ПЛЕНКИ Fe_rZn_{1-r}S: УСЛОВИЯ ОБРАЗОВАНИЯ, МОРФОЛОГИЯ

Л.Н. Маскаева^{1, 2}, <u>А.Н. Лихачева</u>¹, В.Ф. Марков^{1, 2}

Полупроводниковые соединения $A^{II}B^{VI}$ занимают особое место в ряду полупроводниковых материалов. К материалам этой группы относится сульфид цинка, а также соединение на его основе — ZnS- Fe_2S_3 . Благодаря своим уникальным электрофизическим и оптическим свойствам они находят применение в люминофорах, преобразователях солнечной энергии, сенсорах токсичных газов, нанокатализаторов.

Среди методов получения обсуждаемых пленок нами предпочтение было отдано химическому осаждению из растворов, отличающемуся простотой технологического оформления, высокой производительностью и экономичностью.

Условия изоморфной смесимости ZnS и Fe_2S_3 свидетельствуют о возможности образования твердых растворов $Fe_xZn_{1-x}S$ по реакции:

$$xFe^{3+} + (1-x)Zn^{2+} + N_2H_4CS + 4OH^- = Fe_xZn_{1-x}S\downarrow + H_2CN_2 + 4H_2O$$

Анализом ионных равновесий показано, что существует вероятность соосаждения ZnS и Fe₂S₃ и установлено, что образование твердой фазы ZnS (Fe₂S₃) возможно как по гомогенному, так и гетерогенному механизмам зародышеобразования (рис.1а). Толщина пленок Fe_xZn_{1-x}S уменьшается в ряду: ситалл (305 нм) \rightarrow предметное стекло (~290 нм) \rightarrow кварц (~280 нм) \rightarrow кремний (~230 нм) (рис.1б).

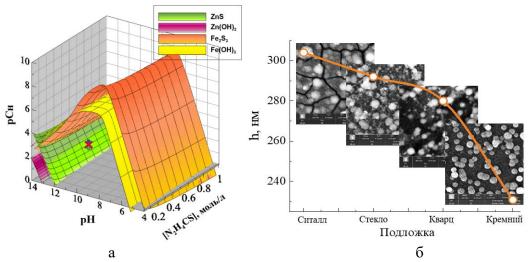


Рис. 1. Зависимость граничных условий образования ZnS, Fe_2S_3 , $Zn(OH)_2$, $Fe(OH)_3$ в системе «ZnCl $_2$ – $FeCl_3$ – Na_3Cit – NH_4OH – N_2H_4CS » от pH среды и концентрации N_2H_4CS (a). Толщина пленок $Fe_xZn_{1-x}S$ на различные подложки (б)

На диэлектрических подложках с оксидсодержащими поверхностями (ситалл, стекло, кварц) механизм взаимодействия солей металлов с тиомочевиной при химическом осаждении, следовательно, зарождения и роста пленок $Fe_xZn_{1-x}S$ кардинально отличается от процесса конденсации на полупроводниковой подложке из кремния. Доля наночастиц, из которых сформированы пленок $Fe_xZn_{1-x}S$ на оксидсодержащих подложках, составляет примерно 10-11%, а на ориентированном кремнии (111)-19%.

¹ Уральский федеральный университет им. первого Президента России Б.Н. Ельцина, 620002, Россия, Екатеринбург, ул. Мира 19;

² Уральский институт ГПС МЧС России, 620022, Россия, Екатеринбург, ул. Мира 22. ¶E-mail:avbeltseva@mail.ru

[©] Маскаева Л.Н., Лихачева А.Н., Марков В.Ф., 2023