АПАТИТ В ПОРОДАХ МЕСТОРОЖДЕНИЯ ТОМТОР, РОССИЯ

Мороз Т.Н.¹, Пальчик Н.А.¹ Жмодик С.М.¹, Коробова Н.С.^{1,2}

¹ Институт геологии и минералогии им. В.С. Соболева СО РАН, Новосибирск, Россия, moroz@igm.nsc.ru ² Новосибирский Государственный Университет, Новосибирск, Россия, korobovans@igm.nsc.ru

Методами дифрактометрии, захватывающей область дальнего порядка структурной организации веществ, инфракрасной спектроскопии (ИК), чувствительной к ближнему структурному порядку был определенен индекс кристалличности исследуемых апатитов. В спектрах комбинационного рассеяния (КР) апатита помимо уширенной полосы основного фундаментального колебания фосфатной группы с волновым числом $\nu \approx 963~\text{см}^{-1}$ наблюдалась, как артефакт, люминесценция таких элементов как Mn^{2+} , d^6 и $Fe^{3+}d^6$, Sm^{3+} , Pr^{3+} . Er^{3+} . Также в KP спектрах (рис. 1) зафиксирована цианобактериальная составляющая каротиноидного типа, что подтверждает участие микроорганизмов при формировании уникально-богатых руд Nb-P3Э-месторождения Томтор [Dobretsov et al, 2021].

Работа выполнена за счет гранта Российского Научного Фонда № 23-63-10017.

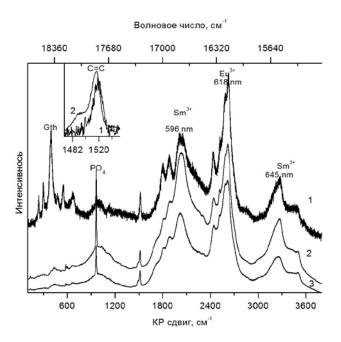


Рис. 1. КР спектры образцов 101-1, 2, 3. На вставке – область C = C колебаний каротиноида. Gth – гетит

ЛИТЕРАТУРА

- Dobretsov N.L., Zhmodik S.M., Lazareva E.V., et al. Structural and Morphological Features of the Participation of Microorganisms in the Formation of Nb-REE-Rich Ores of the Tomtor Field (Russia) // Doklady Earth Sci. 2021. V. 496 (2). P. 135–138.
- Moroz T.N., Palchik N.A., Zhmodik S.M., et al. Crystal-Chemical Features of Aptite in Carbonatites of the Tomtor Deposit (The Republic of Sakha (Yakutia), Russia): X-Ray Diffraction and Vibrational Spectroscopy Data // Crystallog. Report 2021. V. 66 (6). P. 223–230.