

УДК 544.654.2

ДЕГРАДАЦИЯ ЭЛЕКТРОДНЫХ МАТЕРИАЛОВ В КОНТАКТЕ С ИНТЕРКОННЕКТОРАМИ ДЛЯ ТОТЭ

А.А. Солодянкин^{1*}, М.В. Ерпалов

¹Институт высокотемпературной электрохимии УрО РАН, Екатеринбург, Россия *e-mail: mindfy@mail.ru

Одной из основных причин недостаточно длительного срока службы твердооксидных топливных элементов является взаимодействие летучих соединений хрома, испаряющихся из стали-интерконнектора, с функциональными материалами стека. Данную проблему можно решить путем формирования на поверхности стали защитного покрытия либо за счет применения в качестве интерконнекторов никельсодержащих сплавов, в состав которых не входит хром[1, 2].

В данной работе были предложены покрытия для ферритных нержавеющих сталей Crofer 22 APU и 08X17T и никельсодержащего сплава 47HД и проведена оценка эффективности их использования для защиты интерконнекторов твердооксидных топливных элементов. Выбор составов защитных покрытий был основан на обзоре литературы, а также на термодинамических расчетах, проведенных с помощью базы данных программы HSC Chemistry 9. Покрытие на сталь Crofer22 APU наносили методом dipcoating, на сталь 08X17T – электрофоретическим осаждением, на сплав 47HД – электроосаждением.

Исследование микроструктуры и химического состава покрытий, полученных различными методами, проводили с помощью автоэмиссионного электронного микроскопа TESCAN MIRA 3 LMU (TESCAN, Чехия) с детектором для рентгеновского энергодисперсионного микроанализа INCA Energy 350 X-max 80 (Oxford Instruments, Великобритания). На рисунке 1 представлены микрофотографии поверхности образцов сплавов с защитным покрытием после термообработки. Видно, что сформированные защитные покрытия достаточно плотные и равномерные.

Рисунок 1. Микрофотографии поверхности образцов сплавов с защитным покрытием после термообработки: а – Crofer 22 APU, б – 08Х17Т, в – 47НД

Результаты энергодисперсионного спектрального микроанализа поверхности образцов сплавов с защитным покрытием после термообработки приведены в таблице 1. Основными компонентами покрытия являются Mn и Co. Рентгенофазовый анализ в геометрии скользящего пучка показал, что основной фазой для Crofer 22 APU и 08X17T с покрытием является MnCo₂O₄, а для 47HД с покрытием – CoMn₂O4.

Сплав	Элемент, % ат.							
	0	Cr	Fe	Mn	Co	Ni	Cu	Ti
Crofer 22 APU	55,33	7,99	1,27	11,24	24,05	-	0,12	-
08X17T	56,28	9,78	2,32	8,78	15,14	1,78	0,13	5,79
47НД	53,39	-	34,73	5,08	3,02	1,80	1,98	-

Таблица 1. Химический состав защитных покрытий после термообработки

Измерение удельного сопротивления образцов сплавов проводили двухзондовым методом с использованием цифрового омметра Hioki RM3545-02 (Hioki, Япония) при температуре 850 °C в воздушной атмосфере. На рисунке 2 показаны графики зависимости сопротивления, отнесенного к единице поверхности (ASR), сплавов без покрытия и с покрытиями от времени.

Рисунок 2. Зависимость ASR образцов сплавов без покрытия и с покрытием от времени: **a** – Crofer 22 APU и 08Х17Т, **б** – 47НД

На графике изменения ASR образца стали Crofer 22 APU с защитным покрытием наблюдается тенденция к более резкому снижению сопротивления на начальном этапе выдержки, по сравнению с образцом стали Crofer 22 APU без покрытия.

Кроме того, наличие защитного покрытия снижает ASR стали Crofer 22 APU: сопротивление Crofer 22 APU без покрытия составляет 0,047 Ом·см² (после 365 ч выдержки), сопротивление Crofer 22 APU с покрытием – 0,025 Ом·см² (после 396 ч выдержки). Величина ASR стали 08Х17Т с покрытием после 295 ч составляет 0,097 Ом·см². На графике изменения ASR образцов сплава 47НД видно, что при наличии защитного покрытия величина удельного сопротивления ниже в 10 раз: после 765 ч выдержки сопротивление 47НД без покрытия составляет 0,060 Ом·см², сопротивление 47НД с покрытием – 0,006 Ом·см².

