ПОВЕДЕНИЕ СТРУКТУРЫ ПОЛИМОРФНЫХ МОДИФИКАЦИЙ К₂Са₃(СО₃)₄ ПРИ ВЫСОКОМ ДАВЛЕНИИ

Игнатов М.А.^{1, 2}, Шацкий А.Ф.³, Арефьев А.В.¹, Литасов К.Д.⁴, Ращенко С.В.^{1, 2}

¹Институт геологии и минералогии им. В.С. Соболева СО РАН, Новосибирск, Россия, director@igm.nsc.ru ²Новосибирский государственный университет, Новосибирск, Россия, rector@nsu.ru ³Институт геохимии и аналитической химии им. В.И. Вернадского РАН, Москва, Россия, director@geokhi.ru ⁴Институт физики высоких давлений им. Л.Ф. Верещагина РАН, Москва, Россия, hpp@hppi.troitsk.ru

В ходе проделанной работы на многопуансонном прессе были синтезированы две полиморфные модификации K₂Ca₃(CO₃)₄: упорядоченная α-модификация – при давлении 3 ГПа и температуре 975 °C, разупорядоченная β-модификация – при давлении 6 ГПа и температуре 1200 °C.

Структура α -модификации принадлежит к пространственной группе $P2_12_12_1$ и состоит из катионных сеток, производных от полурегулярных 3^2 .4.3.4, расположенных перпендикулярно оси *с*. Каждая из таких сеток состоит из трех- и четырехчленных петель (рис. 1 а).

Соседние сетки соединены между собой винтовой осью 2₁, формируя таким образом в структуре два слоя A и B, различающихся по анионному наполнению (рис. 1 б).

В слое А напротив каждой четырёхчленной петли из катионной сетки расположена трехчленная, в слое В наблюдается «зеркальное» расположение катионов, что является следствием псевдосимметричного упорядочения их позиций относительно псевдозеркальной плоскости перпендикулярной оси *с* (рис. 2).

Образованные противолежащими петлями катионные полиэдры в форме двухшапочных тригональных призм оказываются занятыми CO_3 группами, тогда как искаженные кубические полости в слое В центрируются катионной позицией M2. В слое А выделяется два типа симметрически неэквивалентных позиций CO_3 групп (обозначения представлены соответствующими номерами атомов углерода): C1 и C4, в слое В к таким же позициям можно отнести C2 и C3. Во всех случаях координационным полиэдром для CO_3 групп является двухшапочная тригональная призма, что соответствует координации таких групп в других высокобарических двойных карбонатах [Gavryushkin et al., 2014; Rashchenko et al., 2017, 2018, 2020].

В структуре α-модификации наблюдаются пять симметрически неэквивалентных катионных позиций

Рис. 1. Общий вид структуры α-K₂Ca₃(CO₃)₄ (фиолетовые атомы – K, голубые – Ca): а) катионная сетка, б) проекция структуры перпендикулярно оси *b*

Рис. 2. Проекция слоев A и B в структуре α-K₂Ca₃(CO₃)₄ в разных плоскостях

одинаковой кратности, что соответствует стехиометрии формулы $K_2Ca_3(CO_3)_4$. Исходя из близких значений рассеивающего фактора для К и Са задача уточнения относительной заселённости этих позиций представляется весьма нетривиальной. Однако катионные позиции можно поделить на две группы по средним расстояниям катион-анион в первой координационной сфере: в первую входят две позиции с расстояниями близкими к 2.9 Å, во вторую – три позиции с расстояниями около 2.5 Å. Соответственно два катиона калия, обладая бо́льшим ионным радиусом, занимают позиции с бо́льшим расстоянием катион-анион, оставшиеся же позиции приходятся на Ca.

Структура разупорядоченной β-модификации во многом напоминает вышеописанную структуру, однако обладает более высокой симметрией *Pnma*. По сравнению с α-модификацией здесь наблюдается уменьшение числа неэквивалентных позиций катионов. В результате для катионов обнаруживается три неэквивалентных позиции, одна из которых (находящаяся между катионными сетками в слое В) сохраняет межатомное расстояние 2.5 Å, что означает её полное заселение Са. Оставшиеся две позиции представляют собой результат попарного «усреднения» разноимённых позиций К и Са α-модификации: M3 с M4 и M1 с M5, что приводит к заселению этих позиций двумя катионами в равной степени (рис. 3) и возникновению разупорядочения.

Весьма важным следствием разупорядочения катионов также является разупорядочение CO₃ групп. В целом в структуре β-модификации насчитывается три неэквивалентных позиции для углерода, однако анализ карт разностной электронной плотности позволяет выделить на их основе несколько статистически заселённых ориентаций для CO₃ групп. Из-за сильно отличающихся размеров атомов К и Са наличие смешанных позиций приводит к реализации большого числа отличающихся локальных окружений CO₃ групп.

Случай статистической заселённости позиций К и Са демонстрирует достаточно редкий случай замещения К↔Са в карбонатах. Ранее такое замещение (однако в достаточно ограниченной степени) рассматривалось, главным образом, для высокобарических силикатов, таких как, например, клинопироксен [Сафонов и др., 2005].

Рис. 3. Катионная сетка в структуре β -K₂Ca₃(CO₃)₄

Также было исследовано поведение упорядоченной модификации α-K₂Ca₃(CO₃) при давлении до 20 ГПа по данным монокристальной синхротронной дифракции. При повышении давления симметрия структуры понижается от ромбической к моноклинной.

Работа выполнена при поддержке РФФИ (грант № 21-55-14001).

ЛИТЕРАТУРА

- Сафонов О.Г., Перчук Л.Л., Литвин Ю.А. Равновесие калийсодержащего клинопироксена с расплавом как модель для барометрии глубинных ассоциаций // Геология и геофизика. 2005 Т. 46. № 12. С. 1318–1334.
- Gavryushkin P.N., Bakakin V.V., Bolotina N.B., Shatskiy A.F., Seryotkin Y.V. and Litasov K.D. Synthesis and Crystal Structure of New Carbonate Ca₃Na₂(CO₃)₄ Homeotypic with Orthoborates M₃Ln₂(BO₃)₄ (M=Ca,

Sr, and Ba) // Cryst. Growth Des. 2014. V. 14(9). P. 4610–4616.

- Rashchenko S.V., Bakakin V.V., Shatskiy A.F., Gavryushkin P.N., Seryotkin Y.V. and Litasov K.D. Noncentrosymmetric Na₂Ca₄(CO₃)₅ Carbonate of "M₁₃M₂₃XY₃Z" Structural Type and Affinity between Borate and Carbonate Structures for Design of New Optical Materials // Cryst. Growth Des. 2017. V. 17(11). P. 6079–6084.
- Rashchenko S.V., Shatskiy A.F., Arefiev A.V., Seryotkin Y.V. and Litasov K.D. Na₄Ca(CO₃)₃: A Novel Carbonate Analog of Borate Optical Materials // Cryst. Eng. Comm. 2018. V. 20(35). P. 5228–5232.
- Rashchenko S., Shatskiy A. and Litasov K. High-Pressure Na-Ca Carbonates in the Deep Carbon Cycle. In Geophysical Monograph Series, ed. C.E. Manning, J. Lin and W.L. Mao. Wiley, 2020. P. 127–136.