ИССЛЕДОВАНИЕ МОЛЕКУЛЯРНОГО СОСТАВА ОБЛАСТИ ОБРАЗОВАНИЯ МАССИВНЫХ ЗВЕЗД S255IR

П. А. Танатова¹, С. В. Салий²

 1 Уральский федеральный университет, 2Астрономическая обсерватория Ур Φ У

В работе представлены результаты обработки наблюдений области образования массивных звезд S255IR. Мы идентифицировали линии молекул SO, ³³SO, SO₂, SiO, CO, ¹³CO, C¹⁸O, CH₃OH, CH₃CN, CH₃OCH₃, CH₃CHO, H₂CS, HCOOH, HC¹⁵N, HC₃N, OCS, NS, CCH, HCCO, HNCO. Эти молекулы являются индикаторами горячих ядер и истечений, исходя из этого мы делаем вывод о высоких температурах и плотностях в этом объекте.

STUDY OF THE MOLECULAR COMPOSITION OF THE HIGH MASS PROTOSTELLAR OBJECT S255IR

P. A. Tanatova¹, S. V. Salii²

¹Ural Federal University, ²Astronomical observatory UFU

The paper presents the results of processing observations of the formation region of massive stars S255IR. We identified the molecular lines SO, ³³SO, SO₂, SiO, CO, ¹³CO, C¹⁸O, CH₃OH, CH₃CN, CH₃OCH ₃, CH₃CHO, H₂CS, HCOOH, HC¹⁵N, HC₃N, OCS, NS, CCH, HCCO, HNCO. These molecules are indicators of hot nuclei and outflows, from which we infer high temperatures and densities in this region.

Введение

Молекулярный состав областей звездообразования является признанным инструментом исследования температур, плотностей и кинематических свойств этих объектов. Различные молекулы служат индикаторами физических процессов, происходящих в системе. Обычно горячие ядра идентифицируются по наблюдениям спектральных линий, соответствующих вращательным переходам сложных (содержащих шесть и более атомов) органических молекул, например, молекул метанола (CH₃OH) и ацетонитрила (CH₃CN). В плотных ядрах наблюдают линии молекул с высоким дипольным моментом, например, моносульфид углерода (CS). О присутствии истечений делают вывод по регистрации в спектрах таких молекул, обилие которых связано с разрушением мантий пылевых частиц, например, монооксид кремния (SiO), оксид серы (SO) и CH₃OH.

Объект S255IR — это активно исследуемая область образования массивных звезд, удаленная на $1.78^{+0.12}_{-0.11}$ кпк [1]. В S255IR наблюдались мазеры H₂O и CH₃OH класса II, а также истечения, из чего был сделан вывод о присутствии в нем молодых массивных звездных объектов (см, например, [1–3]). Согласно [2] и ссылкам в ней излучение, соответствующее объекту, наблюдается на скоростях от ~ 2 до ~ 8 км/с, при этом системная скорость составляет около 5 км/с.

Цель нашей работы — исследовать молекулярный состав области S255IR и выделить молекулы — индикаторы горячих ядер, плотных ядер и истечений.

[©] Танатова П. А., Салий С. В., 2024

Наблюдения

Наблюдения объекта S255IR были проведены в январе 2019 г. на телескопе IRAM 30 м с помощью приемника EMIR в четырех диапазонах частот: 326.7—330.7, 329.5—334.5, 342.4—346.4 и 346.1—350.2 ГГц. На этих частотах размер диаграммы направленности и спектральное разрешение составляют 7.5" и ~ 1.4 км/с соответственно. Фазовый центр: $\alpha_{2000} = 06^{h}12^{m}54.015^{s} \, \delta_{2000} = 17^{\circ}59'23.05"$. Более подробно о наблюдениях можно прочитать в статье [2].

