М. Е. Соболь, К. С. Суханов, А. Р. Гилев, Е. А. Киселев, В. А. Черепанов Уральский федеральный университет e-mail: sobol2709@mail.ru

СИНТЕЗ И ИЗУЧЕНИЕ ФУНКЦИОНАЛЬНЫХ СВОЙСТВ СЛОЖНЫХ ОКСИДОВ ${\rm La_{2-x}Pr_xNi_{0,6}Cu_{0,4}O_{4+\delta}}$ (x=0,5;1,0;1,5) КАК КАТОДНЫХ МАТЕРИАЛОВ ТОТЭ

Твердооксидные топливные элементы (ТОТЭ) вызывают большой интерес у исследователей, так как они могут напрямую преобразовывать накопленную химическую энергию в электрическую без загрязнения окружающей среды. Сложные оксиды $Ln_2NiO_{4+\delta}$ (Ln = La, Pr), относящиеся к фазам Раддлесдена – Поппера $Ln_{n+1}Ni_nO_{3n+1}$, где n=1, рассматриваются как перспективные материалы для электрохимических устройств, в том числе как катоды для среднетемпературных ТОТЭ.

Синтез образцов сложных оксидов $La_{2-x}Pr_xNi_{0,6}Cu_{0,4}O_{4+\delta}$ (x=0,5;1,0;1,5) и $Ce_{0,8}Sm_{0,2}O_{2-\delta}$ (SDC) проводили по цитратно-нитратной технологии. Результаты $P\Phi A$ показали, что сложные оксиды $La_{2-x}Pr_xNi_{0,6}Cu_{0,4}O_{4+\delta}$ (x=0,5;1,0;1,5) и спеченные таблетки SDC были получены однофазными, имели тетрагональную структуру типа K_2NiF_4 , пр. гр. I4/mmm и кубическую структуру типа флюорита, пр. гр. Fm3m, соответственно. Для измерения общей электропроводности образцов сложных оксидов $La_{2-x}Pr_xNi_{0,6}Cu_{0,4}O_{4+\delta}$ (x=0,5;1,0;1,5) использовали четырехконтактный метод на постоянном токе, а для дифференциальных коэффициентов термо-ЭДС (коэффициентов Зеебека) — интегральный метод в градиенте температур от 5 до 10 °C. Измерения проводили в интервале температур 20-950 °C на воздухе. Общая электропроводность всех образцов возрастает с увеличением температуры до 450 °C, а затем убывает. С возрастанием концентрации празеодима от x=0,5 до x=1,5 значения электропроводности незначительно увеличиваются. Максимальное значение общей электропроводности

было получено для образца $La_{2-x}Pr_xNi_{0.6}Cu_{0.4}O_{4+\delta}$ и составило 96,39 См/см при 450 °C. Энергия активации электропроводности для исследуемых образцов составила 22,2 кДж/моль (20–350 °C). Для исследования импеданса симметричных ячеек $La_{2-x}Pr_xNi_{0.6}Cu_{0.4}O_{4+\delta}$ | SDC | $La_{2-x}Pr_xNi_{0.6}Cu_{0.4}O_{4+\delta}$ на каждую сторону таблетки SDC наносили спиртовые суспензии из порошков сложных оксидов $La_{2-x}Pr_xNi_{0,6}Cu_{0,4}O_{4+\delta}$ ($x=0,5;\ 1,0;\ 1,5$) и затем припекали при 950 °C в течение 4 ч на воздухе. Спектры импеданса были получены двухконтактным методом в интервале частот от 300 кГц до 1 мГц с амплитудой сигнала 15–20 мВ в температурном диапазоне 550-800 °C. Значения общего поляризационного сопротивлеполученных годографов R_{p} рассчитанные ИЗ 1) ния, $\text{La}_{2-x}\text{Pr}_x\text{Ni}_{0.6}\text{Cu}_{0.4}\text{O}_{4+\delta}$ составили 0,07 Ом·см² (x=0.5), 0,05 Ом·см² (x=1) и 0,03 (x = 1.5) Ом·см² при 800 °C.

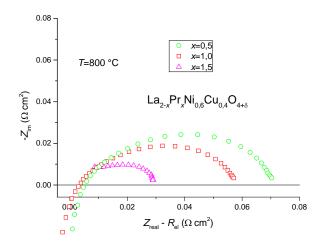


Рис. 1. Годографы импеданса $\text{La}_{2-x}\text{Pr}_x\text{Ni}_{0,6}\text{Cu}_{0,4}\text{O}_{4+\delta}$ (x=0,5;1,0;1,5) в симметричных ячейках на основе SDC при 800 °C

В табл. 1 представлены значения поляризационных сопротивлений для различных температур в сравнении с данными работы [2], полученными для $\text{La}_2\text{NiO}_{4+\delta}$ и $\text{Pr}_2\text{NiO}_{4+\delta}$. Из данных табл. 1 видно, что с увеличением концентрации празеодима с x=0,5 до x=1,5 значение общего поляризационного сопротивления уменьшается, что связано с большей электрохимической активностью празеодима, по сравнению с лантаном в реакции восстановления кислорода на ка-

тоде [1, 2]. Сравнивая полученные результаты с ранее опубликованными данными [1, 2], представленными в табл. 1, можно сделать вывод, что исследуемые материалы являются перспективными для применения в качестве катодов среднетемпературных ТОТЭ. Тем не менее необходимо дополнительно проверить их термодинамическую стабильность в среднетемпературном интервале 500-800 °C, поскольку известно, что никелат празеодима $Pr_2NiO_{4+\delta}$ и его производные, несмотря на низкие поляризационные сопротивления, является термодинамически нестабильным в указанном интервале температур [2].

Таблица 1 Поляризационное сопротивление (R_p) материалов $La_{2-x}Pr_xNi_{0,6}Cu_{0,4}O_{4+\delta}$ при различных температурах в сравнении с $La_2NiO_{4+\delta}$ и $Pr_2NiO_{4+\delta}$.

T, °C	\mathbf{R}_p , Ом см ²				
	x = 0.5	x = 1	x = 1,5	$La_2NiO_{4+\delta}[2]$	$Pr_2NiO_{4+\delta}$ [2]
550	6,7	4,31	1,72	_	_
600	2,14	1,27	0,49	_	_
650	0,85	0,49	0,22	_	_
700	0,34	0,25	0,13	0,73	0,28
750	0,15	0,12	0,07	_	_
800	0,07	0,05	0,03	_	_

Исследование выполнено при поддержке Российского научного фонда, грант № 24-23-00128.

Список литературы

- 1. Recent advances in layered $Ln_2NiO_{4+\delta}$ nickelates: fundamentals and prospects of their applications in protonic ceramic fuel and electrolysis cells / A. P. Tarutin et al. // J. Mater. Chem. A. 2021 Vol. 9. P. 154–195. https://doi.org/10.1039/D0TA08132A.
- 2. Structure, transport properties and electrochemical behavior of the layered lanthanide nickelates doped with calcium / E. Y. Pikalova et al. // Int. J. Hydrogen Energy 2018 Vol. 43. P. 17373–17386. https://doi.org/10.1016/j.ijhydene.2018.07.115.