Данные по кинетике растворения дипиридамола показали, что скорость высвобождения фармацевтически активного ингредиента из микросферических частиц твердых дисперсий позволяет использовать такие системы для ингаляционной доставки лекарственных препаратов с малым временем достижения максимальной концентрации.

Список литературы

- 1. Loira-Pastoriza C., Todoroff J., Vanbever R. // Advanced Drug Delivery Reviews. 2014. Vol. 75. P. 81–91.
- 2. Lee W. H., Loo C. Y., Traini D., Paul M. // Asian Journal of Pharmaceutics. 2015. Vol. 10. P. 481–489.
- 3. Patton J. S. // Advanced Drug Delivery Reviews. 1996. Vol. 19. P. 3–36.
- 4. Lipinski C. A. // American Pharmaceutical Review. 2002. Vol. 5. P. 82–85.
- 5. Baghel S., Cathcart H., O'Reilly N. J. // Journal of Pharmaceutical Sciences. 2016. Vol. 105. P. 2527–2544.
- * Исследование выполнено в рамках государственного задания Министерства науки и высшего образования Российской Федерации Казанскому федеральному университету.

УДК 661.124

Н. Н. Катаева¹, Н. Г. Саркисян¹, В. А. Зурочка^{2,3}, А. В. Зурочка^{2,3}, С. Г. Меликян¹

¹Уральский государственный медицинский университет Минздрава России, 620028, Россия, г. Екатеринбург, ул. Репина, 3, kataeva.nn@mail.ru, ²Институт иммунологии и физиологии УрО РАН, 620049, Россия, г. Екатеринбург, ул. Первомайская, 106, ³Южно-Уральский государственный университет (национальный исследовательский университет), 454080, Россия, г. Челябинск, пр. Ленина, 76

ИССЛЕДОВАНИЕ МИЦЕЛЛООБРАЗУЮЩЕЙ СПОСОБНОСТИ СИНТЕТИЧЕСКОГО ПЕПТИДА В СОСТАВЕ АНТИБАКТЕРИАЛЬНОГО СРЕДСТВА

Ключевые слова: синтетический пептид, мицеллообразование, антибактериальное средство.

Синтетический пептид ZP2 активного центра Гранулоцитарномакрофагального колониестимулирующего фактора (ГМ-КСФ), помимо основного эффекта – стимуляции костномозгового кроветворения, – обладает иммуномодулирующей, антибактериальной, противовирусной и репарационной активностью [1-3]. На основе пептида (ZP2-ГМ-КСФ) был создан Ацеграмспрей (сертификат соответствия РОСС RU.AB66. Н00566 (№ 0203563), ТУ 20.42.15-001-68681750-2017), который применяется при любых повреждениях и воспалительных заболеваний кожи и слизистых у взрослых и детей старше 3 месяцев [4]. В состав Ацеграм-спрея помимо пептида ZP2 входит стабилизатор хлорид бензалкония, оба компонента по своей природе относятся к группе поверхностно-активных веществ (ПАВ). Представляет интерес изучение процесса мицеллообразования в водном растворе лекарственной смеси, поскольку это свойство является одним из важных условий проявления антибактериальной активности ПАВ.

Для водных растворов Ацеграм-спрея разной концентрации определялось поверхностное натяжение (σ , эрг/см²) методом сталагмометрии. Величину критической концентрации мицеллобразования (ККМ) находили по излому на графике зависимости поверхностного натяжения растворов от их концентрации (см. рисунок).



Рисунок. Изотерма поверхностного натяжения водного раствора Ацеграм-спрея

Поверхностно-активные свойства и способность к мицеллообразованию являются ключевыми в механизме антибактериального действия антимикробных пептидов и катионных стабилизаторов. ПАВы даже при очень низких концентрациях в растворах электростатически взаимодействуют с фосфолипидами и белками биомембран, нарушая мембранную проницаемость, процессы транспорта и энергообеспечения живых клеток, что оказывает бактериостатический эффект и в некоторых случаях может приводить к апоптозу. При достижении ККМ и выше ПАВы начинают действовать подобно моющим средствам, разрушая липидный слой клеточных стенок бактерий, солюбилизируя их эмульгированием. Катионные ПАВ способны упаковывать

клетки бактерий в мицеллы, как бы запечатывая их, что препятствует адгезии бактерий друг с другом и с биологическими поверхностями при биопленкообразовании [5, 6].

Список литературы

- 1. Zurochka A. V., Zurochka V. A., Dobrynina M. A. et al. // Bulletin of the Orenburg Scientific Center, Ural Branch, Russian Academy of Sciences. 2016. Vol. 2. P. 1–30.
- 2. *Zurochka A. V., Zurochka V. A., Dobrynina M. A. et al.* // Russian Immunological Journal. 2017. Vol. 11, № 3. P. 377–380.
- 3. Zurochka V. A., Zurochka A. V., Fomina L. O. et al. // Russian Immunological Journal. 2019. Vol. 13, № 2. P. 781–783.
- 4. Zurochka A. V., Zurochka V. A., Zueva E. B. et al. // Russian Immunological Journal, 2016, Vol. 10, P. 433–435.
- 5. Fraise A. P., Maillard J.-Y., Sattar S. R. Principles and Practice of Disinfection, Preservation and Sterilization. Wiley-Blackwell. 2013.
- 6. *McDonnell G. E.* Antisepsis, Disinfection and Sterilization: Types, Action and Resistance. ASM Press. 2017.

УДК 677.11.08

С. А. Кокшаров, С. В. Алеева, О. В. Лепилова

Институт химии растворов им. Г. А. Крестова РАН, 153045, Россия, г. Иваново, ул. Академическая, 1, ksa@isc-ras.ru

БИОТЕХНОЛОГИЯ СТРУКТУРНОЙ МОДИФИКАЦИИ БИОМАССЫ РЕВЕНЯ ДЛЯ ПОЛУЧЕНИЯ ЭНТЕРОСОРБЕНТОВ*

Ключевые слова: ферментативный катализ, полиурониды, сорбция, органические токсины.

Комплекс исследований проведен в рамках развития направления по обоснованию прогрессивных методов модификации полиуглеводных компонентов целлюлозных волокнистых материалов и травянистых растений [1—4] для получения эффективных энтеросорбентов, которые обладают высокой сорбционной способностью в отношении токсинов различной химической природы.

Биомасса травянистых растений с высоким содержанием пектиновых ве-ществ (ревень, лопух и т. п.) является перспективным и экономически