

УДК 541.13

НОВЫЕ КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ НИТРАТА ИТТРИЯ КАК ПРЕКУРСОРЫ ПРИ ПОЛУЧЕНИИ МЕЛКОДИСПЕРСНОГО У2О3

Е.К. Беттельс¹, Е.В. Савинкина¹, Г.А. Бузанов², А.С. Кубасов², В.М. Ретивов³

¹Институт тонких химических технологий имени М.В. Ломоносова, МИРЭА–Российский технологический университет, фундаментальная и прикладная химия, Москва, Россия ²Институт общей и неорганической химии имени Н.С. Курнакова РАН, Москва, Россия ³Национальный исследовательский центр «Курчатовский институт», Москва, Россия ^{*}e-mail: elizavetabettels@yandex.ru

Оксид иттрия имеет широкое практическое значение как самостоятельно, так и служит прекурсором в синтезе функциональных материалов для целого ряда высокотехнологичных отраслей [1–3]. Особый интерес представляет использование наноразмерных и высокодисперсных препаратов Y_2O_3 . Хорошую альтернативу в получении различных функциональных материалов в наноразмерном состоянии представляет метод SCS (solution combustion synthesis), основанный на протекании экзотермической окислительно-восстановительной реакции в растворе или расплаве. В данном контексте особый интерес представляют системы, в которых как частица - окислитель так и восстановитель находятся в составе одной молекулы [4]. Особое место в данном способе синтеза занимают координационные соединения. В настоящей работе в качестве окислителя был предложен нитрат иттрия $Y(NO_3)_3$, в качестве восстановителя выбран карбамид (Ur). Целью работы являлось изучение комплексообразования в системе нитрат - амид - вода, выделение новых координационных соединений в чистом виде, а также изучение их термического поведения.

Синтез координационных соединений в системе Y(NO₃)₃-Ur-H₂O осуществляли, смешивая навески Y(NO₃)₃·6H₂O с Ur в мольных соотношениях 1:2 и 1:3. Для гомогенизации полученной смеси в качестве растворителя использовалась вода. Выделение целевых продуктов проводилось путем изотермического выпаривания при температуре 30 °C.

Образование координационных соединений, их химический, фазовый состав и строение оценивали и подтверждали совокупностью методов анализа: CHN-анализ, ИК-спектроскопия, рентгенофазовый (РФА) и рентгеноструктурный (РСА) анализ. Термическое поведение чистых образцов исследуемых координационных соединений изучали методами ТГА и ДСК.

Методом просвечивающей электронной микроскопией (ПЭМ) подтверждена наноразмерность полученных оксидов.

Так, на дифрактограммах выделенных соединений отсутствуют рефлексы прекурсоров, а также рефлексы ранее полученного комплексного соединения со-

става [Y(H₂O)(Ur)₄(NO3)₂]NO₃ (рис. 1) [5]. Кроме того, в хорошем согласии находятся экспериментальные дифрактограммы выделенных координационных соединений и дифрактограммы, рассчитанные по данным PCA на монокристалле.

Рисунок 1. Дифрактограммы: 1– Ur, 2– Y(NO₃)₃⊙·6H₂O, 3– [Y(H₂O)(Ur)₂(NO₃)₃], 4– Y(Ur)₃(NO₃)₃].

Данные РСА, полученные для (I) [Y(H₂O)(Ur)₂(NO₃)₃], (II) [Y(Ur)₃(NO₃)₃], свидетельствуют о том, что оба выделенных комплекса имеют молекулярное строение и кристаллизуются в моноклинной сингонии (P₂₁/n и P₂₁/c, соответственно). В комплексе (I) центральный ион Y³⁺ координирует вокруг себя одну молекулу воды, две монодентатные молекулы Ur и три бидентатно-хелатирующих NO₃⁻-иона и имеет КЧ, равное 9, что соответствует координационному полиэдру пентагональной бипирамиды. В комплексном соединении (II) ион Y³⁺ координирует вокруг себя три монодентатных молекулы Ur и три бидентантно-хелатирующих нитрат-иона. КЧ равно 9, что соответствует координационному полиэдру пентагональной бипирамиды (рис.2).

Рисунок 2. Структуры и координационные полиэдры комплексов I [Y(H2O)(Ur)2(NO3)3], II [Y(Ur)3(NO3)3].

В таблице ниже, представлены параметры элементарных ячеек сформировавшихся комплексов (табл.1)

Эмпирическая формула	a, Å	b, Å	c, Å	β°
[Y(H2O)(Ur)2(NO3)3]	12,0102(15)	8,8837(13)	13,775(3)	114,334(9)
[Y(Ur)3(NO3)3]	9,7076(2)	15,8056(3)	10,0702(3)	96,1410(10)

Таблица 1. Параметры элементарных ячеек для комплексов состава I и II.

Термолиз комплексов в атмосфере воздуха протекает в несколько стадий. Так, на термограмме [Y(Ur)3(NO3)3] эндо-эффекты с максимумами при 76 °C и 128 °C можно связать с плавлением комплексного соединения, которое, вероятно, протекает инконгруэнтно. Эндо-эффекту с максимумом при 270 °C может соответствовать образование промежуточного продукта (биурета), а также координационных соединений на его основе; сильный экзотермический эффект (max. 329 °C) указывает на окисление органической части нитрат-ионами, что приводит к формированию промежуточного основного нитрата иттрия (YONO3), разложение которого наблюдается в дальнейшем (эндоэффект, max. 467 °C). Процесс формирования оксидной фазы (Y2O3) полностью завершается к \approx 585 °C. (рис.3)

Рисунок 3. Термограмма комплекса [Y(Ur)3(NO3)3] на воздухе. 1- Кривая потери массы, 2- Дифференциальная кривая.

Температуры максимумов эффектов, наблюдаемых на термограммах образцов комплексных соединений I и II представлены в табл.2.

Таблица 2. Данные термического анализа комплексов I и II на воздухе.

Координационные соединения состава:	Эндо-эффекты, °С	Экзо-эф- фекты, °С	Интервалы протекания SCS, °C	t обр. Y2O3 °C
[Y(H ₂ O)(Ur) ₂ (NO ₃) ₃]	129, 267	185, 311	310-475	585
[Y(Ur) ₃ (NO ₃) ₃]	76, 128	329	328-470	557

Методом ПЭМ подтверждена наноразмерность полученного Y₂O₃ после термолиза выделенных карбамидных комплексов (рис.4)

Рисунок 4. Микрофотография У2О3.

Таким образом, показано, что выделенные в настоящей работе соединения [Y(H2O)(Ur)2(NO3)3] и [Y(Ur)3(NO3)3] являются перспективными прекурсорами для наноразмерных препаратов оксидов иттрия.

Список литературы

1. Ghodake G., Shinde S., Saratale G.D., Kadam A., Saratale R.G., Kim D.Y. // J. Fibers Polym. 2020.V.21. P. 751–761.

2. Kannan S.K., Sundararajan M. // Bull. Mat. Sci. 2015.V. 38. P. 945-950.

3. Nagajyothi P.C., Pandurangan M., Veerappan M., Kim D.W., Sreekanth T.V.M., Shim // J.. Mat. Lett. 2018. V 216. P 58–62.

4. *Караваев И.А., Савинкина Е.В., Григорьев М.С., Бузанов Г.А., Козерожец И.В.* // Журнал неорганической химии. 2020. Т. 67. С. 1080.

5. Savinkina E.V., Karavaev I.A., Grigoriev M.S., Buzanov G.A., Davydova M.N. // Inorg. Chim. Acta. 2022. V. 532. P. 120759.