Слоистые перовскиты, обладающие общей формулой АА',В,О,,,,,, представляют собой уникальные материалы, где А — щелочноземельный металл, такой как барий или стронций, А' — редкоземельный металл, например лантан или неодим, а В — трехвалентный металл, вроде индия или скандия. Исследования протонных проводников с монослойной перовскитной структурой $AA'BO_{4}$ (n=1), основанных на соединениях типа BaNdInO₄ и SrLaInO₄, показали их уникальную способность к протонному переносу. Особое внимание заслуживает BaLaInO, кристаллизующийся в орторомбическую сингонию. Проведенные исследования показали, что допирование катионных подрешеток этого материала донорными и акцепторными элементами приводит к значительному увеличению протонной и кислородно-ионной проводимости на порядки. Это свидетельствует о высоком потенциале развития сложнооксидных систем с перовскитной структурой для создания новых протонпроводящих материалов. В настоящей работе было проведено изовалентное допирование Ва-подрешетки BaLaInO₄ ионами Ca²⁺, пройдена рентгенофазовая аттестация материалов, а также исследованы физикохимические свойства допированных слоистых перовскитов.

Исследование свойств медно-никелевых покрытий

<u>Д. Д. Рыжикова¹</u>, А. А. Чернышев^{1,2}, А. Б. Даринцева¹

¹Уральский федеральный университет им. первого Президента России Б. Н. Ельцина ²Институт высокотемпературной электрохимии УрО РАН

В настоящее время все больше возрастает потребность в чистом водороде. Электролитический способ получения газообразного водорода щелочным электролизом водных растворов позволяет получать чистый газ. Для снижения себестоимости производства необходимо расширять исследование новых электродных материалов — возможных кандидатов катализаторов реакции разложения воды. В данном исследовании необходимо получить покрытие,

которое обладает низким значением перенапряжения выделения водорода, высокой пористостью и механической устойчивостью. Металлы платиновой группы обладают низким значением перенапряжения выделения водорода, но высокая стоимость сдерживает их применение. Вторая группа металлов — это металлы железной группы, они имеют невысокое перенапряжение выделения водорода.

Медно-никелевые покрытия получали из электролитов, содержащих 0,5 M NiSO $_4$ + 0,001 M CuSO $_4$ + 1,5 M H $_2$ SO $_4$ + 1 M HCl в гальваностатическом режиме электролиза с использованием анодов ОРТА, композит осаждали на стальную пластину AISI304 площадью 1 см 2 . Электроды подключали к источнику тока RIGOL DP 832. Был проведен планированный эксперимент 2^2 по установлению влияния продолжительности синтеза осадка (x_1) и плотности тока осаждения (x_2) на микропористость осадка $\beta_{\text{микро}}$ (у). Составляли матрицу планирования эксперимента (табл. 1). Опыт 5 — средние значения выбранных переменных, исследования в данных условиях проводили три раза.

Таблица 1 Матрица планирования эксперимента

№ опыта	x_0	x_1	x_2	$x_1 \cdot x_2$	у	t, c	i, A/cm²	$\beta_{_{\text{микро}}}$
1	+	+	_	_	$y_{_1}$	0	0,9	40,5
2	+	-	+	_	y_2	0	2,1	58,6
3	+	+	+	+	y_3	0	2,1	11,1
4	+	-	_	+	y_4	0	0,9	40,1
5						300	1,5	24,6

В результате получено регрессионное уравнение, описывающее влияние времени и плотности тока на микропористость покрытий: $y = 37.6 - 11.8x_1 - 12.0 x_1x_2$. Согласно полученному уравнению для получения покрытий, обладающих высокой микропористостью, необходимо уменьшать время получения покрытий Ni-Cu.