ТЕПЛОВОЕ РАСШИРЕНИЕ СОЕДИНЕНИЙ Fe₃Se₄ И Fe_{2.95}Dy_{0.05}Se₄

<u>Мозговых С.Н.</u> 1 , Шерокалова Е.М. 1 , Казанцев В.А. 2 , Баранов Н.В. 1,2 , Селезнева Н.В. 1

1) Уральский федеральный университет имени первого Президента России Б.Н. Ельцина, ИЕНиМ, г. Екатеринбург, Россия

THERMAL EXPANSION OF Fe₃Se₄ AND Fe_{2.95}Dy_{0.05}Se₄ COMPOUNDS

Mozgovykh S.N.¹, Sherokalova E.M.¹, Kazantsev V.A.², Baranov N.V.^{1, 2}, Selezneva N.V.¹

¹⁾ Ural Federal University, Institute of Natural Sciences and Mathematics, Ekaterinburg, Russia

Thermal expansion and magnetization of polycrystalline compounds Fe_3Se_4 and $Fe_{2.95}Dy_{0.05}Se_4$ was studied. An Invar effect associated with volume spontaneous magnetostriction was observed in both compounds.

Слоистое соединение Fe₃Se₄ обладает дальним ферримагнитным порядком ниже температуры $T_c = 320$ К. В литературе хорошо изучено поведение температуры Кюри при замещении части атомов железа на атомы других 3d металлов [1,2]. Эта характеристика оказывается крайне чувствительной даже к замешениям. Важным явлением при переходе самым малым магнитоупорядоченную область является возникновение спонтанной магнитострикции, при этом коэффициент теплового расширения (КТР) начинает сильно отличаться от обусловленного только фононным вкладом. На данный литературе не отражено поведение спонтанной магнитострикции для данного соединения и нет данных о его тепловом расширении, в то время как в близком по составу селенидном соединении Fe₇Se₈ выявлено наличие большой отрицательной спонтанной магнитострикции [3]. Установлено что деформации решетки Fe₇Se₈, также, формированием ферримагнитного порядка, носят существенно анизотропный характер. Вдоль оси с и в плоскости слоев ав ниже Т_с коэффициенты теплового расширения имеют как разные величины, так и знаки.

Целью данной работы было изучение теплового расширения исходного образца Fe₃Se₄, а также соединения с малым замещением железа на диспрозий.

Для синтеза поликристаллических соединений использовали одностадийный твердофазный метод в вакуумированных кварцевых ампулах. Аттестация фазового состава и определение кристаллической структуры проводились методом порошковой рентгеновской дифракции на дифрактометре Bruker D8

²⁾ Институт физики металлов имени М.Н. Михеева УрО РАН, г. Екатеринбург, Россия E-mail: stepan.mozgovykh@urfu.ru

²⁾ Institute of Metal Physics of Ural Branch of Russian Academy of Sciences, Ekaterinburg, Russia

ADVANCE. Магнитные измерения проводились на установке PPMS DynaCool в температурном диапазоне 4 - 360 К и полях до 90 kOe. На дилатометре DL-1500 RHP компании ULVAC-SINKU RIKO (Япония) в интервале температур от 80 К до 600 К были проведены измерения теплового расширения.

Полученное соединение $Fe_{2.95}Dy_{0.05}Se_4$ изоструктурно соединению Fe_3Se_4 . При замещении параметры решетки, температура Кюри и гистерезисные свойства не претерпели значительных изменений.

В данных соединениях наблюдается сложная картина поведения теплового расширения. При температурах выше Т_с оно хорошо описывается в модели Грюнайзена-Дебая, с учетом только фононного вклада. При переходе в магнитоупорядоченную область объемная спонтанная возникает магнитострикция, которая приводит к возникновению инварного эффекта, при температуры котором при понижении происходит не уменьшение относительного объема, а его увеличение. Замещение диспрозием не приводит к качественному изменению поведения в магнитоупорядоченной Установлено, что замещение части атомов железа на атомы диспрозия приводит к значительному снижению объемной спонтанной магнитострикции. Отличие в поведении теплового расширения исследуемых соединений от Fe₇Se₈ может быть связано с различием в КТР вдоль оси с и в плоскости слоев аb.

Работа выполнена при финансовой поддержке Российского научного фонда (грант № 22-13-00158).

- 1. P. Terzieff, J. Phys. Chem. Solids 43, №3, p. 305 (1982).
- 2. A.F. Andersen, J. Leciejewicz, Le Journal de Physique, 25 pp. 574 578 (1964).
- 3. S.N. Mozgovykh, V.A. Kazantsev, D.F. Akramov, E.M. Sherokalova, N.V. Selezneva, N.V. Baranov, Journal of Physics and Chemistry of Solids, V. 180, pp. 111466 (2023)