈_20%HfSe₂ composite were studied. A strong influence of the composite effect on the hysteresis properties has been revealed.

Исследуемый материал $80\% Fe_{6.95} Se_{8}_{20}\% HfSe_{2}$ — композит на основе селенидов переходных металлов. Соединения $Fe_{1-y}Se$ обладают слоистой структурой типа NiAs, в которой полностью заполненные слои халькогена с гексагональной упаковкой чередуются со слоями металла, в которых присутствуют вакансии. В интервале концентраций $0.125 < y \le 0.25$, исследованные на сегодняшний день соединения являются металлами с ферримагнитным упорядочением ниже температуры T_c , лежащей в интервале от 460 K до 300 K [1]. Соединение $HfSe_2$ также обладает слоистой структурой (тип CdI_2), является полупроводником и парамагнетиком Паули [2].

В данной работе с помощью метода твердофазного ампульного синтеза были получены соединения Fe_{6.95}Se₈ и HfSe₂, и проведена их аттестация. Композит 80%Fe_{6.95}Se₈_20%HfSe₂ получен механическим перетиранием в течение 40 минут и спрессован. Полученная таблетка делилась на 2 части, и одна из них отжигалась в вакууме при 400°С в течение одних суток. Для исследования фазового состава использовался метод порошковой рентгеновской дифракции на дифрактометре Bruker D8 ADVANCE. Измерения намагниченности в зависимости от температуры и величины приложенного магнитного поля осуществлялись на вибрационном магнитометре Lake Shore VSM 7407. Температурные зависимости электросопротивления измерялись стандартным четырёхзондовым методом с использованием автономного криостата замкнутого цикла CryoFree 204.

Рентгенограмма, полученная для композита, представляет собой суперпозицию дифракционных картин исходных фаз $Fe_{6.95}Se_8$ и $HfSe_2$. В отожжённом материале произошла реакция компонентов, в результате которой изменился состав входящих фаз: $(Fe_{1-x}Hf_x)_3Se_4$ и $FeSe_2$.

При исследовании магнитных свойств установлено, что в композите $80\% Fe_{6.95} Se_{8} 20\% Hf Se_{2}$ при температуре T=80~K удалось в 1.5 раза увеличить

коэрцитивную силу (до 4.2 кЭ) в сравнении с исходным селенидом железа $Fe_{6.95}Se_8$ ($H_c=2.7$ кЭ). Намагниченность в поле 17 кЭ в пересчете на $Fe_{6.95}Se_8$ также увеличилась на 14%, при этом температура магнитного упорядочения осталась $T_c=450$ К. Для отожжённого материала наблюдается, в сравнении с исходным соединением Fe_3Se_4 , увеличение значения коэрцитивной силы при T=80 К.

Электросопротивление $80\% Fe_{6.95}Se_{8}_20\% HfSe_{2}$ носит активационный характер в интервале измеряемых температур и составляет величину порядка 10^{-4} Ом*м. На температурной зависимости электросопротивления материала (Fe_{1-x}Hf_x)₃Se₄_FeSe₂ при температуре 230 К происходит резкое падение электросопротивления с 10^{-4} до 10^{-5} Ом*м.

Работа выполнена при поддержке Министерства науки и высшего образования Российской Федерации (проект FEUZ-2023-0017).

- 1. P. Terzieff, K.L. Komarek, Monatshefte fur Chemie 109, 1037-1047 (1978).
- 2. N.F. Mott, M. Kaveh, J. Phyis. 14, 005 (1981).