СИНТЕЗ И ХИМИЧЕСКИЕ СВОЙСТВА ЭТИЛ-1,8,8-ТРИМЕТИЛ-2-ОКСОБИЦИКЛО[3.2.1]ОКТАН-3-КАРБОКСИЛАТА

К.Р. Минигулова, И.М. Ткаченко, Ю.Н. Климочкин Самарский государственный технический университет, 443100, Россия, г. Самара, ул. Молодогвардейская 244. E-mail: miniguloff2010@yandex.ru

Большинство представителей монотерпеноидов, содержащих бицикло[3.2.1]октановый остов, являются биологически активными веществами и служат привлекательной платформой в поиске кандидатов в лекарственные средства. Наличие в структуре камфоры 1 эндоциклической кетогруппы позволило расширить цикл с получением соединений 2-5. Превращение было проведено посредством реакции Бухнера-Курциуса-Шлоттербека с этилдиазоацетатом в присутствии AlCl₃. В ходе эксперимента было выяснено, что этилдиазоацетат взаимодействует с енольной формой камфоры, образуя продукты О-алкилирования с преобладание 2.

Получить целевой кетоэфир **5** удалось при обработке полученных ранее эфиров енола **2-4** 93%-ной H_2SO_4 .

Далее был осуществлен синтез серии α -функциональных производных с углерод-центрированными электрофильными агентами (**6a-6d**). В ходе гидрирования полученных продуктов алкилирования **6a** и **6c** на никеле Ренея было зафиксировано образование продуктов восстановительной лактамизации.

Таблица 1. Условия реакций

n	Реагент/условия	R	Продукт	Выход, %
1	ClCH ₂ CN, NaH/TΓΦ, r.t.	CH ₂ CN	6a	15
2	BrCH ₂ COOEt, NaH/TΓΦ, r.t.	CH ₂ COOEt	6b	14
3	CH ₂ =CH-CN, NaH/TГФ, r.t.	CH ₂ CH ₂ CN	6с	49
4	CH ₂ =CHCOOEt, NaH/TГФ, r.t.	CH ₂ CH ₂ COOEt	6d	36

Кетодиэфир **6b** в 100%-ной серной кислоте претерпевает скелетную перегруппировку с замыканием двух новых циклов. В результате образуется фурофуран **8** с выходом 62%, расщепление которого под действием аммиака протекает с раскрытием только одного циклического фрагмента в соединение **9**.

Работа выполнена при финансовой поддержке РНФ, проект № 21-73-20103.

_

[©] Минигулова К.Р., Ткаченко И.М., Климочкин Ю.Н., 2023