ПРОДУКТЫ ДЕКАТИОНИЗАЦИИ ПРИРОДНОГО МУРМАНИТА Na₂Ti₂(Si₂O₇)O₂·2H₂O В КИСЛОЙ СРЕДЕ

Гойчук О.Ф.¹, Калашникова Г.О.¹, Грязнова Д.В.¹, Паникоровский Т.Л.¹, Яковенчук В.Н.^{1,2}

¹Центр наноматериаловедения ФИЦ КНЦ РАН, Апатиты, Россия, o.goychuk@ksc.ru, g.kalashnikova@ksc.ru, d.gryaznova@ksc.ru, t.panikorovskii@ksc.ru ²Геологический институт КНЦ РАН, Апатиты, Россия, v.yakovenchuk@ksc.ru

Многие минералы, открытые в щелочных массивах Кольского полуострова, являются прототипами функциональных материалов, которые нашли свое применение в промышленных целях [Chukanov, Pekov, 2005]. Особый интерес представляет изучение минералов, претерпевших постмагматическое преобразование, которое выражено в виде декатионизации, гидратации, дегидратации, ионного обмена и пр., а также определение механизмов и условий их образования. Ярким примером могут выступать минералы надгруппы сейдозерита, где образование минералов обусловлено процессами ионного обмена: эпистолит → звягинит [Pekov et al., 2014], мурманит \rightarrow вигришинит [Pekov et al., 2013], мурманит \rightarrow кальциомурманит [Lykova et al., 2016].

Мурманит $Na_2Ti_2(Si_2O_7)O_2\cdot 2H_2O$ является характерным акцессорным и второстепенным минералом в породах Ловозерского щелочного массива. Наибольшее распространение имеет в ультраагпаитовых пегматито-гидротермальных жилах (включая контактные зоны), в лейкократовых породах – фойяитах и уртитах. Реже встречается в меланократовых – в малиньитах. Кроме того, мурманит широко распространен в мурманитовых порфировидных луявритах (малиньитах), которые, в свою очередь, образуют жилоподобные и пластообразные тела. В некоторых

Рис. 1. а – фото комбинированного шлифа ЛВ-138/3-2 в отраженном свете: идиоморфные метакристаллы природного декатионизированного мурманита; б, в – ВЅЕ-изображения кристаллов мурманита обработанных в 0.001 М растворе HCl при температуре 60 °C и 85 °C, соответственно

Образец	Murm-1	Murm-2	Murm-3	Murm-4	Murm-5
Т _{обработки} ,°С	35	60	85	110	135
Na ₂ O	10.94	1.62	0.14	9.24	12.6
CaO	2.93	1.34	0.63	2.16	1.80
K ₂ O	0.20	_	_	0.09	0.09
FeO	1.57	1.82	3.55	1.57	1.66
MnO	2.37	2.30	2.36	2.53	2.35
MgO	0.46	0.57	_	0.71	0.55
TiO ₂	32.62	40.98	53.99	32.72	32.92
Nb ₂ O ₅	3.04	4.84	5.70	4.20	4.75
ZrO ₂	_	3.39	4.75	2.95	_
SiO ₂	30.93	29.29	8.63	30.77	29.50
Al ₂ O ₃	0.10	0.13	0.20	0.11	_
P ₂ O ₅	1.80	0.73	1.81	0.41	0.65
Сумма	86.95	87.01	81.76	87.45	86.87
Коэффициенты в формуле Fe ²⁺ + Mn+Mg+Ti+Nb+Zr+Si+Al+P=4					
Na	1.36	0.18	0.02	1.12	1.60
Са	0.20	0.08	0.04	0.15	0.13
K	0.02	_	_	0.01	0.01
Fe ²⁺	0.08	0.09	0.20	0.08	0.09
Mn	0.13	0.11	0.13	0.13	0.13
Mg	0.04	0.05	_	0.07	0.05
Ti	1.57	1.79	2.67	1.55	1.62
Nb	0.09	0.13	0.17	0.12	0.14
Zr	_	0.10	0.15	0.09	_
Si	1.98	1.70	0.57	1.93	1.93
Al	0.01	0.01	0.02	0.01	_
Р	0.10	0.04	0.10	0.02	0.04
Сумма	5.58	4.27	4.06	5.28	5.73

Таблица 1. Химический состав образцов декатионизированного мурманита

Примечание. «-» – значение ниже предела обнаружения.

