УДК 544.6.018.462.42;544.6.018.47/039.6

ИССЛЕДОВАНИЕ СМЕШАННЫХ СОЕДИНЕНИЙ В СИСТЕМАХ CsH₂PO₄-CsHSO₄ И KH₂PO₄-CsHSO₄

© И. Н. Багрянцева, В. Г. Пономарева, 2013

Институт химии твердого тела и механохимии СО РАН, Новосибирск, Россия, IrinaB1989@mail.ru

Несмотря на большое количество публикаций, смешанные соли семейства $M_nH_m(AO_4)_p$ (M=Cs, Rb, K, NH_4 ; A=S, Se, P, As; n, m, p — целые числа) на основе гидросульфатов — дигидрофосфатов цезия и калия исследованы в недостаточной мере. Данные по транспортным и структурным свойствам систем $(CsH_2PO_4)_{(1-x)}(CsHSO_4)_x$, $(KH_2PO_4)_{(1-x)}(CsHSO_4)_x$ при малых x (x < 0.25) практически отсутствуют. В то же время соединения являются перспективными протонными мембранами для электрохимических устройств, и изучение структурных и физико-химических свойств солей при небольших изменениях состава крайне важны.

Данная работа посвящена исследованию транспортных и структурных свойств соединений $(CsH_2PO_4)_{(1-x)}(CsHSO_4)_x$ и $(KH_2PO_4)_{(1-x)}(CsHSO_4)_x$.

Для смешанных солей $(CsH_2PO_4)_{(1-x)}(CsHSO_4)_x$ $x \le 0,3$ формирование двух фаз, изоструктурных CsH_2PO_4 . В диапазоне составов $x \le 0.1$ происходит образование непрерывного ряда твердых растворов со структурой CsH₂PO₄ (P2₁/m) и значительный рост проводимости вследствие появления кристаллографических позиций для протонов, ослабления водородных связей и увеличении подвижности носителей. Интересным фактом является стабилизация высокотемпературной (BT) фазы CsH₂PO₄ (Pm3m) при составах x = 0.15 - 0.3, которая сохраняется длительное время при комнатной температуре. В соответствие с этим изменяются и транспортные свойства. При снижении проводимости суперионной фазы в 1,5-2 раза, проводимость в низкотемпературной области возрастает до четырех порядков, приближаясь по величинам к суперионной фазе CsH_2PO_4 при $x = 0.15 \div 0.3$ при снижении энергии активации от 0,9 до 0,42 эВ; суперионный фазовый переход исчезает. Установлено, что стабильность ВТ фазы при комнатных температурах, транспортные свойства существенно зависят от относительной влажности. Исследована динамика релаксации кубической фазы с использованием ряда РФА, ЯМР и импедансной спектроскопии. Проведен полученных зависимостей и причин стабилизации BT фазы CsH₂PO₄.

В зависимости от соотношения компонентов в системе $(KH_2PO_4)_{(1-x)}(CsHSO_4)_x$ наблюдается формирование основных фаз с различными кристаллическими структурами: KH_2PO_4 при x < 0.05, $CsH_5(PO_4)_2$ при x = 0.05-0.5 и изоструктурной $Cs_3(HSO_4)_2H_2PO_4$ (C2/c) при x = 0.5-0.95. Наличие разупорядоченных фаз с различными кристаллическими структурами определяет характер зависимости проводимости и ее значения, а также термическую устойчивость в системе $(KH_2PO_4)_{(1-x)}(CsHSO_4)_x$.

Работа выполнена при частичной поддержке проекта РФФИ № 12-08-01339 и № И 105 СО РАН.