ЭЛЕКТРОКРИСТАЛЛИЗАЦИЯ ОКСИДОВ УРАНА ИЗ РАСПЛАВОВ Na₂WO₄–Na₂W₂O₇–UO₂WO₄ С ДОБАВКАМИ ОКСИДОВ ЦИРКОНИЯ, ЦЕРИЯ И НИОБИЯ

© Л. Г. Хрустова, В. К. Афоничкин, 2013 Институт высокотемпературной электрохимии УрО РАН, Екатеринбург, Россия, L.Khrustova@ihte.uran.ru

В настоящее время активно изучаются электрохимические процессы переработки облученных ядерных топлив в хлоридных солевых расплавах. Интересные результаты получены (вольфраматных, И В оксидных Однако молибдатных, сульфатных) солевых электролитах. механизмы взаимодействия продуктов деления ядерного топлива с расплавленными оксидными солевыми смесями в атмосфере воздуха и их влияние на состав катодных осадков, выделяющихся при электролизе расплавов, содержащих облученное ядерное топливо, изучены недостаточно. предпринимаются попытки исследовать их поведение на модельных объектах с использованием различных имитаторов высокоактивных продуктов деления оксидного уранового и уран-плутониевого топлива, в частности, оксидов циркония (IV), церия (IV) и ниобия (V).

Цель данной работы — изучить электрохимическое поведение растворенных в расплаве-растворителе оксидов циркония, церия, ниобия и их влияние на состав оксидов урана, полученных электролизом расплавленной оксидно-солевой композиции Na_2WO_4 — $Na_2W_2O_7$ — UO_2WO_4 — ZrO_2 (CeO_2 , Nb_2O_5).

Методами термохимического (ДСК, ТГ, ДТТ) и рентгенофазового анализа исследовано взаимодействие указанных оксидов с $Na_2W_2O_7$ и смесями $Na_2WO_4 + Na_2W_2O_7$ при температурах до $900\,^0$ С на воздухе. Показано, что в результате химических реакций CeO_2 количественно переходит в двойной вольфрамат 3-валентного церия $NaCe(WO_4)_2$. Оксиды ZrO_2 и Nb_2O_5 реагируют с вольфраматными смесями без изменения валентности металла с образованием, соответственно, $Na_2Zr(WO_4)_3$ и $NaNbWO_6$.

Методом линейной вольтамперометрии установлено, что при катодных потенциалах, предшествующих разложению растворителя, в интервале температур 800– $900\,^{\circ}$ С и скоростей развертки потенциала 0,05– $0,50\,$ В/с электрохимическая активность растворенных оксидов циркония, церия и ниобия в этом расплаве не проявляется.

Исследован химический и фазовый состав оксидов урана, выделяющихся на катоде при потенциостатическом электролизе расплавов ($82,35\text{Na}_2\text{WO}_4$ – $17,65\text{Na}_2\text{W}_2\text{O}_7$) + $x\text{UO}_2\text{WO}_4$, при x=3,50 и 5,40 (мол.%) с добавками (насыщенные растворы) и без добавок $Z\text{rO}_2$ ($C\text{eO}_2$, $N\text{b}_2\text{O}_5$) в трехэлектродной ячейке, заполненной атмосферным воздухом. В качестве катода и анода использовали платиновую проволоку диаметром 1 мм. Электрод сравнения представлял собой спираль из платиновой проволоки диаметром 0,5 мм, полупогруженную в эвтектический расплав $75\text{Na}_2\text{WO}_4\text{-}25\text{Na}_2\text{W}_2\text{O}_7$ (мол.%),

отделенный от исследуемого электролита кварцевым чехлом с диафрагмой из каолиновой ваты. Контейнером для солевой смеси служил платиновый тигель. Электролиз проводили при потенциале катода $E_{\rm k}=-0.9$ В, который по данным вольтамперометрии находится в области предельного диффузионного тока разряда ионов уранила. Полученные результаты приведены в табл. 1.

Таблица 1 Влияние добавок ZrO_2 (CeO_2 , Nb_2O_5), температуры и концентрации UO_2WO_4 на состав катодных осадков, полученных из электролитов ($82,35Na_2WO_4-17,65Na_2W_2O_7$) + xUO_2WO_4 , где x=3,50 и 5,40 (мол.%).

	t, °C	Примесь в UO_2 , масс.%			Параметр кристаллической решетки UO2, Å			
x = 3.50		Zr	Ce	Nb	Zr	Ce	Nb	Без примесей
	850	2,2	0,8	0,1	5,4490	5,4706	5,4640	5,4679
	900	1,7	0,94	0,08	5,4557	5,4674	5,4665	5,4697
x = 5,40	800	2,2	0,64	_	5,4532	5,4627	_	5,4626
	850	1,3	0,8	0,4	5,4496	5,4706	5,4665	5,4669
	900	0,85	0,94	0,1	5,4536	5,4674	5,4659	5,4611

Изменение параметра кристаллической решетки всех осадков UO_2 , полученных из расплавов, содержащих растворенные добавки ZrO_2 (CeO_2 , Nb_2O_5), по сравнению с осадками, полученными из «чистых» электролитов, и отсутствие в них каких-то дополнительных фаз можно объяснить образованием твердых растворов UO_2 с оксидами примесных элементов в результате обменных химических реакций. Эти химические реакции протекают на постоянно обновляющейся в ходе электролиза поверхности UO_2 .

Из данных таблицы видно, что с ростом температуры содержание циркония в катодном осадке уменьшается, церия увеличивается, а ниобия практически не изменяется. С ростом концентрации UO_2WO_4 в расплаве при одинаковых температурах содержание циркония уменьшается, а содержание церия и ниобия в катодном осадке не зависит от нее. Добавка ZrO_2 к электролиту снижает параметр кристаллической решетки катодных осадков UO_2 по сравнению с «чистым» (без примесей) расплавом, тогда как добавка CeO_2 увеличивает его. Явной зависимости параметра кристаллической решетки катодного осадка UO_2 от содержания растворенного Nb_2O_5 не наблюдается.