пегматитах мурманит слагает мономинеральные скопления более 10 см в поперечнике [Буссен и Сахаров, 1967, 1972; Власов, 1959]. В работе [Гойчук и др., 2022] описаны две разновидности природного декатионизированного мурманита, которые различаются по содержанию Na₂O. Разновидность декатионизированного мурманита, которая практически не содержит Na₂O, образовалась в результате посткристаллизационного преобразования исходного мурманита по схеме $2Na^+ + 2O^{2-} \leftrightarrow 2\Box + 2(OH)^-$ (рис. 1а). В данной работе представлены результаты моделирования процесса декатионизации природного мурманита в лабораторных условиях (рис. 1б, в).

Исходным материалом для проведения эксперимента по декатионизации послужили образцы мурманита из пегматито-гидротермальной жилы, расположенной на г. Куамдеспахк Ловозерского щелочного массива (Кольский полуостров). Мурманит образует кристаллы с прямоугольным сечением до 10 см в поперечнике. В ассоциации с мурманитом отмечены содалит, натролит, микроклин-(пертит), эгирин и минералы группы эвдиалита. Декатионизация проводилась при температурах 35 °C, 60 °C, 85 °C, 110 °C, 135 °C в 0.001 М растворах HCl с использованием тефлоновых автоклавов объемом 20 мл и временем выдержки 24 часа в сушильном шкафу BINDER FD53. Химический состав полученных образцов декатионизированного мурманита был определен с помощью электронно-зондового микроанализа с применением сканирующего электронного микроскопа ZEISS EVO 25 UltimMax 170 (табл. 1).

Рис. 2. Тройная диаграмма химического состава декатионизированных форм мурманита в лабораторных условиях

Декатионизированные образцы мурманита отличаются от исходного минерала и кальциомурманита более низким содержанием натрия, калия и кальция, что определяет доминирующую роль вакансий в позициях A^{p} и $M(2)^{O}$ в их структуре (рис. 2). Установлено, что в полученных образцах минимальное содержание Na₂O составляет 0.14 мас.% при содержании Na₂O в исходном мурманите 11 мас.%. Наблюдается интересная особенность, что при повышении температуры выше 85 °C степень декатионизации снижается.

Работа выполнена в рамках темы НИР FMEZ-2022-0022 и при поддержке проекта РНФ 21-77-10103 «Создание новых функциональных материалов на основе минерального сырья в Арктической зоне РФ: кристаллохимия, тополого-геометрический анализ, ионный обмен, синтез, технологии производства» на оборудовании ЦКП ФИЦ КНЦ РАН.

ЛИТЕРАТУРА

- 1. Буссен И.В., Сахаров А.С. Геология Ловозерских тундр. Л.: Наука, 1967. 125 с.
- 2. Буссен И.В., Сахаров А.С. Петрология Ловозерского щелочного массива. Л.: Наука, 1972. 296 с.
- Власов К.А., Кузьменко М.В., Еськова Е.М. Ловозерский щелочной массив. М.: Изд. АН СССР, 1959. 624 с.

- Гойчук О.Ф., Паникоровский Т.Л., Базай А.В., Яковенчук В.Н. Продукты природной декатионизации мурманита, Na₂Ti₂(Si₂O₇)O₂·2H₂O // Труды XXXIII молодежной научной конференции, посвященной памяти члена-корреспондента АН СССР К.О. Кратца и академика РАН Ф.П. Митрофанова. 2022. С. 43–45.
- Chukanov N.V., Pekov I.V. Heterosilicates with tetrahedral-octahedral frameworks: mineralogical and crystal-chemical aspects // Rev. Mineral Geochem. 2005. V. 57. P. 105–143.
- Lykova I.S. et al. Calciomurmanite, (Na,□)₂Ca(Ti,Mg, Nb)₄[Si₂O₇]₂O₂(OH,O)₂(H₂O)₄, a new mineral from the Lovozero and Khibiny alkaline complexes, Kola Peninsula, Russia //European Journal of Mineralogy. 2016. V. 28(4). P. 835–845.
- Pekov I.V. et al. Vigrishinite, Zn₂Ti_{4-x}Si₄O₁₄(OH, H₂O, □)₈, a new mineral from the Lovozero alkaline complex, Kola Peninsula, Russia // Geology of Ore Deposits. 2013. V. 55(7). P. 575–586.
- Pekov I.V. et al. Zvyaginite, NaZnNb₂Ti[Si₂O₇]₂O(OH, F)₃(H₂O)_{4+x} (x< 1), a new mineral of the epistolite group from the Lovozero Alkaline Pluton, Kola Peninsula, Russia // Geology of Ore Deposits. 2014. V. 56(8). P. 644–656.