СИНТЕЗ И СТРУКТУРА ОРТОФОСФАТА ЛАНТАНА С ОДНО- И ДВУХПОДРЕШЕТОЧНЫМИ ГЕТЕРОВАЛЕНТНЫМИ ЗАМЕЩЕНИЯМИ

Богданова Л.И.^{1,2}, Михайловская З.А.^{1,2}, Щапова Ю.В.^{1,2}

¹Институт геологии и геохимии им. академика А.Н. Заварицкого УрО РАН, Екатеринбург, Россия ²Уральский федеральный университет им. первого Президента России Б. Н. Ельцина, Екатеринбург, Россия

Фосфаты редкоземельных элементов (РЗЭ) характеризуются высокой механической прочностью, термической и химической стабильностью, перспективными люминесцентными свойствами. Термические, электропроводящие и люминесцентные свойства могут существенно изменяться при изменении количества вакансий или структурных позиций за счет одно- и двухподрешеточных замещений (в одной подрешетке La³⁺ и в двух подрешетках La³⁺ и Р⁵⁺, соответственно), что может расширить применение подобных материалов в оптоэлектронике, лазерной технике, фотокатализе, в качестве температурных сенсоров, альтернативных источников энергии [Ait-Mellal et al., 2022; Wang et al., 2015].

В данной работе с помощью методики соосаждения из твердого раствора были синтезированы две серии образцов: (1) $La_{1.2x}Mel_xMe2_xPO_4$, где Mel=Pb, Me2=Zr, x=0.05, 0.10; (2) $La_{1-x}Mel_xP_{1-x}Me2_xO_4$, где Mel=Pb, Me2=S, Mo, x=0.05. Компенсация заряда осуществляется по гетеровалентному механизму в одной подрешетке $2La^{3+} = Zr^{4+} + Pb^{2+}$ (серия 1) и в двух подрешетках $La^{3+} = Pb^{2+}$, $P^{5+} = Zr^{4+}$ (серия 2). В качестве стартовых материалов использовались La_2O_3 , Pb(NO₃)₃·nH₂O, ZrO(NO₃)₂·nH₂O, (NH₄)H₂PO₄, (NH₄) HSO₄, (NH₄)₆Mo₇O₄₂·nH₂O. Осажденный полупродукт сушили и отжигали при температурах 500, 800,

1000 °С. Аттестация структуры и свойств продуктов синтеза проводилась методами рентгеновской порошковой дифракции (XRD-7000, излучение Си K_{al}) и спектроскопии комбинационного рассеяния света (КР) (спектрометр Horiba LabRam HR800 Evolution, возбуждение 633 нм).

Рентгеновская дифракция порошков показала, что при повышении температуры отжига осуществляется переход водных фосфатов в соединения со структурой монацита (пр. гр. $P2_1/n$) (рис. 1). Постоянная решетки синтезированных образцов серии 1 увеличивается по сравнению с LaPO₄, что позволяет предполагать эффект отрицательного химического давления от совместного допирования Pb²⁺ (ионный радиус r = 1.35 Å) и Zr⁴⁺ (r = 0.89 Å). Сохранение структуры монацита при $x \leq 0.10$ является, вероятно, следствием стабилизирующей роли свинца, что было показано ранее в литературе [Kitamura et al., 2015].

Спектры КР (рис. 2) соответствуют моноклинной структуре монацита [Silva et al., 2006]. Положение колебательных мод соединения La_{0.9}Pb_{0.05}Zr_{0.05}PO₄ в сравнении с таковым для LaPO₄ приведено в табл. 1. Подрешетка PO₄ характеризуется колебаниями v_i , i=1-4, соответствующими невзаимодействующим тетраэдрам PO₄. Решеточные колебания наблюдаются при волновых числах ниже ~ 450 см⁻¹.

Рис. 2. Спектры комбинационного рассеяния La_{0.9}Pb_{0.05}Zr_{0.05}PO₄ после отжига при 1000 °C

Me: Pb, Zr	La[4]	Симметрия	Колебание
88	90	B _g	Lattice
99	100	A _g	Lattice
119			
130			
146			
151	151	A _g	Lattice
	157	B _g	Lattice
169	170	B _g	Lattice
182	184	A _g	Lattice
218	219	Ag/Bg	Lattice
224	226	Ag/Bg	Lattice
254	258	A _g	Lattice
271	275	A _g	Lattice
395	396	Ag/Bg	Lattice
412	413	Ag/Bg	Lattice
466	466	Ag/Bg	v ₂
537	534	_	_
558			
570	567	_	-
588	587	_	_
618	620	Ag/Bg	v ₄
966	968	Ag/Bg	v ₁
990	987	_	—
1024	1021	_	-
1055	1054	Ag/Bg	v ₃
1064			
1072	1070	_	_
1093			
1094			

Таблица 1. Экспериментальные частоты КР (см⁻¹) моноклинных ортофосфатов $La_{0.9}Pb_{0.05}Zr_{0.05}PO_4u LaPO_4$

Таким образом, по данным рентгеновской дифракции и КР спектроскопии полученный материал соответствует структуре монацита. Для установления термической стабильности вещества необходимо провести дополнительный отжиг при более высоких температурах. В дальнейшем предполагается проведение исследований полученных материалов методами фото- и катодолюминесцентной спектроскопии.

Измерения выполнены в рамках Госзадания ИГГ УрО РАН, тема № АААА-А19-119071090011-6 с использованием оборудования ЦКП «Геоаналитик» ИГГ УрО РАН, дооснащение и комплексное развитие ЦКП «Геоаналитик» ИГГ УрО РАН осуществляется при финансовой поддержке гранта Министерства науки и высшего образования Российской Федерации, Соглашение № 075-15-2021-680.

ЛИТЕРАТУРА

- AitMellal O., Oufni L., Messous M.Y., Rostas A.M., Galca A.C., Toma V., Matei E., Secu M. The influence of Zr⁴⁺ doping on the structural and photoluminescence properties of LaPO₄:Ce³⁺/Mn²⁺ phosphors // Journal of Luminescence. 2022. V. 251. P. 119226.
- Kitamura N., Tamai Y., Ishida N., Idemoto Y. Effect of Pb Substitution on Electrical Conduction and Sinterability of LaPO₄-Based Protonic Conductor // Journal of the Japan Society of Powder and Powder Metallurgy. 2020. V. 67. P. 391–395.
- Silva E.N., Ayala A., Guedes I., Paschoal W., Moreira R., Loong C.-K., Boatner L. Vibrational Spectra of Monazite-Type Rare-Earth Orthophosphates // Optical Materials. 2006. V. 29. P. 224–230.
- Wang K., Yao W., Teng F., Zhu Y. Photocatalytic activity enhancement of LaPO₄ via surface oxygen vacancies // RSC Advances. 2015. V. 5. P. 56711–56716.