ИССЛЕДОВАНИЕ СТРУКТУРНОГО ПРЕОБРАЗОВАНИЯ ПАРАРАММЕЛЬСБЕГИТА-РАММЕЛЬСБЕГИТА ПОД ВОЗДЕЙСТВИЕМ ВЫСОКОЙ ТЕМПЕРАТУРЫ. АТОМИСТИЧЕСКОЕ МОДЕЛИРОВАНИЕ И ЭКСПЕРИМЕНТАЛЬНЫЕ ДАННЫЕ

Михайлова П.С.^{1,2}, Каримова О.В.², Еремин Н.Н.¹, Упорова Н.С.³, Чареев Д.А.⁴, Ширяев А.А.⁵

¹Московский государственный университет имени М.В. Ломоносова (МГУ), Москва, Россия, mihaylowa.pol@yandex.ru

²Институт геологии рудных месторождений РАН, Москва, Россия ³Институт геологии и геохимии им. академика А.Н. Заварицкого УрО РАН, Екатеринбург, Россия ⁴Институт экспериментальной минералогии РАН, Черноголовка, Россия ⁵Институт физической химии и электрохимии им. А.Н. Фрумкина, Россия

Металлический никель является важным промышленным материалом, его высокая химическая стойкость, низкий коэффициент термического расширения и высокая коррозионная стойкость широко используются при создании сплавов, никель является материалом катода для щелочных аккумуляторов.

Арсениды – одна из важнейших групп природных соединений, являющихся рудой для добычи никеля. В связи с этим важным является исследование системы никель-мышьяк, фазовых равновесий в ней, определение условий образования минералов экспериментальными и теоретическими методами. В данной работе для анализа были выбраны низкотемпературная и высокотемпературные полиморфные модификации диарсенида никеля со структурами парараммельсбергита (пр. гр. *Pbca*) и раммельсбергита (пр. гр. *Pnnm*), соответственно.

В связи с высокой летучестью мышьяка, экспериментальные исследования арсенидов значительно осложнены. Следовательно, для данной группы соединений подходящей альтернативой является метод атомистического структурного моделирования. Так как в настоящий момент в литературе данные

по теоретическим моделям бинарных соединений мышьяка и никеля отсутствуют, предварительно был разработан собственный набор потенциалов межатомного взаимодействия, который позволил получить расчётные модели низкотемпературной и высокотемпературной фаз ${\rm NiAs}_2$, а также с хорошей точностью воспроизвести экспериментальные данные структурных, термодинамических и упругих свойств обеих фаз при повышении температуры в диапазоне от 500 до 700 °C (табл. 1).

Однако, смоделировать фазовый переход, представляющий собой по величине структурной энергии весьма малую разность двух больших чисел в рамках данной полуэмпирической модели, к сожалению, не удалось. Для этого, вероятно, стоит провести дополнительную серию расчётов методами *ab initio* с предъявлением повышенных требований к точности определения энергии кристаллических структур.

Для экспериментальной части исследования были синтезированы образцы C288 и C289 в равновесии с мышьяком и моноарсенидом никеля, соответственно. В результате рентгенофазового анализа было определено, что содержание фазы

Таблица 1. Результаты моделирования кристаллических структур парараммельсбергита и раммельсбергита в сравнении с экспериментальными данными

Параметр	Парараммельсбергит (пр.гр. Рbca)	[Fleet, 1972]	Раммельсбергит (пр. гр. Pnnm)	[Holseth, Kjekshus, 1968]
Объём, Å	381.3	380.6 (Δ=0.18%)	97.9	97.8 (Δ = 0.10%)
a, Å	5.7423	5.7530	4.7734	4.7583
b, Å	5.8047	5.7990	5.7677	5.7954
c, Å	11.4381	11.4070	3.5564	3.5449
α=β=γ,°	90	90	90	90
К, ГПа	13.34	-	43.18	-
G, ГПа	4.54	-	20.63	-
S ₂₉₈ ,Дж/(моль·К)	257.58	-	250.70	-

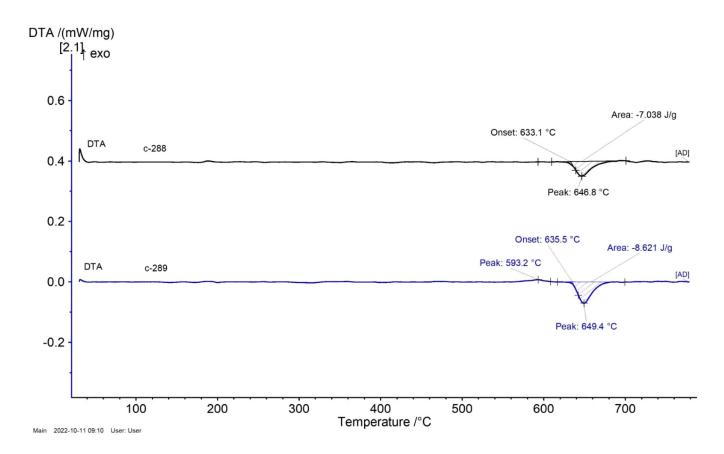


Рис. 1. Результаты ДТА анализов образцов C288 и C289 в диапазоне температур от 40 до 760 °C

параммельсбергита в этих образцах находится в диапазоне от 90 до 95%.

После предварительной оптимизации условий проведения экспериментов были осуществлены дифференциальный термический (ДТА), дифференциальный термогравиметрический (ДТГ), термогравиметрический (ТГ) анализы, показавшие наличие эндотермических пиков при температурах 646.8 °C для C288 и 649.4 °C для C289, которые свидетельствуют о наличии в соединении структурных перестроек, связанных с полиморфным переходом парараммельсбергит-раммельсбергит (рис. 1).

С целью более детального изучения изменений в кристаллической структуре диарсенида никеля под воздействием высоких температур была также

проведена серия анализов образцов методом терморентгенографии в диапазоне температур от 50 до 700 °C при нагреве и последующем охлаждении. Анализ полученных данных методом терморентгенографии подтверждает преобразование структуры параммельсбергита в раммельсбергитовую при температуре от 600 °C.

ЛИТЕРАТУРА

- 1. Fleet M.E. The crystal structure of pararammelsbergite (NiAs₂) // American Mineralogist. 1972. V. 7. P. 1–9.
- 2. Holseth H., Kjekshus A. Compounds with the Marcasite Type Crystal Structure. II. On the Crystal Structures of the Binary Pnictides // Acta Chemica Scandinavica. 1968. V. 22. P. 3284–3292.