Результаты и обсуждение

В результате в рассмотренных диапазонах частот мы отождествили спектральные линии 20 молекул и изотопологов от двухатомных (СО, например) до сложной девятиатомной молекулы CH₃OCH₃. Для отождествления частоты переходов брались из каталога splatalogue¹. Рассматривались только переходы с энергиями до 1 000 K согласно [2].

Работа со спектрами проводилась в программе CLASS из пакета GILDAS (http://www. iram.fr/IRAMFR/GILDAS). Примеры наиболее ярких из зарегистрированных линий разных молекул представлены на рисунке, параметры этих линий — в таблице.

Молекулы	Частота, ГГц	Переход	$V_{lsr}, \ { m Km/c}$	$_{\rm KM/c}^{\rm FWHM,}$	$\int T\Delta V, \ { m K\cdot \kappa m/c}$	$E_{up},$ K
CO	344.310	3-2	$7.9{\pm}0.2$	$9.8{\pm}0.5$	$302.2{\pm}11.6$	16.6
SiO	347.330	8 - 7	$7.6{\pm}0.8$	$4.6 {\pm} 2.1$	$0.6{\pm}0.2$	75.0
SO	344.310	$8_8 - 7_7$	$7.1 {\pm} 0.1$	$4.8 {\pm} 0.1$	$7.6 {\pm} 0.2$	87.5
SO_2	345.338	$13_2 - 12_1$	$6.5{\pm}0.1$	$5.5 {\pm} 0.3$	$4.7 {\pm} 0.2$	92.9
NS	346.220	$15_2 - 13_2$	$5.9{\pm}1.9$	$6.2 {\pm} 4.4$	$0.6{\pm}0.4$	54.3
CCH	349.337	4 - 5	$7.1 {\pm} 0.1$	$4.1 {\pm} 0.1$	$6.8 {\pm} 0.2$	41.9
OCS	328.298	27 - 26	$5.7 {\pm} 0.4$	$3.8{\pm}1.0$	$1.2{\pm}0.3$	220.6
$\rm HC^{15}N$	344.200	4 - 3	$7.1 {\pm} 0.2$	$6.8 {\pm} 0.6$	$1.5 {\pm} 0.1$	41.3
HCCO	346.525	$11_1 - 11_0$	$4.7{\pm}0.1$	$4.8 {\pm} 0.1$	$10.9 {\pm} 0.1$	141.4
HNCO	330.848	$15_1 - 14_1$	$6.5{\pm}0.5$	$7.6 {\pm} 1.5$	$1.3 {\pm} 0.2$	170.3
H_2CS	343.322	$10_2 - 9_2$	$4.0{\pm}0.2$	$5.5 {\pm} 0.4$	$1.6{\pm}0.1$	126.8
HCOOH	342.521	$16_1 - 15_1$	$4.7{\pm}0.2$	$5.9 {\pm} 0.6$	$1.0{\pm}0.1$	143.6
HC_3N	345.609	38 - 37	$6.6{\pm}0.9$	$5.4{\pm}1.6$	$0.3 {\pm} 0.1$	323.5
CH_3OH	331.502	$11_1 - 11_0$	$5.0{\pm}0.1$	$7.8 {\pm} 0.4$	$5.3 {\pm} 0.2$	169.0
CH_3CN	331.071	$18_0 - 17_0$	$6.7 {\pm} 0.7$	$9.3 {\pm} 1.5$	$2.5 {\pm} 0.3$	150.9
CH_3CHO	347.348	$17_{-3} - 6_{-3}$	$3.7{\pm}0.8$	$2.7{\pm}1.5$	$0.5 {\pm} 0.2$	368.6
$\mathrm{CH}_3\mathrm{OCH}_3$	347.348	$37_7 - 37_6$	$5.6{\pm}0.3$	$6.8{\pm}0.7$	$1.1 {\pm} 0.1$	710.4

Результаты приближения наиболее ярких линий молекул в S255IR

Среди отождествленных молекул присутствуют как молекулы — индикаторы горячих ядер (CH₃CN, CH₃OH, CH₃OCH₃, CH₃CHO, HCOOH), так и молекулы — индикаторы истечений (SiO, SO, SO₂, HC¹⁵N, HC₃N) и плотных ядер (OCS, H₂CS) [4], что хорошо согласуется с результатами других авторов: о присутствии истечений в данном объекте сообщается в работе [3] и определенная в работе [2] температура молекулярного газа в S255IR, 220 K, соответствует температуре горячего ядра.

