

УДК 544.22+544.623

СИНТЕЗ И ЭЛЕКТРОПРОВОДИМОСТЬ ТВЕРДЫХ РАСТВОРОВ Sr₃GaNi_{1-x}In_xO₇ (0 < X ≤0,7) СО СТРУКТУРОЙ 2Р/RS (Р – СЛОЙ ПЕРОВСКИТА, RS – СЛОЙ КАМЕННОЙ СОЛИ)

Л.В. Махнач¹, А.Е. Усенко¹, И.М. Харламова^{2*}, Д.В. Захаренко¹, В.В. Паньков¹, Е.В. Коробко²

¹Белорусский государственный университет, Минск, Беларусь ²Институт тепло- и массообмена имени А.В. Лыкова НАН Беларуси, Минск, Беларусь *e-mail: gri-inga@yandex.ru

В работе [1] сообщалось о получении твердых растворов Sr₃Ni_{2-x}Al_xO₇ ($0,5 \le x \le 0,75$) перовскитного типа со структурой 2P/RS из серии Раддлесдена-Поппера. В системе Sr–Ga–Ni–O синтезированы аналогичные твердые растворы в пределах концентрации галлия $0,7 \le x \le 1,0$. Как алюмо- так и галлоникелаты обладают электрон-ионной проводимостью и являются перспективными для применения в различных электрохимических устройствах. Электронная проводимость в этих оксидах возрастает с увеличением концентрации никеля [1].

В данной работе ставилась задача уменьшения электронной проводимости в галлоникелатеSr₃GaNiO₇ для отделения и, возможно, увеличения ионной составляющей при сохранении структуры 2P/RS. Выполнение этой задачи достигалось замещением части никеля индием. При этом были получены твердые растворы Sr₃GaNi_{1-x}In_xO₇ (0 < x ≤0,7).

Образцы готовили твердофазным синтезом из нитратов, как и в работе [1]. С введением индия температуру синтеза оксидов удалось снизить на 20–50 °С, а продолжительность – уменьшить на 5–10 часов. Рентгенофазовый анализ образцов проводили с помощью дифрактометра ДРОН-3. Полученные результаты исследований приведены на рисунках 1, 2 и в таблице 1.

Мы ожидали получить кривую зависимости lg $\sigma(x)$ в виде, представленном на рисунке 2, включая участок с штриховой линией. Однако, значения электропроводности σ образцов Sr₃GaNi_{0,9}In_{0,1}O₇ и Sr₃GaNi_{0,8}In_{0,2}O₇ аномально отклонились от ожидаемых, т.е. при небольших значениях замещения никеля на индий ($x \le 0,2$) σ не падает, а растет. Были проведены дополнительные эксперименты – приготовлены образцы с частичным замещением Ga на In. Удельная электропроводимость образцов Sr₃NiGa_{0,9}In_{0,1}O₇ и Sr₃NiGa_{0,8}In_{0,2}O₇ практически не изменилась в сравнении с таковой исходногоSr₃GaNiO₇.

Твердооксидные электрохимические устройства: материалы и технологии

Рисунок 1. Дифрактограмма образцов составов Sr₃GaNi_{1-x}In_xO₇ (0 < x \leq 0,7) со структурой 2P/RS (СоК α -излучение).

Таблица.	Значения	удельной	электропроводности	образцов
Sr ₃ GaNi _{1-x} In _x	О7 при комнати	ной температуре		

Состав	x=0	x=0,1	x=0,2	x=0,3	x=0,4	x=0,5	x=0,6	x=0,7
σ, См∙см⁻1	6.10-3	10.10-3	35.10-	5,57·10 ⁻⁵	1,36.10-5	1,47.10-6	1,38.10-7	2,67·10 ⁻⁹
lg σ	-2,22	-2	-1,46	-4,25	-4,87	-5,83	-6,86	-8,57

Рисунок 2. Зависимость удельной проводимости образцов Sr₃GaNi_{1-x}In_xO₇ (0 < x \leq 0,7) от состава (lg σ (x))

Следовательно, возрастание о у составов Sr₃GaNi_{1-x}In_xO₇ с малой концентрацией замещения связано с процессами, которые провоцирует в кристаллической решетке пара Ni³⁺ – In³⁺. Ионный радиус In³⁺ (0,8 Å) больше ионного радиуса Ni³⁺ (0,6 Å), поэтому рефлексы дифрактограммы состава с x = 0,1 смещены относительно исходного (x = 0) в сторону меньших углов (рисунок 1). Однако рефлексы состава с x = 0,2 дальнейшего смещения не претерпевают. Далее смещение относительно оксида с x = 0,2 наблюдается у рефлексов состава x = 0,4. При замещении x от 0,4 до 0,7 дифракционная картина остается неизменной.

Для полного объяснения полученных экспериментальных результатов будут продолжены исследования синтезированных твердых растворов.

Список литературы

1. Kharlamova, I.M., Makhnach, L.V., Usenka A.E., Lyakhov A.S., Ivashkevich L.S., Pankov V.V. // J. Solid State Ion. 2018. V. 324. P. 241–246.