Электрохимические характеристики образцов сталей в контакте с ячейка- O_2 , LaNi_{0.6}Fe_{0.4} $O_{3-\delta}$ | La₂NiO_{4+ δ} Ce_{0.8}Sm_{0.2} $O_{2-\delta}$ | Ce_{0.8}Sm_{0.2} $O_{2-\delta}$ | Pt, O₂ изучали ΜИ методом спектроскопии электрохимического импеданса с помощью потенциостата-гальваностатаVersaSTAT 4 (AMETEK Scientific Instruments, США) при 850 °С в воздушной атмосфере без поляризации, а также в условиях катодной и анодной поляризации (плотность тока 0,5 A/см²). Зависимости поляризационного сопротивления R_n ячеек с хромсодержащими интерконнекторами от времени представлены на рисунке 3. Начальные значения R_n независимо от материала интерконнектора находятся в диапазоне 0,20-0,30 Ом см²; затем R_n монотонно возрастают со временем. После 1152 ч R_n для Pt составляет $0,50 \pm 0,05$ Ом·см², для Crofer 22 APU с покрытием – $0,56 \pm 0,05$ Ом·см²; для 08Х17Т с покрытием – 0.59 ± 0.05 Ом см², для Crofer 22 APU без покрытия – 0.73 ± 0.05 Ом·см². Данные, полученные для ячеек с Crofer 22 APU и 08X17T с покрытиями под анодной поляризацией, сопоставимы с данными, полученными без поляризации: после 1080 ч поляризационное сопротивление составляет $\approx 0,60$ Ом см². При этом, катодная поляризация ускоряет рост поляризационного сопротивления: после 1080 ч поляризационное сопротивление ячейки с Crofer 22 APU с покрытием составляет $1,00 \pm 0,05$ Ом·см², ячейки с 08X17T с покрытием -0.96 ± 0.05 Ом \cdot см².

Рисунок 3. Зависимости R_η различных ячеек от времени при 850 °C в воздушной атмосфере без поляризации (**a**) и под поляризацией (**б**).

Синтез и свойства новых функциональных материалов, в том числе наноматериалов

На рисунке 4 приведен график сравнения поведения ячеек с Crofer 22 APU с покрытием и 47HД с покрытием под катодной и анодной поляризацией. Видно, что при анодной поляризации ячейки с обоими сплавами ведут себя одинаково, показывая незначительный рост поляризационного сопротивления со временем. При этом, под катодной поляризацией для ячейки с 47HД увеличения R_η не наблюдается, в отличие от ячейки cCrofer 22 APU.

Рисунок 4. Зависимости R_n ячеек с Crofer 22 APU с покрытием и 47НД с покрытием при 850 °C в воздушной атмосфере под поляризацией

Химический состав ячеек после длительных испытаний анализировали методом волнодисперсионного рентгеновского спектрального микроанализа с использованием электронно-зондового микроанализатора Cameca SX100 (CAMECA, Франция).Обнаружено, что знак поляризации влияет на направление распределения хрома в электродном материале: в отсутствии поляризации и под катодной поляризацией хром преимущественно осаждается на границе раздела функциональный электродный слой – электролит, под анодной поляризацией – на границе раздела интерконнектор – коллекторный электродный слой.

Установлено, что в ячейках, находившихся в контакте со сталями без защитного покрытия, с увеличением времени выдержки количество хрома увеличивается. При наличии защитного покрытия хром практически не проникает в электродный материал в условиях работы без поляризации и под анодной поляризацией. Под катодной поляризацией значительное отравление хромом наблюдается и в ячейках с защитным покрытием.

Исходя из данных, полученных в рамках сравнения электрохимических характеристик ячеек и карт распределения хрома, можно сделать вывод, что защитные покрытия, разработанные для хромсодержащих сталей, эффективны при ра-

без поляризации и под анодной поляризацией. При этом, сплав 47НД с защитным покрытием может использоваться в условиях как анодной, так и катодной поляризации.

Список литературы

1. Fergus J.W. // Mater. Sci. Eng., A. 2005. V. 397. P. 271–283.

2. Jiang S.P., Chen X. // Int. J. Hydrogen Energy. 2014. V. 39. P. 505–531.