ФИЗИЧЕСКИЕ И ЭЛЕКТРОЛИТИЧЕСКИЕ СВОЙСТВА ТВЕРДЫХ ЭЛЕКТРОЛИТОВ НА ОСНОВЕ ТИОИТТЕРБИАТА КАЛЬЦИЯ

© Б. А. Ананченко, Л. А. Калинина, Ю. Н. Ушакова, М. А. Пентин, С. А. Обатуров, 2013 БОУ ВПО «Вятский госуларственный университет». Киров

ФГБОУ ВПО «Вятский государственный университет», Киров, Россия, lab230@rambler.ru

Тиоиттербиат кальция, а также фазы на его основе исследовались с целью расширения представлений о соединениях с сульфидионным переносом.

Ранее в работе [1] была изучена система $CaY_2S_4 - x$ мол.% Y_2S_3 . Исследования показали, что фазы на основе тиоиттрата кальция являются твердыми электролитами с практически униполярной проводимостью по ионам серы. Фазы на основе $CaYb_2S_4$, подобно CaY_2S_4 , кристаллизуются в орторомбической решетке типа Yb_3S_4 (Pnma).

Сульфидные фазы были синтезированы методом высокотемпературных реакций из оксидов CaO и Yb_2O_3 в потоке $Ar + CS_2$. Оксидные прекурсоры были получены керамическим и цитратно-нитратным способами. Все полученные соединения были аттестованы методом $P\Phi A$ на порошковом дифрактометре XRD7000S (Shimadzu), $CuK\alpha$ (графитовый монохроматор), с шагом 0.02° , выдержка 0.6 с. На основании данных $P\Phi A$ рассчитаны параметры

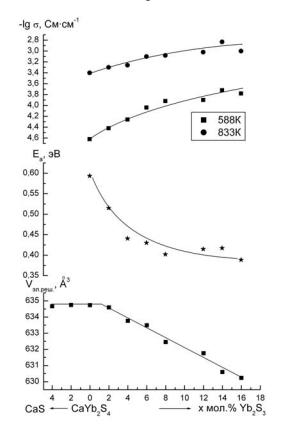


Рис. 1. Изотермы зависимости электропроводности, энергии активации проводимости и параметров элементарной решетки от состава

элементарной решетки оценена И протяженность твердых растворов (ТР) на Стехиометрический основе CaYb₂S₄. CaYb₂S₄ и TP с избыточным содержанием Yb_2S_3 кристаллизуются в СТ область гомогенности простирается по крайней мере до 16% мол. Yb_2S_3 в CaYb₂S₄. Объем элементарной решетки для фаз с избыточным содержанием CaS не изменяется, что может указывать на двухфазность образцов, т. е. на отсутствие TP CaS в тиоиттербиате кальция.

С помощью сканирующей электронной микроскопии (JSM-6510LV, JEOL) изучена морфология зерен сульфидных материалов, отмечено отсутствие значительного влияния способа получения оксидного прекурсора на размеры зерен сульфидного керамического материала.

С целью установления рабочих интервалов температур твердых электролитов проводились исследования термической устойчивости (DTG-60, Shimadzu) образцов в среде аргона.

Для TP на основе $CaYb_2S_4$ на зависимостях ДТГ в области температур от 298 до 873 К наблюдается незначительное уменьшение массы. Очевидно, этот процесс связан с уменьшением содержания серы в тернарном сульфиде за счет обмена с газовой фазой, причем с увеличением количества допанта заметна тенденция к увеличению скорости потери серы. Начиная с температуры 873 К резкое массы сопровождающееся наблюдается уменьшение образца, экзотермическим пиком на зависимости ДТА. Эксперимент показал, что устойчивы области исследуемые образцы температурного В электролитического интервала вплоть до 873 К.

кондуктометрии изучена температурная зависимость электропроводности на переменном токе частотой 100 кГц (Е7-20, МНИПИ). Проводимость образцов с золь-гель предысторией в рабочем интервале температур составила 10^{-5} – 10^{-3} См·см⁻¹, в зависимости от состава. Для образцов, полученных из оксидной шихты с керамической подготовкой, отмечаются несколько меньшие значения электропроводности, однако более детальное изучение объемной составляющей электропроводности методом импедансометрии показало отсутствие влияния подготовки оксидного прекурсора на объемную проводимость твердого электролита.

