R-63

ВАРИАНТ АППАРАТУРНОГО ОФОРМЛЕНИЯ ПРОЦЕССА УПАРИВАНИЯ РАО В ВЫПАРНОМ АППАРАТЕ ПЛЕНОЧНОГО ТИПА ПРИ ЗНАЧЕНИИ ПОЛЕЗНОЙ РАЗНОСТИ ТЕМПЕРАТУР 10 °C

А. П. Хомяков¹, В. Н. Гушшамова¹, И. Ю. Камисов¹, С. В. Морданов¹, Т. В. Хомякова¹, Е. С. Осотова¹, М. С. Захватошина¹

¹Уральский федеральный университет им. первого Президента России Б. Н. Ельцина, 620002, Россия, г. Екатеринбург, ул. Мира, 19

E-mail: v.n.gushshamova@urfu.ru

Целью данной работы является исследование гидродинамики двухфазного потока в теплообменных трубках разного диаметра выпарного аппарата пленочного типа, предназначенного для упаривания радиоактивных отходов. На основании полученных результатов представлен вариант аппаратурного оформления процесса упаривания PAO в выпарном аппарате при значении полезной разности температур 10 °C и диаметрах теплообменных труб Ø22x2 мм, Ø28x2 мм, Ø32x2 мм, Ø38x2 мм, Ø45x2 мм. Данный вариант разработан применительно к особым условиям упаривания высокоактивных PAO: ограничение по высоте аппарата; оптимальная интенсивность орошения внутренней поверхности теплообменных трубок; упаривание за один проход без рециркуляции.

Исследования гидродинамики двухфазного потока в трубном пространстве выпарного аппарата проведены с помощью численного метода моделирования [1] при следующих технологических режимах работы выпарного аппарата:

- 1. Температура греющего пара -80 °C;
- 2. Начальное абсолютное давление в трубном пространстве 31176 Па.
- 3. Длина каждой теплообменной трубки 4 м.

Характеристики ступеней выпарного аппарата пленочного типа с теплообменными трубками различных диаметров представлены в таблице 1.

I	J нач, кг/(м*ч)	1009,78	G	13
ø45x2,	J кон, кг/(м*ч)	843,93	G	10
L=4 м	Степень	1,197	•	
II	J нач, кг/(м*ч)	1017,61	G	10
ø38x2,	J кон, кг/(м*ч)	843,01	G	90
L=4 м	Степень	1,201	<u>.</u>	
III	J нач, кг/(м*ч)	1023,66	G	90
ø32x2,	J кон, кг/(м*ч)	839,39	G	74
L=4 м	Степень	1,207	<u>.</u>	
IV	J нач, кг/(м*ч)	979,77	G	74
ø28x2,	J кон, кг/(м*ч)	801,11	G	60
L=4 м	Степень	1,22	<u>.</u>	
V	J нач, кг/(м*ч)	1068,15	G	60
ø22x2,	J кон, кг/(м*ч)	864,97	G	49
L=4 м	Степень	1,2	<u> </u>	
		Степень	2,65	

Таблица 1 – Характеристики ступеней

Установлено, что степень упаривания каждой ступени имеет значение \sim 1,2, и это означает, что данный показатель эффективности упаривания не зависит от диаметра теплообменных труб. Однако при значении полезной разности температур 10 °C возможно упарить раствор PAO в 2,65 раза.

Библиографический список

1. Khomyakov A.P. Mathematical model of two-phase flow processes in heat exchange tubes of the falling film evaporator / Khomyakov A.P., Gushshamova V.N., Mordanov S.V., Khomyakova T.V. // AIP Conference Proceedings. 2021. № 2388. DOI: 10.1088/1755-1315/864/1/012037