Схожие молекулярные составы наблюдались и в других областях образования массивных звезд, например, G35.20-0.74N и G35.03+0.35 [5]. Эти объекты также отличаются высокой температурой (160–300 K) и наличием истечений.

¹https://splatalogue.online//advanced.php

Примеры гауссового приближения (зеленая линия) наиболее ярких из зарегистрированных молекулярных линий. По вертикальной оси — антенные температуры (К), по горизонтальной — лучевые скорости (км/с) (снизу), соответствующие частоты (МГц) (сверху). В правом верхнем углу каждого из спектров приведены название молекулы и частота (ГГц)

Примечательно, что молекулы — индикаторы истечений — зарегистрированы на скоростях ~ 7.4 км/с, тогда как скорости молекул — индикаторов горячих ядер и плотных ядер — меньше и близки к системной скорости ~ 5 км/с. Возможно, излучение молекул, наблюдаемое на разных скоростях, возбуждается в разных объектах. Например, согласно работе [6] излучение объекта S255IR-SMA1 наблюдается на скоростях 4—5 км/с, а S255IR-SMA1-Е и S255IR-SMA2 — 8—10 км/с. В напих наблюдениях, с размером диаграммы направленности 7.5", источники S255IR-SMA1, S255IR-SMA1-Е и S255IR-SMA2, расстояние между которыми не более 2", не могут быть разрешены. Полученные выводы предварительные, планируется продолжать исследование.

Заключение

Мы провели исследование молекулярного состава источника S255IR, отождествили 20 молекул и изотопологов в интервалах частот 326.7—330.7, 329.5—334.5, 342.4—346.4 и 346.1—350.2 ГГц. На основе полученного молекулярного состава сделан вывод о присутствии в объекте признаков горячих ядер и истечения.

Работа С. В. Салий выполнена при финансовой поддержке Министерства науки и высшего образования Российской Федерации, тема FEUZ-2023-0019.

Библиографические ссылки

- Burns R. A., Handa T., Nagayama T. et al. H2O masers in a jet-driven bow shock: episodic ejection from a massive young stellar object // Mon. Not. R. Astron. Soc. - 2016. - Vol. 512. - P. 283-290.
- [2] Salii S. V., Zinchenko I. I., Sheng-Yuan Liu et al. The methanol emission in the J₁ J₀ A⁻⁺ line series as a tracer of specific physical conditions in high-mass star-forming regions // Mon. Not. R. Astron. Soc. – 2022. – Vol. 512. – P. 3215–3229.
- [3] Zinchenko I. I., Sheng-Yuan Liu, Yu-NungSu et al. Dense Cores, Filaments and Outflows in the S255IR Regionof High-mass StarFormation // Astrophys. J. - 2020. - Vol. 889. - P. 43-55.
- [4] Tychoniec L., van Dishoeck E. F., van't Hoff M. L. R. et al. Which molecule traces what: Chemical diagnostics of protostellar sources // Astron. Astrophys. - 2021. - Vol. 655. - P. A65. 2107.03696.
- [5] Allen V., van der Tak F. F. S., Sanchez-Monge A. et al. Regulation of star formation rates in multiphase galactic disks: a thermal/dynamical equilibrium model // Astron. Astroph. Trans. – 2017. – Vol. 603. – P. 52–66.
- [6] Zinchenko I., Liu S. Y., Su Y. N. et al. The Disk-outflow System in the S255IR Area of High-mass Star Formation // Astrophys. J. − 2015. − Vol. 810, № 1. − P. 10. 1507.05642.