Зависимости $1g\sigma$ и E_a от сверхстехиометрического содержания сульфида иттербия вблизи стехиометрического $CaYb_2S_4$ хорошо описываются с позиции вакансионного механизма дефектообразования:

$$Yb_2S_3 (\to CaYb_2S_4) \to 2Yb_{Yb}^* + 3S_S^* + V_{Ca}^{"} + V_S^{"}$$
 (1)

Поляризационным методом Хебба — Вагнера изучено поведение ячейки $C|FeS,Fe|T\Theta,\ S^{2-}|C,\$ определены электронные числа переноса, которые не превышают $t_e < 10^{-2}$.

Среднеионные числа переноса измеряли в гальваническом элементе с электродами, обратимыми по иону серы

$$C|FeS, Fe|T\Theta|Cu_2S, CuS|C,$$
 (2)

и определяли как отношение измеренной величины к теоретическому значению ЭДС, рассчитанному при условии использования в ячейке гипотетического ТЭ с $t_i = 1$. Рассчитанные величины позволяют охарактеризовать фазы x мол.% $Yb_2S_3 - CaYb_2S_4$ как твердые электролиты с существенным вкладом ионной проводимости $t_i = 0,7-1,0$.

Исследование зависимости ионных чисел переноса от парциального давления серы позволило определить электролитическую область парциальных давлений (10^{-22} – 10^{-30} атм).

Разделение ионной проводимости на катионную и анионную составляющую осуществлялось по методу Чеботина – Обросова в концентрационных цепях с переносом [2]:

$$C |Ca| CaYb_2S_4 - x$$
 мол.% $Yb_2S_3 |CaYb_2S_4| Ca| C(E_{Ca})$ $C| FeS, Fe| CaYb_2S_4 |CaYb_2S_4 - x$ мол.% $Yb_2S_3 |FeS, Fe| C(E_s)$ (3)

ЭДС элемента (E_{Ca}), обратимого относительно ионов кальция, связан с числами переноса ионов серы и иттербия, ЭДС элемента, обратимого относительно сульфид иона (E_s), связан с числами переноса кальция и иттербия. Определяли числа переноса сульфид иона и иона кальция, т.к. в

соответствии с уравнением (1), перенос ионов иттербия не происходит ввиду отсутствия дефектов в подрешетке иттербия.

Определение основного типа иона-носителя проводили с учетом изотермических зависимостей $E_S = f(E_{Ca})$ для электролитов различного состава.

Эксперимент по разделению ионной проводимости позволил одновременно определить термодинамические характеристики растворения Yb_2S_3 в $CaYb_2S_4$. По соотношению E_{Ca} и E_8 были определены активности и коэффициенты активности Yb_2S_3 в тиоиттербиате кальция. Уменьшение коэффициента активности при увеличении сверхстехиометрического сульфида иттербия не противоречит феноменологической теории ионного переноса в твердых электролитах [3]. Обнаружено, что с увеличением содержания допанта парциальная мольная энтальпия растворения в тиоиттербиате кальция увеличивается, что является дополнительным подтверждением вакансионного механизма дефектообразования в исследуемых фазах.

Термодинамика образования стехиометрического сульфида из бинарных изучалась в концентрационных цепях Шмальцрида.

 $C | Ca | CaYb_2S_4 - x$ мол.% $CaS | CaYb_2S_4 | CaYb_2S_4 - x$ мол.% $Yb_2S_3 | Ca | C$ (4) Определены величины изменения свободной энергии Гиббса, изменение энтальпии и энтропии образования $CaYb_2S_4$. Процесс образования $CaYb_2S_4$ из CaS и Yb_2S_3 эндотермичен и составляет 346 ± 2 кДж/моль. Энергия Гиббса образования тернарного соединения из бинарных слабо зависит от температуры и имеет тенденцию к уменьшению с ростом температуры, что характеризует $CaYb_2S_4$ как устойчивое соединение в электролитическом температурном интервале.

Список литературы

- 1. Широкова Г.И., Твердые электролиты в системах $CaS-Y_2S_3$ и $BaS-Tm_2S_3$: автореф. дис. ... канд. хим. наук. Л., 1988.
- 2. Чеботин В.Н., Обросов В.П. Метод одновременного определения активностей компонентов и чисел переноса ионов в твердых электролитах на основании измерений ЭДС // Труды Ин-та электрохимии. УФАН СССР. Свердловск, 1972. В. 18. С. 151.
- 3. Чеботин В.Н. Физическая химия твердого тела. М., 1982.